Patrycja Ciosek-Skibińska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6350492/publications.pdf

Version: 2024-02-01

71 papers

2,384 citations

218677 26 h-index 48 g-index

72 all docs

72 docs citations

72 times ranked 2216 citing authors

#	Article	IF	CITATIONS
1	Excitation–emission matrix fluorescence spectroscopy for cell viability testing in UV-treated cell culture. RSC Advances, 2022, 12, 7652-7660.	3.6	6
2	Orodispersible Films with Rupatadine Fumarate Enclosed in Ethylcellulose Microparticles as Drug Delivery Platform with Taste-Masking Effect. Materials, 2022, 15, 2126.	2.9	9
3	Chemosensory Optode Array Based on Pluronic-Stabilized Microspheres for Differential Sensing. Chemosensors, 2022, 10, 2.	3.6	3
4	Notice of Removal: 2D fluorescence of QDs-Co $<$ sup $>$ 2 $<$ /sup $>$ + assembly for the discrimination of nucleotides. , 2022, , .		0
5	Influence of surfactant and chromoionophore type on the performance of generic lipophilic anion-sensitive nanospheres., 2022,,.		O
6	Comparison of various data analysis techniques applied for the classification of oligopeptides and amino acids by voltammetric electronic tongue. Sensors and Actuators B: Chemical, 2021, 331, 129354.	7.8	6
7	Excitation-emission fluorescence matrix acquired from glutathione capped CdSeS/ZnS quantum dots in combination with chemometric tools for pattern-based sensing of neurotransmitters. Mikrochimica Acta, 2021, 188, 343.	5.0	12
8	Influence of the Type and Amount of Plasticizer on the Sensory Properties of Microspheres Sensitive to Lipophilic Ions., 2021, 5, .		3
9	The Use of Ultrasounds in the Preparation of Chemosensory Microstructures. , 2021, 10, .		2
10	Assessment of taste masking of captopril by ion-exchange resins using electronic gustatory system. Pharmaceutical Development and Technology, 2020, 25, 281-289.	2.4	6
11	Utilization of Ethylcellulose Microparticles with Rupatadine Fumarate in Designing Orodispersible Minitablets with Taste Masking Effect. Materials, 2020, 13, 2715.	2.9	17
12	Differential Sensing of Saccharides Based on an Array of Fluorinated Benzosiloxaborole Receptors. Sensors, 2020, 20, 3540.	3.8	4
13	Quantum Dotsâ€"Assisted 2D Fluorescence for Pattern Based Sensing of Amino Acids, Oligopeptides and Neurotransmitters. Sensors, 2019, 19, 3655.	3.8	7
14	Ethylcellulose in Organic Solution or Aqueous Dispersion Form in Designing Taste-Masked Microparticles by the Spray Drying Technique with a Model Bitter Drug: Rupatadine Fumarate. Polymers, 2019, 11, 522.	4.5	14
15	Ion Chromatographic Fingerprinting of STC-1 Cellular Response for Taste Sensing. Sensors, 2019, 19, 1062.	3.8	2
16	Critical Evaluation of Laboratory Potentiometric Electronic Tongues for Pharmaceutical Analysis—An Overview. Sensors, 2019, 19, 5376.	3.8	11
17	The Pt-Ni composite electrode as a part of an electronic tongue sensor array. , 2019, , .		О
18	Comparison of various data analysis techniques applied for the classification of pharmaceutical samples by electronic tongue. Sensors and Actuators B: Chemical, 2018, 267, 570-580.	7.8	21

#	Article	IF	CITATIONS
19	Dissolution studies of metamizole sodium and pseudoephedrine sulphate dosage forms â^ comparison and correlation of electronic tongue results with reference studies. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 242-248.	2.8	5
20	Studying pharmacodynamic effects in cell cultures by chemical fingerprinting â^ SIA electronic tongue versus 2D fluorescence soft sensor. Sensors and Actuators B: Chemical, 2018, 272, 264-273.	7.8	12
21	Characterization and taste masking evaluation of microparticles with cetirizine dihydrochloride and methacrylate-based copolymer obtained by spray drying. Acta Pharmaceutica, 2017, 67, 113-124.	2.0	16
22	Performance of hybrid electronic tongue and HPLC coupled with chemometric analysis for the monitoring of yeast biotransformation. Chemometrics and Intelligent Laboratory Systems, 2017, 167, 69-77.	3.5	10
23	Taste-masking assessment of orally disintegrating tablets and lyophilisates with cetirizine dihydrochloride microparticles. Saudi Pharmaceutical Journal, 2017, 25, 1144-1150.	2.7	30
24	Influence of dissolution-modifying excipients in various pharmaceutical formulations on electronic tongue results. Talanta, 2017, 162, 203-209.	5. 5	18
25	Twoâ€dimensional fluorescence as soft sensor in the monitoring of biotransformation performed by yeast. Biotechnology Progress, 2017, 33, 299-307.	2.6	8
26	Tasting cetirizine-based microspheres with an electronic tongue. Sensors and Actuators B: Chemical, 2017, 238, 1190-1198.	7.8	29
27	Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. International Journal of Polymer Science, 2016, 2016, 1-17.	2.7	344
28	Influence of Experimental Conditions on Electronic Tongue Results—Case of Valsartan Minitablets Dissolution. Sensors, 2016, 16, 1353.	3.8	13
29	Quantitative Analysis of Active Pharmaceutical Ingredients (APIs) Using a Potentiometric Electronic Tongue in a SIA Flow System. Electroanalysis, 2016, 28, 626-632.	2.9	20
30	Milk and Dairy Products Analysis by Means of an Electronic Tongue. , 2016, , 209-223.		3
31	Evaluation of taste masking effect of diclofenac using sweeteners and cyclodextrin by a potentiometric electronic tongue. Journal of Electroanalytical Chemistry, 2016, 780, 153-159.	3.8	33
32	Independent comparison study of six different electronic tongues applied for pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2015, 114, 321-329.	2.8	45
33	Potentiometric and hybrid electronic tongues for bioprocess monitoring – an overview. Analytical Methods, 2015, 7, 3958-3966.	2.7	20
34	Towards flow-through/flow injection electronic tongue for the analysis of pharmaceuticals. Sensors and Actuators B: Chemical, 2015, 207, 1087-1094.	7.8	28
35	Flow-through sensor array applied to cytotoxicity assessment in cell cultures for drug-testing purposes. Biosensors and Bioelectronics, 2014, 51, 55-61.	10.1	18
36	Electrochemical monitoring of citric acid production by Aspergillus niger. Analytica Chimica Acta, 2014, 823, 25-31.	5.4	10

#	Article	IF	CITATIONS
37	Probing an Artificial Polypeptide Receptor Library Using a Series of Novel Histamine H3 Receptor Ligands. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 141-156.	1.1	3
38	Development of silicon-based electrochemical transducers. Analytical Methods, 2013, 5, 5464.	2.7	5
39	Evaluation of organoleptic and texture properties of dried apples by hybrid electronic tongue. Sensors and Actuators B: Chemical, 2013, 187, 234-240.	7.8	38
40	Glyâ€Glyâ€His Immobilized On Monolayer Modified Backâ€Side Contact Miniaturized Sensors for Complexation of Copper Ions. Electroanalysis, 2013, 25, 1461-1471.	2.9	23
41	Resolution of amino acid mixtures by an array of potentiometric sensors based on boronic acid derivative in a SIA flow system. Sensors and Actuators B: Chemical, 2013, 189, 179-186.	7.8	15
42	Effect of lead accumulation in maize leaves on their chemical images created by a flow-through electronic tongue. Talanta, 2013, 103, 179-185.	5.5	6
43	Monitoring of beer fermentation based on hybrid electronic tongue. Bioelectrochemistry, 2012, 87, 104-113.	4.6	48
44	The Application of an Array of Sensors based on Boronic Acid Derivative for the Quantitative Analysis of Amino Acids. Procedia Engineering, 2012, 47, 522-525.	1.2	4
45	Potentiometric Electronic Tongues for Foodstuff and Biosample Recognition—An Overview. Sensors, 2011, 11, 4688-4701.	3.8	90
46	Classification of amino acids and oligopeptides with the use of multi-mode chemical images obtained with ion selective electrode array. Analytica Chimica Acta, 2011, 699, 26-32.	5.4	6
47	Electronic tongue for the detection of taste-masking microencapsulation of active pharmaceutical substances. Bioelectrochemistry, 2010, 80, 94-98.	4.6	41
48	Monitoring of periodic anaerobic digestion with flow-through array of miniaturized ion-selective electrodes. Bioelectrochemistry, 2010, 80, 87-93.	4.6	28
49	The monitoring of methane fermentation in sequencing batch bioreactor with flow-through array of miniaturized solid state electrodes. Talanta, 2010, 81, 1387-1392.	5.5	36
50	SIA system employing the transient response from a potentiometric sensor arrayâ€"Correction of a saline matrix effect. Talanta, 2010, 82, 931-938.	5.5	15
51	Miniaturized flow-through sensor array for methane fermentation monitoring. , 2009, , .		1
52	Potentiometric Studies and Various Applications of Solid State Electrodes Based on Silicon and Epoxy Glass Structures $\hat{a} \in \mathbb{C}$ an Overview. Electroanalysis, 2009, 21, 1895-1905.	2.9	11
53	Polyurethane Membranes Used in Integrated Electronic Tongue for the Recognition of Tea and Herbal Products. Electroanalysis, 2009, 21, 2036-2043.	2.9	14
54	Microelectrode array fabricated in low temperature cofired ceramic (LTCC) technology. Journal of Solid State Electrochemistry, 2009, 13, 129-135.	2.5	12

#	Article	lF	Citations
55	Monitoring of cell cultures with LTCC microelectrode array. Analytical and Bioanalytical Chemistry, 2009, 393, 2029-2038.	3.7	29
56	Miniaturized tools and devices for bioanalytical applications: an overview. Analytical and Bioanalytical Chemistry, 2009, 395, 647-668.	3.7	25
57	Analysis of dialysate fluids with the use of a potentiometric electronic tongue. Mikrochimica Acta, 2008, 163, 139-145.	5.0	27
58	Development of a miniaturised electrochemical cell integrated on epoxy-glass laminate. Mikrochimica Acta, 2008, 163, 89-95.	5.0	6
59	Miniaturized electronic tongue with an integrated reference microelectrode for the recognition of milk samples. Talanta, 2008, 76, 548-556.	5.5	53
60	Performance of selective and partially selective sensors in the recognition of beverages. Talanta, 2007, 71, 738-746.	5.5	42
61	Sensor arrays for liquid sensing – electronic tongue systems. Analyst, The, 2007, 132, 963.	3.5	358
62	Potentiometric electronic tongue based on integrated array of microelectrodes. Sensors and Actuators B: Chemical, 2007, 127, 8-14.	7.8	50
63	The recognition of beer with flow-through sensor array based on miniaturized solid-state electrodes. Talanta, 2006, 69, 1156-1161.	5.5	54
64	The analysis of sensor array data with various pattern recognition techniques. Sensors and Actuators B: Chemical, 2006, 114, 85-93.	7.8	104
65	Electronic tongue for flow-through analysis of beverages. Sensors and Actuators B: Chemical, 2006, 118, 454-460.	7.8	79
66	The Recognition of Growth Conditions and Metabolic Type of Plants by a Potentiometric Electronic Tongue. Electroanalysis, 2006, 18, 1266-1272.	2.9	27
67	ISE-based sensor array system for classification of foodstuffs. Measurement Science and Technology, 2006, 17, 6-11.	2.6	26
68	Milk classification by means of an electronic tongue and Support Vector Machine neural network. Measurement Science and Technology, 2006, 17, 1379-1384.	2.6	46
69	Direct and two-stage data analysis procedures based on PCA, PLS-DA and ANN for ISE-based electronic tongue—Effect of supervised feature extraction. Talanta, 2005, 67, 590-596.	5.5	102
70	Classification of beverages using a reduced sensor array. Sensors and Actuators B: Chemical, 2004, 103, 76-83.	7.8	102
71	Polymeric membrane ion-selective and cross-sensitive electrode-based electronic tongue for qualitative analysis of beverages. Analyst, The, 2004, 129, 639-644.	3.5	73