Erik P A M Bakkers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6350302/publications.pdf

Version: 2024-02-01

193 papers

18,957 citations

69 h-index 134 g-index

201 all docs

201 docs citations

times ranked

201

13541 citing authors

#	Article	IF	CITATIONS
1	Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science, 2012, 336, 1003-1007.	12.6	3,426
2	Majorana zero modes in superconductor–semiconductor heterostructures. Nature Reviews Materials, 2018, 3, 52-68.	48.7	680
3	Twinning superlattices in indium phosphide nanowires. Nature, 2008, 456, 369-372.	27.8	625
4	Spin–orbit qubit in a semiconductor nanowire. Nature, 2010, 468, 1084-1087.	27.8	588
5	Design of Light Scattering in Nanowire Materials for Photovoltaic Applications. Nano Letters, 2008, 8, 2638-2642.	9.1	506
6	Tunable Supercurrent Through Semiconductor Nanowires. Science, 2005, 309, 272-275.	12.6	429
7	Supercurrent reversal in quantum dots. Nature, 2006, 442, 667-670.	27.8	375
8	Bright single-photon sources in bottom-up tailored nanowires. Nature Communications, 2012, 3, 737.	12.8	365
9	Single Quantum Dot Nanowire LEDs. Nano Letters, 2007, 7, 367-371.	9.1	349
10	Ballistic Majorana nanowire devices. Nature Nanotechnology, 2018, 13, 192-197.	31.5	270
11	Direct Band Gap Wurtzite Gallium Phosphide Nanowires. Nano Letters, 2013, 13, 1559-1563.	9.1	262
12	Spectroscopy of Spin-Orbit Quantum Bits in Indium Antimonide Nanowires. Physical Review Letters, 2012, 108, 166801.	7.8	246
13	Broadâ€band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods. Advanced Materials, 2009, 21, 973-978.	21.0	243
14	Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature, 2020, 580, 205-209.	27.8	231
15	Synergetic nanowire growth. Nature Nanotechnology, 2007, 2, 541-544.	31.5	220
16	Josephson ϕ0-junction in nanowire quantum dots. Nature Physics, 2016, 12, 568-572.	16.7	210
17	Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements. Physical Review Letters, 2015, 115, 127002.	7.8	185
18	Growth Kinetics of Heterostructured GaPâ^'GaAs Nanowires. Journal of the American Chemical Society, 2006, 128, 1353-1359.	13.7	182

#	Article	IF	CITATIONS
19	Ballistic superconductivity in semiconductor nanowires. Nature Communications, 2017, 8, 16025.	12.8	181
20	Epitaxial growth of InP nanowires on germanium. Nature Materials, 2004, 3, 769-773.	27.5	178
21	Strong Geometrical Dependence of the Absorption of Light in Arrays of Semiconductor Nanowires. ACS Nano, 2011, 5, 2316-2323.	14.6	169
22	Experimental phase diagram of zero-bias conductance peaks in superconductor/semiconductor nanowire devices. Science Advances, 2017, 3, e1701476.	10.3	159
23	High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium–Tin–Oxide Mie Scatterers. ACS Nano, 2016, 10, 11414-11419.	14.6	150
24	Large Photonic Strength of Highly Tunable Resonant Nanowire Materials. Nano Letters, 2009, 9, 930-934.	9.1	149
25	Fast Spin-Orbit Qubit in an Indium Antimonide Nanowire. Physical Review Letters, 2013, 110, 066806.	7.8	142
26	Hexagonal Silicon Realized. Nano Letters, 2015, 15, 5855-5860.	9.1	142
27	Single-electron tunneling in InP nanowires. Applied Physics Letters, 2003, 83, 344-346.	3.3	141
28	Synthesis of InP Nanotubes. Journal of the American Chemical Society, 2003, 125, 3440-3441.	13.7	134
29	Efficiency Enhancement of InP Nanowire Solar Cells by Surface Cleaning. Nano Letters, 2013, 13, 4113-4117.	9.1	134
30	Quantized Conductance in an InSb Nanowire. Nano Letters, 2013, 13, 387-391.	9.1	129
31	Electrical control of single hole spins in nanowire quantum dots. Nature Nanotechnology, 2013, 8, 170-174.	31.5	129
32	Spin-orbit interaction in InSb nanowires. Physical Review B, 2015, 91, .	3.2	125
33	Efficient water reduction with gallium phosphide nanowires. Nature Communications, 2015, 6, 7824.	12.8	123
34	Nanoscale Free-Carrier Profiling of Individual Semiconductor Nanowires by Infrared Near-Field Nanoscopy. Nano Letters, 2010, 10, 1387-1392.	9.1	122
35	Shell-Tunneling Spectroscopy of the Single-Particle Energy Levels of Insulating Quantum Dots. Nano Letters, 2001, 1, 551-556.	9.1	119
36	Position-controlled epitaxial III–V nanowires on silicon. Nanotechnology, 2006, 17, S271-S275.	2.6	116

#	Article	IF	CITATIONS
37	Formation and electronic properties of InSb nanocrosses. Nature Nanotechnology, 2013, 8, 859-864.	31.5	115
38	From InSb Nanowires to Nanocubes: Looking for the Sweet Spot. Nano Letters, 2012, 12, 1794-1798.	9.1	109
39	Reversible Switching of InP Nanowire Growth Direction by Catalyst Engineering. Nano Letters, 2013, 13, 3802-3806.	9.1	107
40	Nanowire Waveguides Launching Single Photons in a Gaussian Mode for Ideal Fiber Coupling. Nano Letters, 2014, 14, 4102-4106.	9.1	107
41	Photoelectrochemical Hydrogen Production on InP Nanowire Arrays with Molybdenum Sulfide Electrocatalysts. Nano Letters, 2014, 14, 3715-3719.	9.1	106
42	Growth and optical properties of axial hybrid III–V/silicon nanowires. Nature Communications, 2012, 3, 1266.	12.8	105
43	Non-Majorana states yield nearly quantized conductance in proximatized nanowires. Nature Physics, 2021, 17, 482-488.	16.7	105
44	Hard Superconducting Gap in InSb Nanowires. Nano Letters, 2017, 17, 2690-2696.	9.1	103
45	Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade. Physical Review B, 2010, 81, .	3.2	97
46	Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality. Nature Nanotechnology, 2021, 16, 308-312.	31.5	97
47	Increase of the Photoluminescence Intensity of InP Nanowires by Photoassisted Surface Passivation. Journal of the American Chemical Society, 2005, 127, 12357-12362.	13.7	95
48	Epitaxial Growth of III-V Nanowires on Group IV Substrates. MRS Bulletin, 2007, 32, 117-122.	3.5	95
49	Avalanche amplification of a single exciton in a semiconductor nanowire. Nature Photonics, 2012, 6, 455-458.	31.4	95
50	Crystal Structure Transfer in Core/Shell Nanowires. Nano Letters, 2011, 11, 1690-1694.	9.1	93
51	Surface passivated InAs/InP core/shell nanowires. Semiconductor Science and Technology, 2010, 25, 024011.	2.0	92
52	The Role of Surface Energies and Chemical Potential during Nanowire Growth. Nano Letters, 2011, 11, 1259-1264.	9.1	92
53	Ubiquitous Non-Majorana Zero-Bias Conductance Peaks in Nanowire Devices. Physical Review Letters, 2019, 123, 107703.	7.8	89
54	Three-Dimensional Morphology of GaPâ^'GaAs Nanowires Revealed by Transmission Electron Microscopy Tomography. Nano Letters, 2007, 7, 3051-3055.	9.1	87

#	Article	IF	CITATIONS
55	Towards high mobility InSb nanowire devices. Nanotechnology, 2015, 26, 215202.	2.6	85
56	Conductance Quantization at Zero Magnetic Field in InSb Nanowires. Nano Letters, 2016, 16, 3482-3486.	9.1	85
57	Scanned Probe Imaging of Quantum Dots inside InAs Nanowires. Nano Letters, 2007, 7, 2559-2562.	9.1	83
58	Electric field tunable superconductor-semiconductor coupling in Majorana nanowires. New Journal of Physics, 2018, 20, 103049.	2.9	81
59	Characterization of Photoinduced Electron Tunneling in Gold/SAM/Q-CdSe Systems by Time-Resolved Photoelectrochemistry. Journal of Physical Chemistry B, 2000, 104, 7266-7272.	2.6	79
60	Selective Excitation and Detection of Spin States in a Single Nanowire Quantum Dot. Nano Letters, 2009, 9, 1989-1993.	9.1	79
61	Diameter-dependent conductance of InAs nanowires. Journal of Applied Physics, 2009, 106, .	2.5	77
62	Conductance through a helical state in an Indium antimonide nanowire. Nature Communications, 2017, 8, 478.	12.8	76
63	Directional and Polarized Emission from Nanowire Arrays. Nano Letters, 2015, 15, 4557-4563.	9.1	74
64	Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection. Nature Nanotechnology, 2019, 14, 473-479.	31.5	73
65	Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides. Applied Physics Letters, 2012, 100, .	3.3	72
66	Growth and Optical Properties of Direct Band Gap Ge/Ge _{0.87} Sn _{0.13} Core/Shell Nanowire Arrays. Nano Letters, 2017, 17, 1538-1544.	9.1	72
67	Distance-Dependent Electron Transfer in Au/Spacer/Q-CdSe Assemblies. Angewandte Chemie - International Edition, 2000, 39, 2297-2299.	13.8	71
68	Fundamentals of the nanowire solar cell: Optimization of the open circuit voltage. Applied Physics Reviews, 2018, 5, 031106.	11.3	71
69	Remote p-Doping of InAs Nanowires. Nano Letters, 2007, 7, 1144-1148.	9.1	70
70	Generic nano-imprint process for fabrication of nanowire arrays. Nanotechnology, 2010, 21, 065305.	2.6	70
71	Highâ∈Efficiency InPâ∈Based Photocathode for Hydrogen Production by Interface Energetics Design and Photon Management. Advanced Functional Materials, 2016, 26, 679-686.	14.9	69
72	Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al ₂ O ₃ with PO _{<i>x</i>>/sub> Interlayer. Nano Letters, 2017, 17, 6287-6294.}	9.1	68

#	Article	IF	Citations
73	Large redshift in photoluminescence of p-doped InP nanowires induced by Fermi-level pinning. Applied Physics Letters, 2006, 88, 043109.	3.3	67
74	Giant optical birefringence in ensembles of semiconductor nanowires. Applied Physics Letters, 2006, 89, 233117.	3.3	66
75	Nanowire Arrays as Cell Force Sensors To Investigate Adhesin-Enhanced Holdfast of Single Cell Bacteria and Biofilm Stability. Nano Letters, 2016, 16, 4656-4664.	9.1	65
76	Resonant electron tunneling through semiconducting nanocrystals in a symmetrical and an asymmetrical junction. Physical Review B, 2000, 62, R7743-R7746.	3.2	64
77	Position-controlled [100] InP nanowire arrays. Applied Physics Letters, 2012, 100, 053107.	3.3	62
78	Rationally Designed Singleâ€Crystalline Nanowire Networks. Advanced Materials, 2014, 26, 4875-4879.	21.0	62
79	Interface study on heterostructured GaP–GaAs nanowires. Nanotechnology, 2006, 17, 4010-4013.	2.6	60
80	Spin-Orbit Protection of Induced Superconductivity in Majorana Nanowires. Physical Review Letters, 2019, 122, 187702.	7.8	60
81	High optical quality single crystal phase wurtzite and zincblende InP nanowires. Nanotechnology, 2013, 24, 115705.	2.6	59
82	Single-Crystalline Hexagonal Silicon–Germanium. Nano Letters, 2017, 17, 85-90.	9.1	59
83	Epitaxial Growth of Aligned Semiconductor Nanowire Metamaterials for Photonic Applications. Advanced Functional Materials, 2008, 18, 1039-1046.	14.9	56
84	Exploring Crystal Phase Switching in GaP Nanowires. Nano Letters, 2015, 15, 8062-8069.	9.1	55
85	Boosting Solar Cell Photovoltage via Nanophotonic Engineering. Nano Letters, 2016, 16, 6467-6471.	9.1	55
86	Andreev molecules in semiconductor nanowire double quantum dots. Nature Communications, 2017, 8, 585.	12.8	54
87	Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge–Si Core–Shell Nanowires. Nano Letters, 2017, 17, 2259-2264.	9.1	51
88	Optical Emission in Hexagonal SiGe Nanowires. Nano Letters, 2017, 17, 4753-4758.	9.1	51
89	Mesoscopic light transport by very strong collective multiple scattering in nanowire mats. Nature Photonics, 2013, 7, 413-418.	31.4	50
90	Quantifying losses and thermodynamic limits in nanophotonic solar cells. Nature Nanotechnology, 2016, 11, 1071-1075.	31.5	50

#	Article	IF	Citations
91	Parity-preserving and magnetic field–resilient superconductivity in InSb nanowires with Sn shells. Science, 2021, 372, 508-511.	12.6	50
92	Parity transitions in the superconducting ground state of hybrid InSb–Al Coulomb islands. Nature Communications, 2018, 9, 4801.	12.8	49
93	Electric-field dependent <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -factor anisotropy in Ge-Si core-shell nanowire quantum dots. Physical Review B, 2016, 93, .	3.2	48
94	Selective-area chemical beam epitaxy of in-plane InAs one-dimensional channels grown on InP(001), InP(111)B, and InP(011) surfaces. Physical Review Materials, 2019, 3 , .	2.4	48
95	Electric Field Induced Removal of the Biexciton Binding Energy in a Single Quantum Dot. Nano Letters, 2011, 11, 645-650.	9.1	47
96	Single Electron Charging in Optically Active Nanowire Quantum Dots. Nano Letters, 2010, 10, 1817-1822.	9.1	46
97	Quantum computing based on semiconductor nanowires. MRS Bulletin, 2013, 38, 809-815.	3.5	46
98	Strong spin-orbit interaction and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>g</mml:mi></mml:math> -factor renormalization of hole spins in Ge/Si nanowire quantum dots. Physical Review Research, 2021, 3, .	3.6	46
99	Andreev Reflection versus Coulomb Blockade in Hybrid Semiconductor Nanowire Devices. Nano Letters, 2008, 8, 4098-4102.	9.1	45
100	Diameter dependence of the thermal conductivity of InAs nanowires. Nanotechnology, 2015, 26, 385401.	2.6	45
101	Controlling a Nanowire Quantum Dot Band Gap Using a Straining Dielectric Envelope. Nano Letters, 2012, 12, 6206-6211.	9.1	44
102	Supercurrent Interference in Few-Mode Nanowire Josephson Junctions. Physical Review Letters, 2017, 119, 187704.	7.8	43
103	Zinc Incorporation via the Vaporâ^'Liquidâ^'Solid Mechanism into InP Nanowires. Journal of the American Chemical Society, 2009, 131, 4578-4579.	13.7	41
104	Paired Twins and {112i} Morphology in GaP Nanowires. Nano Letters, 2010, 10, 2349-2356.	9.1	41
105	Single quantum dot nanowire photodetectors. Applied Physics Letters, 2010, 97, .	3.3	41
106	Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices. Nature Communications, 2021, 12, 4914.	12.8	41
107	Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires. Nano Letters, 2016, 16, 3703-3709.	9.1	40
108	Observation of Conductance Quantization in InSb Nanowire Networks. Nano Letters, 2017, 17, 6511-6515.	9.1	37

#	Article	IF	CITATIONS
109	In-plane selective area InSb–Al nanowire quantum networks. Communications Physics, 2020, 3, .	5.3	37
110	High Mobility Stemless InSb Nanowires. Nano Letters, 2019, 19, 3575-3582.	9.1	36
111	Atom-by-Atom Analysis of Semiconductor Nanowires with Parts Per Million Sensitivity. Nano Letters, 2017, 17, 599-605.	9.1	35
112	Optical study of the band structure of wurtzite GaP nanowires. Journal of Applied Physics, 2016, 120, .	2.5	34
113	Orientationâ€Dependent Opticalâ€Polarization Properties of Single Quantum Dots in Nanowires. Small, 2009, 5, 2134-2138.	10.0	33
114	Anisotropic Pauli spin blockade in hole quantum dots. Physical Review B, 2016, 94, .	3.2	33
115	Single, double, and triple quantum dots in Ge/Si nanowires. Applied Physics Letters, 2018, 113, .	3.3	33
116	Excited-State Dynamics in CdS Quantum Dots Adsorbed on a Metal Electrode. Journal of Physical Chemistry B, 1999, 103, 2781-2788.	2.6	32
117	Electric Field Control of Magnetoresistance in InP Nanowires with Ferromagnetic Contacts. Nano Letters, 2009, 9, 2704-2709.	9.1	32
118	Phonon Engineering in Twinning Superlattice Nanowires. Nano Letters, 2019, 19, 4702-4711.	9.1	31
119	Ballistic Phonons in Ultrathin Nanowires. Nano Letters, 2020, 20, 2703-2709.	9.1	30
120	Electron Emission from Individual Indium Arsenide Semiconductor Nanowires. Nano Letters, 2007, 7, 536-540.	9.1	29
121	Unit cell structure of the wurtzite phase of GaP nanowires: X-ray diffraction studies and density functional theory calculations. Physical Review B, 2013, 88, .	3.2	28
122	Critical strain for Sn incorporation into spontaneously graded Ge/GeSn core/shell nanowires. Nanoscale, 2018, 10, 7250-7256.	5.6	28
123	Electroless Etching of ZnSe in Aqueous Ferricyanide Solutions: An Electrochemical Study. Journal of the Electrochemical Society, 1997, 144, 2329-2333.	2.9	27
124	Crystal Phase Quantum Well Emission with Digital Control. Nano Letters, 2017, 17, 6062-6068.	9.1	27
125	Mirage Andreev Spectra Generated by Mesoscopic Leads in Nanowire Quantum Dots. Physical Review Letters, 2018, 121, 127705.	7.8	27
126	Charge carrier-selective contacts for nanowire solar cells. Nature Communications, 2018, 9, 3248.	12.8	27

#	Article	IF	CITATIONS
127	Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire. Nature Physics, 2013, 9, 631-635.	16.7	26
128	Bottomâ€Up Grown 2D InSb Nanostructures. Advanced Materials, 2019, 31, e1808181.	21.0	26
129	Spin Transport in Ferromagnet-InSb Nanowire Quantum Devices. Nano Letters, 2020, 20, 3232-3239.	9.1	24
130	Controlling the Directional Emission of Light by Periodic Arrays of Heterostructured Semiconductor Nanowires. ACS Nano, 2011, 5, 5830-5837.	14.6	23
131	Cracking the Si Shell Growth in Hexagonal GaP-Si Core–Shell Nanowires. Nano Letters, 2015, 15, 2974-2979.	9.1	23
132	A tunnelling spectroscopy study on the single-particle energy levels and electron-electron interactions in CdSe quantum dots. Nanotechnology, 2002, 13, 258-262.	2.6	22
133	Formation of Wurtzite InP Nanowires Explained by Liquid-Ordering. Nano Letters, 2011, 11, 44-48.	9.1	22
134	Split-Channel Ballistic Transport in an InSb Nanowire. Nano Letters, 2018, 18, 2282-2287.	9.1	22
135	Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas. Nano Letters, 2018, 18, 6483-6488.	9.1	22
136	Strain engineering in Ge/GeSn core/shell nanowires. Applied Physics Letters, 2019, 115, .	3.3	22
137	High yield transfer of ordered nanowire arrays into transparent flexible polymer films. Nanotechnology, 2012, 23, 495305.	2.6	21
138	Multiple Andreev reflections and Shapiro steps in a Ge-Si nanowire Josephson junction. Physical Review Materials, 2019, 3, .	2.4	21
139	InSb nanowire double quantum dots coupled to a superconducting microwave cavity. Applied Physics Letters, 2016, 108, .	3.3	20
140	Highly tuneable hole quantum dots in Ge-Si core-shell nanowires. Applied Physics Letters, 2016, 109, .	3.3	20
141	Full parity phase diagram of a proximitized nanowire island. Physical Review B, 2021, 104, .	3.2	20
142	Crossed Andreev reflection in InSb flake Josephson junctions. Physical Review Research, 2019, 1, .	3.6	20
143	Pseudodirect to Direct Compositional Crossover in Wurtzite GaP/ln _{<i>x</i>} Ga _{1â€"<i>x</i>} P Coreâ€"Shell Nanowires. Nano Letters, 2016, 16, 7930-7936.	9.1	19
144	Measuring the Optical Absorption of Single Nanowires. Physical Review Applied, 2020, 14, .	3.8	19

#	Article	IF	Citations
145	Suppression of Zeeman Gradients by Nuclear Polarization in Double Quantum Dots. Physical Review Letters, 2012, 109, 236805.	7.8	18
146	Josephson Effect in a Fewâ€Hole Quantum Dot. Advanced Materials, 2018, 30, e1802257.	21.0	18
147	Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires. Nano Letters, 2020, 20, 122-130.	9.1	18
148	Twofold origin of strain-induced bending in core–shell nanowires: the GaP/InGaP case. Nanotechnology, 2018, 29, 315703.	2.6	17
149	Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and Si _{<i>x</i>} Ge _{1–<i>x</i>} Alloys in Nanowires by Raman Spectroscopy. ACS Nano, 2020, 14, 6845-6856.	14.6	17
150	Kinetic Control of Morphology and Composition in Ge/GeSn Core/Shell Nanowires. ACS Nano, 2020, 14, 2445-2455.	14.6	17
151	Optical transmission matrix as a probe of the photonic strength. Physical Review A, 2016, 94, .	2.5	16
152	Efficient Green Emission from Wurtzite Al _{<i>x</i>} ln _{1â€"<i>x</i>} P Nanowires. Nano Letters, 2018, 18, 3543-3549.	9.1	16
153	Hybrid superconductor-quantum point contact devices using InSb nanowires. Applied Physics Letters, 2016, 109, 233502.	3.3	13
154	Growth of PbTe nanowires by molecular beam epitaxy. Materials for Quantum Technology, 2022, 2, 015001.	3.1	13
155	Selective-Area Superconductor Epitaxy to Ballistic Semiconductor Nanowires. Nano Letters, 2018, 18, 6121-6128.	9.1	12
156	Hexagonal silicon grown from higher order silanes. Nanotechnology, 2019, 30, 295602.	2.6	12
157	Singleâ€Shot Fabrication of Semiconducting–Superconducting Nanowire Devices. Advanced Functional Materials, 2021, 31, 2102388.	14.9	12
158	High-Yield Growth and Characterization of âŸ˙100⟩ InP p–n Diode Nanowires. Nano Letters, 2016, 16, 3071-3077.	9.1	11
159	Nanowire Arrays as Force Sensors with Superâ€Resolved Localization Position Detection: Application to Optical Measurement of Bacterial Adhesion Forces. Small Methods, 2018, 2, 1700411.	8.6	11
160	Surround-gated vertical nanowire quantum dots. Applied Physics Letters, 2010, 96, 233112.	3.3	10
161	Ultrafast Dephasing of Light in Strongly Scattering GaP Nanowires. Physical Review Letters, 2011, 106, 143902.	7.8	10
162	Influence of growth conditions on the performance of InP nanowire solar cells. Nanotechnology, 2016, 27, 454003.	2.6	10

#	Article	IF	Citations
163	Transmission phase read-out of a large quantum dot in a nanowire interferometer. Nature Communications, 2020, 11 , 3666.	12.8	10
164	Erasing odd-parity states in semiconductor quantum dots coupled to superconductors. Physical Review B, 2020, 101, .	3.2	10
165	Editorial Expression of Concern: Quantized Majorana conductance. Nature, 2020, 581, E4-E4.	27.8	10
166	Universal Platform for Scalable Semiconductorâ€Superconductor Nanowire Networks. Advanced Functional Materials, 2021, 31, 2103062.	14.9	10
167	InSb Nanowires with Built-In Ga _{<i>x</i>} In _{1â€"<i>x</i>} Sb Tunnel Barriers for Majorana Devices. Nano Letters, 2017, 17, 721-727.	9.1	9
168	The Rotating Ring-Ring Electrode. Theory and Experiment. Journal of the Electrochemical Society, 2000, 147, 1110.	2.9	8
169	Modification of the photoluminescence anisotropy of semiconductor nanowires by coupling to surface plasmon polaritons. Optics Letters, 2007, 32, 2097.	3.3	8
170	Strong diameter-dependence of nanowire emission coupled to waveguide modes. Applied Physics Letters, 2016, 108, .	3.3	8
171	Unveiling Planar Defects in Hexagonal Group IV Materials. Nano Letters, 2021, 21, 3619-3625.	9.1	8
172	Electronic Structure and Epitaxy of CdTe Shells on InSb Nanowires. Advanced Science, 2022, 9, e2105722.	11.2	7
173	Impurity and Defect Monitoring in Hexagonal Si and SiGe Nanocrystals. ECS Transactions, 2016, 75, 751-760.	0.5	6
174	High refractive index in wurtzite GaP measured from Fabry-PÃ @rot resonances. Applied Physics Letters, 2016, 108, .	3.3	5
175	Hysteretic magnetoresistance in nanowire devices due to stray fields induced by micromagnets. Nanotechnology, 2021, 32, 095001.	2.6	5
176	Supercurrent parity meter in a nanowire Cooper pair transistor. Science Advances, 2022, 8, eabm9896.	10.3	5
177	Exfoliated hexagonal BN as gate dielectric for InSb nanowire quantum dots with improved gate hysteresis and charge noise. Applied Physics Letters, 2020, 116, 253101.	3.3	4
178	Revealing the band structure of InSb nanowires by high-field magnetotransport in the quasiballistic regime. Physical Review B, 2016, 94, .	3.2	3
179	Josephson radiation and shot noise of a semiconductor nanowire junction. Physical Review B, 2017, 96,	3.2	3
180	Bottom-up grown nanowire quantum devices. MRS Bulletin, 2019, 44, 403-410.	3.5	3

#	Article	IF	CITATIONS
181	Wurtzite Gallium Phosphide has a direct-band gap. , 2013, , .		2
182	Engineering tunnel junctions on ballistic semiconductor nanowires. Applied Physics Letters, 2019, 115, 043503.	3.3	2
183	Strong modification of the reflection from birefringent layers of semiconductor nanowires by nanoshells. Applied Physics Letters, 2011, 99, 201108.	3.3	1
184	Rational Design: Rationally Designed Singleâ€Crystalline Nanowire Networks (Adv. Mater. 28/2014). Advanced Materials, 2014, 26, 4908-4908.	21.0	1
185	Hybrid III–V/Silicon Nanowires. Semiconductors and Semimetals, 2015, 93, 231-248.	0.7	1
186	Prismatic Ge-rich inclusions in the hexagonal SiGe shell of GaP–Si–SiGe nanowires by controlled faceting. Nanoscale, 2021, 13, 9436-9445.	5.6	1
187	Inside Front Cover: Epitaxial Growth of Aligned Semiconductor Nanowire Metamaterials for Photonic Applications (Adv. Funct. Mater. 7/2008). Advanced Functional Materials, 2008, 18, 970-970.	14.9	O
188	Mesoscopic light trapping in random arrays of semiconductor nanowires. , 2013, , .		0
189	InP nanowire array solar cell with cleaned sidewalls. , 2013, , .		O
190	Microwave resonance through the superconducting circuit cavity coupled with InSb double quantum dots. , 2016, , .		0
191	Exploring the Internal Radiative Efficiency of Selective Area Nanowires. Journal of Nanomaterials, 2019, 2019, 1-13.	2.7	O
192	Growthâ€Related Formation Mechanism of I3â€Type Basal Stacking Fault in Epitaxially Grown Hexagonal Geâ€2H. Advanced Materials Interfaces, 0, , 2102340.	3.7	0
193	(Invited) Direct Band Gap Emission from Hexagonal Si-Ge. ECS Meeting Abstracts, 2022, MA2022-01, 1277-1277.	0.0	O