
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6351481/publications.pdf Version: 2024-02-01

DALL C EDOST

#	Article	IF	CITATIONS
1	Global Patterns and Controls of Nutrient Immobilization on Decomposing Cellulose in Riverine Ecosystems. Global Biogeochemical Cycles, 2022, 36, .	4.9	12
2	Interactive effects of water temperature and stoichiometric food quality on <i>Daphnia pulicaria</i> . Freshwater Biology, 2021, 66, 256-265.	2.4	12
3	Lipid bound phosphorus in the seston of Lake Erie and its tributaries and its use as an indicator of algal P-limitation. Aquatic Sciences, 2021, 83, 1.	1.5	2
4	Benthic and planktonic inorganic nutrient processing rates at the interface between a river and lake. Biogeochemistry, 2021, 155, 189-203.	3.5	4
5	Association Between Subcatchment Land Cover and Ecological Stoichiometry Along a Human Modified Stream Network. Frontiers in Water, 2021, 3, .	2.3	0
6	Episodic Nutrient Addition Affects Water Column Nutrient Processing Rates in Riverâ€ŧo‣ake Transitional Zones. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006374.	3.0	6
7	Calcium stress in <i>Daphnia pulicaria</i> and exposure to predator-derived cues: Making a bad situation worse?. Freshwater Science, 2021, 40, 449-462.	1.8	3
8	Stoichiometric Ecotoxicology for a Multisubstance World. BioScience, 2021, 71, 132-147.	4.9	12
9	Leaf litter decomposition in boreal lakes: variable mass loss and nutrient release ratios across a geographic gradient. Hydrobiologia, 2020, 847, 819-830.	2.0	7
10	Planktonic algae abundance and diversity are similar in urban stormwater ponds of different geographic locations and natural shallow lakes. Urban Ecosystems, 2020, 23, 841-850.	2.4	5
11	Phosphorus, nitrogen and dissolved organic carbon fluxes from sediments in freshwater rivermouths entering Green Bay (Lake Michigan; USA). Biogeochemistry, 2020, 147, 179-197.	3.5	11
12	The complexity of co-limitation: nutrigenomics reveal non-additive interactions of calcium and phosphorus on gene expression in <i>Daphnia pulex</i> . Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202302.	2.6	4
13	Water column nutrient processing rates in rivermouths of Green Bay (Lake Michigan). Biogeochemistry, 2019, 142, 73-93.	3.5	7
14	Mobility and Bioavailability of Sediment Phosphorus in Urban Stormwater Ponds. Water Resources Research, 2019, 55, 3680-3688.	4.2	12
15	Fear and food: Effects of predatorâ€derived chemical cues and stoichiometric food quality on <i>Daphnia</i> . Limnology and Oceanography, 2019, 64, 1706-1715.	3.1	14
16	Nutrient availability affects the prevalence of a microsporidian parasite. Journal of Animal Ecology, 2019, 88, 579-590.	2.8	7
17	Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 2019, 5, eaav0486.	10.3	133
18	Muted responses to Ag accumulation by plankton to chronic and pulse exposure to silver nanoparticles in a boreal lake. Facets, 2019, 4, 566-583.	2.4	2

#	Article	IF	CITATIONS
19	Seasonal effects of food quality and temperature on body stoichiometry, biochemistry, and biomass production in Daphnia populations. Limnology and Oceanography, 2018, 63, 1727-1740.	3.1	17
20	Addition of silver nanoparticles has no long-term effects on natural phytoplankton community dynamics in a boreal lake. Limnology and Oceanography Letters, 2018, 3, 311-319.	3.9	5
21	Accumulation of Silver in Yellow Perch (<i>Perca flavescens</i>) and Northern Pike (<i>Esox) Tj ETQq1 1 0.78431 11114-11122.</i>	4 rgBT /C 10.0	verlock 10 24
22	Spatial and temporal trends in the fate of silver nanoparticles in a whole-lake addition study. PLoS ONE, 2018, 13, e0201412.	2.5	18
23	The threshold elemental ratio of carbon and phosphorus of Daphnia magna and its connection to animal growth. Scientific Reports, 2018, 8, 9673.	3.3	13
24	Effects of algal food quality on free amino acid metabolism of Daphnia. Aquatic Sciences, 2017, 79, 127-137.	1.5	15
25	Interactive effects of genotype and food quality on consumer growth rate and elemental content. Ecology, 2017, 98, 1399-1408.	3.2	28
26	Chronic and pulse exposure effects of silver nanoparticles on natural lake phytoplankton and zooplankton. Ecotoxicology, 2017, 26, 502-515.	2.4	16
27	Phosphorus cycling in urban aquatic ecosystems: connecting biological processes and water chemistry to sediment P fractions in urban stormwater management ponds. Biogeochemistry, 2017, 132, 203-212.	3.5	30
28	Biomass loss and nutrient release from decomposing aquatic macrophytes: effects of detrital mixing. Aquatic Sciences, 2017, 79, 881-890.	1.5	17
29	Citizen scientists supporting environmental research priorities. Science of the Total Environment, 2017, 598, 937.	8.0	19
30	Monitoring water quality in Toronto's urban stormwater ponds: Assessing participation rates and data quality of water sampling by citizen scientists in the FreshWater Watch. Science of the Total Environment, 2017, 592, 738-744.	8.0	42
31	Variable toxicity of silver nanoparticles to Daphnia magna: effects of algal particles and animal nutrition. Ecotoxicology, 2017, 26, 118-126.	2.4	23
32	Variation in particulate C : N : P stoichiometry across the Lake Erie watershed from tributaries to its outflow. Limnology and Oceanography, 2017, 62, S194.	3.1	32
33	Variable silver nanoparticle toxicity to Daphnia in boreal lakes. Aquatic Toxicology, 2017, 192, 1-6.	4.0	10
34	Dynamic Responses of Phosphorus Metabolism to Acute and Chronic Dietary Phosphorus-Limitation in Daphnia. Frontiers in Environmental Science, 2017, 5, .	3.3	6
35	Human activities cause distinct dissolved organic matterÂcomposition across freshwater ecosystems. Global Change Biology, 2016, 22, 613-626.	9.5	161
36	Effects of calcium and phosphorus limitation on the nutritional ecophysiology of <i>Daphnia</i> . Limnology and Oceanography, 2016, 61, 268-278.	3.1	35

#	Article	IF	CITATIONS
37	The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae, 2016, 54, 128-144.	4.8	218
38	Effects of silver nanoparticles on bacterioplankton in a boreal lake. Freshwater Biology, 2016, 61, 2211-2220.	2.4	12
39	Do rivermouths alter nutrient and seston delivery to the nearshore?. Freshwater Biology, 2016, 61, 1935-1949.	2.4	24
40	The dual synchronizing influences of precipitation and land use on stream properties in a rapidly urbanizing watershed. Ecosphere, 2016, 7, e01427.	2.2	10
41	Exploited and excreting: parasite type affects host nutrient recycling. Ecology, 2016, 97, 2012-2020.	3.2	11
42	Phosphorus export from a small forested stream: Are there effects from human residential development in the riparian zone?. Fundamental and Applied Limnology, 2015, 187, 55-62.	0.7	1
43	The Dawn of a New Era for the Experimental Lakes Area. Limnology and Oceanography Bulletin, 2015, 24, 85-87.	0.4	1
44	Metabolomic Differentiation of Nutritional Stress in an Aquatic Invertebrate. Physiological and Biochemical Zoology, 2015, 88, 43-52.	1.5	43
45	The fingerprints of urban nutrients: dynamics of phosphorus speciation in water flowing through developed landscapes. Biogeochemistry, 2015, 125, 1-10.	3.5	39
46	Environmental Fate of Silver Nanoparticles in Boreal Lake Ecosystems. Environmental Science & Technology, 2015, 49, 8441-8450.	10.0	55
47	Phosphorus Availability Alters the Effects of Silver Nanoparticles on Periphyton Growth and Stoichiometry. PLoS ONE, 2015, 10, e0129328.	2.5	10
48	Urban biogeochemistry of trace elements: What can the sediments of stormwater ponds tell us?. Urban Ecosystems, 2015, 18, 763-775.	2.4	20
49	Does infection tilt the scales? Disease effects on the mass balance of an invertebrate nutrient recycler. Oecologia, 2015, 179, 969-979.	2.0	12
50	A Beginner's Guide to Nutritional Profiling in Physiology and Ecology. Integrative and Comparative Biology, 2014, 54, 873-879.	2.0	11
51	The persistence and transformation of silver nanoparticles in littoral lake mesocosms monitored using various analytical techniques. Environmental Chemistry, 2014, 11, 419.	1.5	49
52	Stoichiometric and growth responses of a freshwater filamentous green alga to varying nutrient supplies: slow and steady wins the race. Freshwater Biology, 2014, 59, 2225-2234.	2.4	9
53	Relationships Between Land Cover and Dissolved Organic Matter Change Along the River to Lake Transition. Ecosystems, 2014, 17, 1413-1425.	3.4	35
54	Nutrient loading associated with agriculture land use dampens the importance of consumerâ€mediated niche construction. Ecology Letters, 2013, 16, 1115-1125.	6.4	47

PAUL C FROST

#	Article	IF	CITATIONS
55	Thermal and chemical stratification of urban ponds: Are they â€ [~] completely mixed reactors'?. Urban Ecosystems, 2013, 16, 327-339.	2.4	39
56	Changes in riverine benthic diatom community structure along a chloride gradient. Ecological Indicators, 2013, 32, 97-106.	6.3	43
57	Nutritional indicators and their uses in ecology. Ecology Letters, 2013, 16, 535-544.	6.4	74
58	Thermal stratification patterns in urban ponds and their relationships with vertical nutrient gradients. Journal of Environmental Management, 2013, 127, 317-323.	7.8	61
59	The neonate nutrition hypothesis: early feeding affects the body stoichiometry of <i><scp>D</scp>aphnia</i> offspring. Freshwater Biology, 2013, 58, 2333-2344.	2.4	6
60	Beyond best management practices: pelagic biogeochemical dynamics in urban stormwater ponds. Ecological Applications, 2013, 23, 1384-1395.	3.8	82
61	Distinct Optical Chemistry of Dissolved Organic Matter in Urban Pond Ecosystems. PLoS ONE, 2013, 8, e80334.	2.5	23
62	Responses of alkaline phosphatase activity in Daphnia to poor nutrition. Oecologia, 2012, 170, 1-10.	2.0	26
63	Human shoreline development and the nutrient stoichiometry of aquatic plant communities in Canadian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 1642-1650.	1.4	22
64	Phosphorus nutrition alters herbicide toxicity on Daphnia magna. Science of the Total Environment, 2012, 421-422, 124-128.	8.0	16
65	Shifts in aquatic macrophyte abundance and community composition in cottage developed lakes of the Canadian Shield. Aquatic Botany, 2011, 94, 9-16.	1.6	28
66	Intraspecific mass-scaling of field metabolic rates of a freshwater crayfish varies with stream land cover. Ecosphere, 2011, 2, art13.	2.2	20
67	Temperature and the effects of elemental food quality on Daphnia. Freshwater Biology, 2011, 56, 1447-1455.	2.4	51
68	Antibiotics affect the growth responses of Daphnia magna to poor food quality. Aquatic Ecology, 2011, 45, 493-504.	1.5	15
69	Transgenerational effects of poor elemental food quality on Daphnia magna. Oecologia, 2010, 162, 865-872.	2.0	70
70	Responses of alkaline phosphatase activity to phosphorus stress in <i>Daphnia magna</i> . Journal of Experimental Biology, 2010, 213, 256-261.	1.7	27
71	Watershed discharge modulates relationships between landscape components and nutrient ratios in stream seston. Ecology, 2009, 90, 1631-1640.	3.2	44
72	Ecological stoichiometry of indirect grazer effects on periphyton nutrient content. Oecologia, 2008, 155, 619-630.	2.0	50

PAUL C FROST

#	Article	IF	CITATIONS
73	Bacterial infection changes the elemental composition of <i>Daphnia magna</i> . Journal of Animal Ecology, 2008, 77, 1265-1272.	2.8	38
74	Poor elemental food quality reduces the toxicity of fluoxetine on Daphnia magna. Aquatic Toxicology, 2008, 86, 99-103.	4.0	37
75	Wetland types and wetland maps differ in ability to predict dissolved organic carbon concentrations in streams. Science of the Total Environment, 2008, 404, 326-334.	8.0	20
76	Effects of periphyton stoichiometry on mayfly excretion rates and nutrient ratios. Journal of the North American Benthological Society, 2008, 27, 497-508.	3.1	24
77	RESPONSES OF A BACTERIAL PATHOGEN TO PHOSPHORUS LIMITATION OF ITS AQUATIC INVERTEBRATE HOST. Ecology, 2008, 89, 313-318.	3.2	88
78	Effects of upstream lakes on dissolved organic matter in streams. Limnology and Oceanography, 2007, 52, 60-69.	3.1	67
79	Photodegradation of dissolved organic matter in forested streams of the northern Great Lakes region. Journal of the North American Benthological Society, 2007, 26, 416-425.	3.1	36
80	Land use controls nutrient excretion by stream invertebrates along a gradient of agriculture. Journal of the North American Benthological Society, 2007, 26, 523-531.	3.1	20
81	Effects of dissolved organic matter and ultraviolet radiation on the accrual, stoichiometry and algal taxonomy of stream periphyton. Freshwater Biology, 2007, 52, 319-330.	2.4	21
82	Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters, 2006, 9, 774-779.	6.4	284
83	Environmental Controls of UV-B Radiation in Forested Streams of Northern Michigan. Photochemistry and Photobiology, 2006, 82, 781.	2.5	13
84	Landscape predictors of stream dissolved organic matter concentration and physicochemistry in a Lake Superior river watershed. Aquatic Sciences, 2006, 68, 40-51.	1.5	76
85	Landscape predictors of stream dissolved organic matter concentration and physicochemistry in a Lake Superior river watershed. Aquatic Sciences, 2006, 68, 40-51.	1.5	15
86	Low algal carbon content and its effect on the C : P stoichiometry of periphyton. Freshwater Biology, 2005, 50, 1800-1807.	2.4	71
87	Ecological stoichiometry in freshwater benthic ecosystems: an introduction. Freshwater Biology, 2005, 50, 1781-1785.	2.4	52
88	Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwater Biology, 2005, 50, 1895-1912.	2.4	353
89	Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos, 2005, 109, 18-28.	2.7	240
90	Attenuation of ultraviolet radiation in streams of northern Michigan. Journal of the North American Benthological Society, 2005, 24, 246-255.	3.1	28

#	Article	IF	CITATIONS
91	The stoichiometry of dissolved organic carbon, nitrogen, and phosphorus release by a planktonic grazer, Daphnia. Limnology and Oceanography, 2004, 49, 1802-1808.	3.1	36
92	UV RADIATION, PHOSPHORUS, AND THEIR COMBINED EFFECTS ON THE TAXONOMIC COMPOSITION OF PHYTOPLANKTON IN A BOREAL LAKE ¹ . Journal of Phycology, 2003, 39, 291-302.	2.3	46
93	The effect of cadmium on fulvic acid adsorption to Bacillus subtilis. Chemical Geology, 2003, 200, 217-224.	3.3	23
94	Rapid Communication / Communication RapideAmbient solar ultraviolet radiation and its effects on phosphorus flux into boreal lake phytoplankton communities. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 1090-1095.	1.4	17
95	JOINT EFFECTS OF UV RADIATION AND PHOSPHORUS SUPPLY ON ALGAL GROWTH RATE AND ELEMENTAL COMPOSITION. Ecology, 2002, 83, 423-435.	3.2	100
96	ROSEMARY MACKAY FUND ARTICLE: Ecological stoichiometry of trophic interactions in the benthos: understanding the role of C:N:P ratios in lentic and lotic habitats. Journal of the North American Benthological Society, 2002, 21, 515-528.	3.1	148
97	Effects of light and nutrients on the net accumulation and elemental composition of epilithon in boreal lakes. Freshwater Biology, 2002, 47, 173-183.	2.4	57
98	Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters, 2002, 5, 232-240.	6.4	217
99	Spatial and Temporal Variability of Phytoplankton and Zooplankton in Western Lake Erie. Journal of Freshwater Ecology, 2001, 16, 435-443.	1.2	14
100	Proteome changes in an aquatic invertebrate consumer in response to different nutritional stressors. Oecologia, 0, , .	2.0	0