
Beata HasiÃ³w-Jaroszewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6351408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Occurrence, Genetic Variability of Tomato Yellow Ring Orthotospovirus Population and the Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Its Rapid Detection. Viruses, 2022, 14, 1405.	3.3	0
2	Genetic variability and evolutionary dynamics of tomato black ring virus population. Plant Pathology, 2021, 70, 1521-1531.	2.4	3
3	Molecular Characterization of the Coat Protein Gene of Greek Apple Stem Pitting Virus Isolates: Evolution through Deletions, Insertions, and Recombination Events. Plants, 2021, 10, 917.	3.5	4
4	Serological and molecular analysis indicates the presence of distinct viral genotypes of Apple stem pitting virus in India. 3 Biotech, 2021, 11, 278.	2.2	2
5	Genetic variability and molecular evolution of arabis mosaic virus based on the coat protein gene sequence. Plant Pathology, 2021, 70, 2197-2206.	2.4	4
6	Metagenomic Studies of Viruses in Weeds and Wild Plants: A Powerful Approach to Characterise Variable Virus Communities. Viruses, 2021, 13, 1939.	3.3	25
7	An assessment of the transmission rate of Tomato black ring virus through tomato seeds. Plant Protection Science, 2020, 56, 9-12.	1.4	7
8	Development of loop-mediated isothermal amplification assay for rapid detection of genetically different wheat dwarf virus isolates. Molecular Biology Reports, 2020, 47, 8325-8329.	2.3	8
9	High-Throughput Sequencing Facilitates Discovery of New Plant Viruses in Poland. Plants, 2020, 9, 820.	3.5	27
10	Effect of defective interfering RNAs on the vertical transmission of Tomato black ring virus. Plant Protection Science, 2020, 56, 261-267.	1.4	5
11	Molecular evolution of tomato black ring virus and de novo generation of a new type of defective RNAs during longâ€ŧerm passaging in different hosts. Plant Pathology, 2020, 69, 1767-1776.	2.4	6
12	Genetic variability of Polish tomato black ring virus isolates and their satellite RNAs. Plant Pathology, 2020, 69, 1034-1041.	2.4	9
13	The Detection of viruses in olive cultivars in Greece, using a rapid and effective RNA extraction method, for certification of virus-tested propagation material. Phytopathologia Mediterranea, 2020, 59, 203-211.	1.3	15
14	Transmission rate of two Polish Tomato torrado virus isolates through tomato seeds. Journal of General Plant Pathology, 2019, 85, 109-115.	1.0	6
15	Evolving by deleting: patterns of molecular evolution of Apple stem pitting virus isolates from Poland. Journal of General Virology, 2019, 100, 1442-1456.	2.9	9
16	First Report of Pepper Mild Mottle Virus in Peppers in Poland. Plant Disease, 2019, 103, 1441-1441.	1.4	5
17	Molecular analysis of barley stripe mosaic virus isolates differing in their biological properties and the development of reverse transcription loop-mediated isothermal amplification assays for their detection. Archives of Virology, 2018, 163, 1163-1170.	2.1	5
18	Defective RNA particles derived from Tomato black ring virus genome interfere with the replication of parental virus. Virus Research, 2018, 250, 87-94.	2.2	20

#	Article	IF	CITATIONS
19	Phylogenetic evidence of natural reassortants in the Cucumber mosaic virus population in Poland. Canadian Journal of Plant Pathology, 2018, 40, 587-593.	1.4	4
20	A multiplex RT-PCR assay for simultaneous detection of <i>Tomato spotted wilt virus</i> and <i>Tomato yellow ring virus</i> in tomato plants. Canadian Journal of Plant Pathology, 2018, 40, 580-586.	1.4	7
21	Construction of Agrobacterium tumefaciens -mediated tomato black ring virus infectious cDNA clones. Virus Research, 2017, 230, 59-62.	2.2	15
22	Rapid detection of Cucumber mosaic virus isolates representing distinct phylogenetic subgroups by reverse transcription, loop-mediated isothermal amplification. Journal of Plant Diseases and Protection, 2017, 125, 227.	2.9	1
23	The Occurrence of <i>Cucumber green mottle mosaic virus</i> Infecting Greenhouse Cucumber in Poland. Plant Disease, 2017, 101, 1336-1336.	1.4	10
24	Strain-dependent mutational effects for Pepino mosaic virus in a natural host. BMC Evolutionary Biology, 2017, 17, 67.	3.2	9
25	Genetic diversity, distant phylogenetic relationships and the occurrence of recombination events among cucumber mosaic virus isolates from zucchini in Poland. Archives of Virology, 2017, 162, 1751-1756.	2.1	11
26	Application of nucleic acid aptamers for detection of Apple stem pitting virus isolates. Molecular and Cellular Probes, 2017, 36, 62-65.	2.1	12
27	Rapid evolutionary dynamics of the Pepino mosaic virus – status and future perspectives. Journal of Plant Protection Research, 2016, 56, 337-345.	1.0	6
28	<i>Pepino mosaic virus</i> RNA-Dependent RNA Polymerase POL Domain Is a Hypersensitive Response-Like Elicitor Shared by Necrotic and Mild Isolates. Phytopathology, 2016, 106, 395-406.	2.2	21
29	The use of real-time polymerase chain reaction with high resolution melting (real-time PCR-HRM) analysis for the detection and discrimination of nematodes Bursaphelenchus xylophilus and Bursaphelenchus mucronatus. Molecular and Cellular Probes, 2016, 30, 113-117.	2.1	10
30	The Occurrence of <i>Tomato yellow ring virus</i> on Tomato in Poland. Plant Disease, 2016, 100, 234-234.	1.4	14
31	Variability of <i>Potato virus Y</i> in Tomato Crops in Poland and Development of a Reverse-Transcription Loop-Mediated Isothermal Amplification Method for Virus Detection. Phytopathology, 2015, 105, 1270-1276.	2.2	10
32	A Comparison of Ultrastructural Changes of Barley Cells Infected with Mild and Aggressive Isolates of Barley stripe mosaic virus. Journal of Plant Diseases and Protection, 2015, 122, 153-160.	2.9	6
33	Rapid detection of genetically diverse tomato black ring virus isolates using reverse transcription loop-mediated isothermal amplification. Archives of Virology, 2015, 160, 3075-3078.	2.1	10
34	Molecular evolution of <i>Pepino mosaic virus</i> during longâ€ŧerm passaging in different hosts and its impact on virus virulence. Annals of Applied Biology, 2015, 166, 389-401.	2.5	16
35	Ultrastructural insights into tomato infections caused by three different pathotypes of Pepino mosaic virus and immunolocalization of viral coat proteins. Micron, 2015, 79, 84-92.	2.2	6
36	LNA probe-based assay for the detection of Tomato black ring virus isolates. Molecular and Cellular Probes, 2015, 29, 78-80.	2.1	4

#	Article	IF	CITATIONS
37	Phylogenetic relationships and the occurrence of interspecific recombination between beet chlorosis virus (BChV) and Beet mild yellowing virus (BMYV). Archives of Virology, 2015, 160, 429-433.	2.1	6
38	Development of aÂone-step immunocapture real-time RT-PCR assay for the detection of barley stripe mosaic virus strains in barley seedlings. Acta Virologica, 2014, 58, 81-85.	0.8	5
39	Molecular Evolution of Viral Multifunctional Proteins: The Case of Potyvirus HC-Pro. Journal of Molecular Evolution, 2014, 78, 75-86.	1.8	23
40	Detection of Pepino mosaic virus isolates from tomato by one-step reverse transcription loop-mediated isothermal amplification. Archives of Virology, 2013, 158, 2153-2156.	2.1	25
41	Analysis of the biological and molecular variability of the Polish isolates of Tomato black ring virus (TBRV). Virus Genes, 2013, 47, 338-346.	1.6	18
42	Ratio of mutated versus wildâ€ŧype coat protein sequences in <i><scp>P</scp>epino mosaic virus</i> determines the nature and severity of yellowing symptoms on tomato plants. Molecular Plant Pathology, 2013, 14, 923-933.	4.2	32
43	A new method for detection and discrimination of Pepino mosaic virus isolates using high resolution melting analysis of the triple gene block 3. Journal of Virological Methods, 2013, 193, 1-5.	2.1	6
44	First Reports of <i>Potato spindle tuber viroid</i> on <i>Solanum jasminoides</i> and of <i>Tomato apical stunt viroid</i> on <i>Solanum rantonnetti</i> in Poland. Plant Disease, 2013, 97, 1663-1663.	1.4	3
45	Cytopathology of <i>Tomato torrado virus</i> Infection in Tomato and <i>Nicotiana benthamiana</i> . Journal of Phytopathology, 2012, 160, 685-689.	1.0	4
46	Characterization of the necrosis determinant of the European genotype of pepino mosaic virus by site-specific mutagenesis of an infectious cDNA clone. Archives of Virology, 2012, 157, 337-341.	2.1	16
47	Two types of defective RNAs arising from the tomato black ring virus genome. Archives of Virology, 2012, 157, 569-572.	2.1	13
48	Sequence diversity and potential recombination events in the coat protein gene of Apple stem pitting virus. Virus Research, 2011, 158, 263-267.	2.2	21
49	Single mutation converts mild pathotype of the Pepino mosaic virus into necrotic one. Virus Research, 2011, 159, 57-61.	2.2	42
50	Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein. Virology Journal, 2011, 8, 318.	3.4	4
51	Molecular characterisation of the full-length genome of olive latent virus 1 isolated from tomato. Journal of Applied Genetics, 2011, 52, 245-247.	1.9	1
52	Pepino Mosaic Virus - A Pathogen of Tomato Crops in Poland: Biology, Evolution and Diagnostics. Journal of Plant Protection Research, 2010, 50, .	1.0	11
53	Quasispecies nature of Pepino mosaic virus and its evolutionary dynamics. Virus Genes, 2010, 41, 260-267.	1.6	18
54	Seed transmission of Pepino mosaic virus in tomato. European Journal of Plant Pathology, 2010, 126, 145-152.	1.7	58

#	Article	IF	CITATIONS
55	Biological and Molecular Characterization of Polish Isolates of Tomato torrado virus*. Journal of Phytopathology, 2010, 158, 56-62.	1.0	31
56	La France disease of the cultivated mushroom Agaricus bisporus in Poland. Acta Virologica, 2010, 54, 217-219.	0.8	3
57	Evidence for RNA recombination between distinct isolates of Pepino mosaic virus. Acta Biochimica Polonica, 2010, 57, 385-8.	0.5	5
58	Infectious RNA transcripts derived from cloned cDNA of a pepino mosaic virus isolate. Archives of Virology, 2009, 154, 853-856.	2.1	21
59	<i>Watermelon mosaic virus</i> reported for the first time in Poland. Plant Pathology, 2009, 58, 783-783.	2.4	7
60	New Necrotic Isolates of <i>Pepino mosaic virus</i> Representing the Ch2 Genotype. Journal of Phytopathology, 2009, 157, 494-496.	1.0	28
61	Evidence for the presence of Beet necrotic yellow vein virus types A and B in Poland. Journal of Plant Diseases and Protection, 2009, 116, 106-108.	2.9	2