Andrey L Rogach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6349895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thiol-Capping of CdTe Nanocrystals:  An Alternative to Organometallic Synthetic Routes. Journal of Physical Chemistry B, 2002, 106, 7177-7185.	2.6	1,485
2	Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamineâ^'Trioctylphosphine Oxideâ^'Trioctylphospine Mixture. Nano Letters, 2001, 1, 207-211.	9.1	1,423
3	Prospects of Nanoscience with Nanocrystals. ACS Nano, 2015, 9, 1012-1057.	14.6	1,005
4	Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell:Â A General Route to Water Soluble Nanocrystals. Nano Letters, 2004, 4, 703-707.	9.1	1,003
5	Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles. Advanced Materials, 2010, 22, 1805-1825.	21.0	909
6	Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance. ACS Energy Letters, 2017, 2, 2071-2083.	17.4	888
7	Nonspherical Noble Metal Nanoparticles: Colloidâ€Chemical Synthesis and Morphology Control. Advanced Materials, 2010, 22, 1781-1804.	21.0	789
8	Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 2014, 9, 590-603.	11.9	788
9	Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdSÂnanorods. Nature Materials, 2014, 13, 1013-1018.	27.5	739
10	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
11	Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals:  State-of-the-Art. Journal of Physical Chemistry C, 2007, 111, 14628-14637.	3.1	703
12	Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Letters, 2016, 16, 1415-1420.	9.1	685
13	Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. Journal of Physical Chemistry B, 1998, 102, 8360-8363.	2.6	678
14	Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality. Nano Letters, 2003, 3, 1677-1681.	9.1	579
15	Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals. Journal of Physical Chemistry B, 1999, 103, 3065-3069.	2.6	565
16	Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots. ACS Nano, 2017, 11, 12402-12410.	14.6	550
17	Control of Emission Color of High Quantum Yield CH ₃ NH ₃ PbBr ₃ Perovskite Quantum Dots by Precipitation Temperature. Advanced Science, 2015, 2, 1500194. 	11.2	536
18	Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals. Journal of the American Chemical Society, 2002, 124, 11480-11485.	13.7	533

#	Article	IF	CITATIONS
19	The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials. Nano Letters, 2005, 5, 1371-1377.	9.1	533
20	Hierarchical SnO ₂ Nanostructures: Recent Advances in Design, Synthesis, and Applications. Chemistry of Materials, 2014, 26, 123-133.	6.7	532
21	Molecular Fluorescence in Citric Acid-Based Carbon Dots. Journal of Physical Chemistry C, 2017, 121, 2014-2022.	3.1	517
22	Water resistant CsPbX ₃ nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chemical Science, 2016, 7, 5699-5703.	7.4	499
23	Dynamic Distribution of Growth Rates within the Ensembles of Colloidal IIâ^'VI and IIIâ^'V Semiconductor Nanocrystals as a Factor Governing Their Photoluminescence Efficiency. Journal of the American Chemical Society, 2002, 124, 5782-5790.	13.7	471
24	Color-Switchable Electroluminescence of Carbon Dot Light-Emitting Diodes. ACS Nano, 2013, 7, 11234-11241.	14.6	471
25	Evolution of an Ensemble of Nanoparticles in a Colloidal Solution:Â Theoretical Study. Journal of Physical Chemistry B, 2001, 105, 12278-12285.	2.6	463
26	Albuminâ^'CdTe Nanoparticle Bioconjugates:  Preparation, Structure, and Interunit Energy Transfer with Antenna Effect. Nano Letters, 2001, 1, 281-286.	9.1	412
27	Clusterization-triggered emission: Uncommon luminescence from common materials. Materials Today, 2020, 32, 275-292.	14.2	407
28	"Raisin Bun―Type Composite Spheres of Silica and Semiconductor Nanocrystals. Chemistry of Materials, 2000, 12, 2676-2685.	6.7	406
29	Zn-Alloyed CsPbI ₃ Nanocrystals for Highly Efficient Perovskite Light-Emitting Devices. Nano Letters, 2019, 19, 1552-1559.	9.1	395
30	Synthesis and characterization of thiolâ€stabilized CdTe nanocrystals. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 1772-1778.	0.9	392
31	Infrared-Emitting Colloidal Nanocrystals: Synthesis, Assembly, Spectroscopy, and Applications. Small, 2007, 3, 536-557.	10.0	385
32	Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Materials, 2016, 8, e328-e328.	7.9	385
33	Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chemical Society Reviews, 2013, 42, 3033.	38.1	374
34	Carbon Dots: A Unique Fluorescent Cocktail of Polycyclic Aromatic Hydrocarbons. Nano Letters, 2015, 15, 6030-6035.	9.1	369
35	Aqueous Based Semiconductor Nanocrystals. Chemical Reviews, 2016, 116, 10623-10730.	47.7	364
36	Thickness-Dependent Full-Color Emission Tunability in a Flexible Carbon Dot Ionogel. Journal of Physical Chemistry Letters, 2014, 5, 1412-1420.	4.6	361

#	Article	IF	CITATIONS
37	Fullâ€Color Inorganic Carbon Dot Phosphors for Whiteâ€Lightâ€Emitting Diodes. Advanced Optical Materials, 2017, 5, 1700416.	7.3	360
38	Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nature Communications, 2019, 10, 665.	12.8	350
39	Nearâ€Infrared Excitation/Emission and Multiphotonâ€Induced Fluorescence of Carbon Dots. Advanced Materials, 2018, 30, e1705913.	21.0	349
40	A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals. Journal of Physical Chemistry B, 2001, 105, 2260-2263.	2.6	339
41	Chiral templating of self-assembling nanostructures by circularly polarized light. Nature Materials, 2015, 14, 66-72.	27.5	330
42	Colloidally Prepared HgTe Nanocrystals with Strong Room-Temperature Infrared Luminescence. Advanced Materials, 1999, 11, 552-555.	21.0	312
43	Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films. Journal of Applied Physics, 2000, 87, 2297-2302.	2.5	310
44	Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Stepwise Self-Assembly. Nano Letters, 2002, 2, 857-861.	9.1	310
45	Lightâ€Emitting Diodes with Semiconductor Nanocrystals. Angewandte Chemie - International Edition, 2008, 47, 6538-6549.	13.8	305
46	Metal Halide Perovskite Lightâ€Emitting Devices: Promising Technology for Nextâ€Generation Displays. Advanced Functional Materials, 2019, 29, 1902008.	14.9	296
47	Chemistry and photophysics of thiol-stabilized II-VI semiconductor nanocrystals. Pure and Applied Chemistry, 2000, 72, 179-188.	1.9	292
48	Thermally Stable Copper(II)-Doped Cesium Lead Halide Perovskite Quantum Dots with Strong Blue Emission. Journal of Physical Chemistry Letters, 2019, 10, 943-952.	4.6	274
49	Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nature Communications, 2021, 12, 1246.	12.8	274
50	Nanoengineered Polymer Capsules: Tools for Detection, Controlled Delivery, and Site-Specific Manipulation. Small, 2005, 1, 194-200.	10.0	271
51	Exciton Recycling in Graded Gap Nanocrystal Structures. Nano Letters, 2004, 4, 1599-1603.	9.1	267
52	A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three-Dimensional Superlattices. Advanced Materials, 2001, 13, 1868.	21.0	248
53	Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals:  From Water to Nonpolar Organic Solvents. Nano Letters, 2002, 2, 803-806.	9.1	247
54	Gold Nanoshells Improve Single Nanoparticle Molecular Sensors. Nano Letters, 2004, 4, 1853-1857.	9.1	246

4

Andrey L Rogach

#	Article	IF	CITATIONS
55	Carbon Dot Nanothermometry: Intracellular Photoluminescence Lifetime Thermal Sensing. ACS Nano, 2017, 11, 1432-1442.	14.6	243
56	Conquering Aggregation-Induced Solid-State Luminescence Quenching of Carbon Dots through a Carbon Dots-Triggered Silica Gelation Process. Chemistry of Materials, 2017, 29, 1779-1787.	6.7	242
57	Tracking the Source of Carbon Dot Photoluminescence: Aromatic Domains versus Molecular Fluorophores. Nano Letters, 2017, 17, 7710-7716.	9.1	236
58	Luminescent colloidal carbon dots: optical properties and effects of doping [Invited]. Optics Express, 2016, 24, A312.	3.4	235
59	Electrophoretic Deposition of Latex-Based 3D Colloidal Photonic Crystals:  A Technique for Rapid Production of High-Quality Opals. Chemistry of Materials, 2000, 12, 2721-2726.	6.7	233
60	Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots. Physical Review B, 2003, 68,	3.2	227
61	Wave Function Engineering in Elongated Semiconductor Nanocrystals with Heterogeneous Carrier Confinement. Nano Letters, 2005, 5, 2044-2049.	9.1	225
62	Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 145-154.	4.7	224
63	Multifunctionalized Polymer Microcapsules: Novel Tools for Biological and Pharmacological Applications. Small, 2007, 3, 944-955.	10.0	223
64	Waterâ€Assisted Size and Shape Control of CsPbBr ₃ Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 3337-3342.	13.8	223
65	Nonfunctionalized Nanocrystals Can Exploit a Cell's Active Transport Machinery Delivering Them to Specific Nuclear and Cytoplasmic Compartments. Nano Letters, 2007, 7, 3452-3461.	9.1	219
66	Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto-optical Spectroscopy. Nano Letters, 2017, 17, 2895-2901.	9.1	216
67	Electrochemical Techniques in Battery Research: A Tutorial for Nonelectrochemists. Advanced Energy Materials, 2019, 9, 1900747.	19.5	216
68	The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges. ACS Nano, 2012, 6, 8468-8483.	14.6	211
69	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	14.6	211
70	Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nature Communications, 2017, 8, 996.	12.8	210
71	Simultaneous Strontium Doping and Chlorine Surface Passivation Improve Luminescence Intensity and Stability of CsPbI ₃ Nanocrystals Enabling Efficient Lightâ€Emitting Devices. Advanced Materials, 2018, 30, e1804691.	21.0	210
72	Etching of Colloidal InP Nanocrystals with Fluorides:  Photochemical Nature of the Process Resulting in High Photoluminescence Efficiency. Journal of Physical Chemistry B, 2002, 106, 12659-12663.	2.6	209

#	Article	IF	CITATIONS
73	Graphitic Nitrogen Doping in Carbon Dots Causes Red-Shifted Absorption. Journal of Physical Chemistry C, 2016, 120, 1303-1308.	3.1	207
74	Improved Stability and Photodetector Performance of CsPbI ₃ Perovskite Quantum Dots by Ligand Exchange with Aminoethanethiol. Advanced Functional Materials, 2019, 29, 1902446.	14.9	206
75	Spontaneous Silver Doping and Surface Passivation of CsPbl ₃ Perovskite Active Layer Enable Light-Emitting Devices with an External Quantum Efficiency of 11.2%. ACS Energy Letters, 2018, 3, 1571-1577.	17.4	205
76	Energy transfer with semiconductor nanocrystals. Journal of Materials Chemistry, 2009, 19, 1208-1221.	6.7	204
77	Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Applied Physics Letters, 2012, 100, .	3.3	202
78	Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Scientific Reports, 2015, 5, 14083.	3.3	200
79	Self-Assembled Binary Superlattices of CdSe and Au Nanocrystals and Their Fluorescence Properties. Journal of the American Chemical Society, 2008, 130, 3274-3275.	13.7	197
80	Magnetic Targeting and Cellular Uptake of Polymer Microcapsules Simultaneously Functionalized with Magnetic and Luminescent Nanocrystals. Langmuir, 2005, 21, 4262-4265.	3.5	192
81	Luminescence Properties of Thiol-Stabilized CdTe Nanocrystals. Journal of Physical Chemistry B, 1999, 103, 10109-10113.	2.6	190
82	Semiconductor Nanocrystal Quantum Dots as Solar Cell Components and Photosensitizers: Material, Charge Transfer, and Separation Aspects of Some Device Topologies. Journal of Physical Chemistry Letters, 2011, 2, 1879-1887.	4.6	189
83	Quantum dot field effect transistors. Materials Today, 2013, 16, 312-325.	14.2	188
84	Single gold nanostars enhance Raman scattering. Applied Physics Letters, 2009, 94, .	3.3	185
85	Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horizons, 2017, 2, 135-146.	8.0	184
86	Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices. Journal of Materials Chemistry, 2008, 18, 1064.	6.7	183
87	Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today, 2018, 23, 124-139.	11.9	181
88	Luminescent Polymer Microcapsules Addressable by a Magnetic Field. Langmuir, 2004, 20, 1449-1452.	3.5	180
89	Cascaded FRET in Conjugated Polymer/Quantum Dot/Dye-Labeled DNA Complexes for DNA Hybridization Detection. ACS Nano, 2009, 3, 4127-4131.	14.6	179
90	Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots. Journal of Physical Chemistry C, 2016, 120, 10591-10604.	3.1	179

Andrey L Rogach

#	Article	IF	CITATIONS
91	Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation. Applied Physics Letters, 2010, 97, .	3.3	176
92	Combination of carbon dot and polymer dot phosphors for white light-emitting diodes. Nanoscale, 2015, 7, 12045-12050.	5.6	176
93	Colloidal nanocrystals for telecommunications. Complete coverage of the low-loss fiber windows by mercury telluride quantum dot. Pure and Applied Chemistry, 2000, 72, 295-307.	1.9	175
94	Selective Excitation of Individual Plasmonic Hotspots at the Tips of Single Gold Nanostars. Nano Letters, 2011, 11, 402-407.	9.1	175
95	Multilevel Data Encryption Using Thermalâ€īreatment Controlled Room Temperature Phosphorescence of Carbon Dot/Polyvinylalcohol Composites. Advanced Science, 2018, 5, 1800795.	11.2	173
96	25th Anniversary Article: Ion Exchange in Colloidal Nanocrystals. Advanced Materials, 2013, 25, 6923-6944.	21.0	170
97	Bright Orange Electroluminescence from Lead-Free Two-Dimensional Perovskites. ACS Energy Letters, 2019, 4, 242-248.	17.4	166
98	Core-Shell Structures Formed by the Solvent-Controlled Precipitation of Luminescent CdTe Nanocrystals on Latex Spheres. Advanced Materials, 2001, 13, 1684-1687.	21.0	159
99	Progress in the Light Emission of Colloidal Semiconductor Nanocrystals. Small, 2010, 6, 1364-1378.	10.0	159
100	Surface Plasmon Enhanced Energy Transfer between Donor and Acceptor CdTe Nanocrystal Quantum Dot Monolayers. Nano Letters, 2011, 11, 3341-3345.	9.1	159
101	The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals. Journal of Chemical Physics, 1998, 108, 7807-7815.	3.0	153
102	Labeling of Biocompatible Polymer Microcapsules with Near-Infrared Emitting Nanocrystals. Nano Letters, 2003, 3, 369-372.	9.1	153
103	Self-Monitoring and Self-Delivery of Photosensitizer-Doped Nanoparticles for Highly Effective Combination Cancer Therapy <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2015, 9, 9741-9756.	14.6	149
104	Encapsulating Silica/Antimony into Porous Electrospun Carbon Nanofibers with Robust Structure Stability for High-Efficiency Lithium Storage. ACS Nano, 2018, 12, 3406-3416.	14.6	149
105	Layer-by-Layer Assembled Films of HgTe Nanocrystals with Strong Infrared Emission. Chemistry of Materials, 2000, 12, 1526-1528.	6.7	146
106	Wet Chemical Synthesis of Highly Luminescent HgTe/CdS Core/Shell Nanocrystals. Advanced Materials, 2000, 12, 123-125.	21.0	145
107	Magnetically Engineered Semiconductor Quantum Dots as Multimodal Imaging Probes. Advanced Materials, 2014, 26, 6367-6386.	21.0	145
108	Photoaligned Nanorod Enhancement Films with Polarized Emission for Liquidâ€Crystalâ€Display Applications. Advanced Materials, 2017, 29, 1701091.	21.0	142

#	Article	IF	CITATIONS
109	Electrical control of Förster energy transfer. Nature Materials, 2006, 5, 777-781.	27.5	141
110	Hydrogen Peroxide Assisted Synthesis of Highly Luminescent Sulfur Quantum Dots. Angewandte Chemie - International Edition, 2019, 58, 7040-7044.	13.8	137
111	Bright CsPbl ₃ Perovskite Quantum Dot Light-Emitting Diodes with Top-Emitting Structure and a Low Efficiency Roll-Off Realized by Applying Zirconium Acetylacetonate Surface Modification. Nano Letters, 2020, 20, 2829-2836.	9.1	137
112	sp ² –sp ³ -Hybridized Atomic Domains Determine Optical Features of Carbon Dots. ACS Nano, 2019, 13, 10737-10744.	14.6	136
113	Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281, 40-43.	4.7	135
114	Nanocrystalline CdTe and CdTe(S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 435-440.	3.5	133
115	Charge Separation in Type II Tunneling Multilayered Structures of CdTe and CdSe Nanocrystals Directly Proven by Surface Photovoltage Spectroscopy. Journal of the American Chemical Society, 2010, 132, 5981-5983.	13.7	133
116	Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil. Journal of Materials Chemistry, 2006, 16, 3391.	6.7	132
117	Template Synthesis of CuInS ₂ Nanocrystals from In ₂ S ₃ Nanoplates and Their Application as Counter Electrodes in Dye-Sensitized Solar Cells. Chemistry of Materials, 2015, 27, 5949-5956.	6.7	132
118	Wavelength, Concentration, and Distance Dependence of Nonradiative Energy Transfer to a Plane of Gold Nanoparticles. ACS Nano, 2012, 6, 9283-9290.	14.6	131
119	Multiexcitonic Emission in Zero-Dimensional Cs ₂ ZrCl ₆ :Sb ³⁺ Perovskite Crystals. Journal of the American Chemical Society, 2021, 143, 17599-17606.	13.7	131
120	Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers. Applied Physics Letters, 2004, 84, 2904-2906.	3.3	130
121	Experimental and Theoretical Investigation of the Distance Dependence of Localized Surface Plasmon Coupled Förster Resonance Energy Transfer. ACS Nano, 2014, 8, 1273-1283.	14.6	130
122	Ruthenium(II) Complex Incorporated UiO-67 Metal–Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 5699-5708.	8.0	129
123	Quantum Dot Microdrop Laser. Nano Letters, 2008, 8, 1709-1712.	9.1	128
124	Combined Atomic Force Microscopy and Optical Microscopy Measurements as a Method To Investigate Particle Uptake by Cells. Small, 2006, 2, 394-400.	10.0	127
125	Aggregated Molecular Fluorophores in the Ammonothermal Synthesis of Carbon Dots. Chemistry of Materials, 2017, 29, 10352-10361.	6.7	126
126	Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices. Chemical Communications, 2015, 51, 2950-2953.	4.1	125

#	Article	IF	CITATIONS
127	Water-resistant perovskite nanodots enable robust two-photon lasing in aqueous environment. Nature Communications, 2020, 11, 1192.	12.8	123
128	Room-Temperature Solution-Processed NiO _{<i>x</i>} :PbI ₂ Nanocomposite Structures for Realizing High-Performance Perovskite Photodetectors. ACS Nano, 2016, 10, 6808-6815.	14.6	122
129	Spectrally Tunable Solid State Fluorescence and Roomâ€Temperature Phosphorescence of Carbon Dots Synthesized via Seeded Growth Method. Advanced Optical Materials, 2019, 7, 1801599.	7.3	122
130	Electrochemical synthesis of CdTe nanocrystal/polypyrrole composites for optoelectronic applications. Journal of Materials Chemistry, 2000, 10, 2163-2166.	6.7	121
131	Delayed Photoelectron Transfer in Ptâ€Decorated CdS Nanorods under Hydrogen Generation Conditions. Small, 2012, 8, 291-297.	10.0	119
132	Hydrogen Peroxideâ€Treated Carbon Dot Phosphor with a Bathochromicâ€Shifted, Aggregationâ€Enhanced Emission for Lightâ€Emitting Devices and Visible Light Communication. Advanced Science, 2018, 5, 1800369.	11.2	119
133	Cytotoxicity of nanoparticle-loaded polymer capsules. Talanta, 2005, 67, 486-491.	5.5	118
134	Electrostatic Assembly Guided Synthesis of Highly Luminescent Carbonâ€Nanodots@BaSO ₄ Hybrid Phosphors with Improved Stability. Small, 2017, 13, 1602055.	10.0	118
135	Covalent Encapsulation of Sulfur in a MOFâ€Derived S, Nâ€Doped Porous Carbon Host Realized via the Vaporâ€Infiltration Method Results in Enhanced Sodium–Sulfur Battery Performance. Advanced Energy Materials, 2020, 10, 2000931.	19.5	118
136	Hybrid Colloidal Heterostructures of Anisotropic Semiconductor Nanocrystals Decorated with Noble Metals: Synthesis and Function. Advanced Functional Materials, 2011, 21, 1547-1556.	14.9	117
137	Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures. ACS Nano, 2014, 8, 8208-8216.	14.6	116
138	Advances in metal halide perovskite nanocrystals: Synthetic strategies, growth mechanisms, and optoelectronic applications. Materials Today, 2020, 32, 204-221.	14.2	114
139	Thiol-capped CdTe nanocrystals: progress and perspectives of the related research fields. Physical Chemistry Chemical Physics, 2010, 12, 8685.	2.8	113
140	Hydrothermal synthesis of hierarchical SnO ₂ microspheres for gas sensing and lithium-ion batteries applications: Fluoride-mediated formation of solid and hollow structures. Journal of Materials Chemistry, 2012, 22, 2140-2148.	6.7	112
141	Heterojunction Engineering of CdTe and CdSe Quantum Dots on TiO ₂ Nanotube Arrays: Intricate Effects of Sizeâ€Dependency and Interfacial Contact on Photoconversion Efficiencies. Advanced Functional Materials, 2012, 22, 2821-2829.	14.9	112
142	Super-Efficient Exciton Funneling in Layer-by-Layer Semiconductor Nanocrystal Structures. Advanced Materials, 2005, 17, 769-773.	21.0	111
143	Mercury Telluride Quantum Dot Based Phototransistor Enabling High-Sensitivity Room-Temperature Photodetection at 2000 nm. ACS Nano, 2017, 11, 5614-5622.	14.6	110
144	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Đown Microwaveâ€Assisted Synthesis. Angewandte Chemie - International Edition, 2018, 57, 5833-5837.	13.8	109

#	ARTICLE	IF	CITATIONS
145	Strongly Emissive Leadâ€Free 0D Cs ₃ Cu ₂ I ₅ Perovskites Synthesized by a Room Temperature Solvent Evaporation Crystallization for Downâ€Conversion Lightâ€Emitting Devices and Fluorescent Inks. Advanced Optical Materials, 2020, 8, 1901723.	7.3	109
146	Engineering of Facets, Band Structure, and Gas‣ensing Properties of Hierarchical Sn ²⁺ â€Doped SnO ₂ Nanostructures. Advanced Functional Materials, 2013, 23, 4847-4853.	14.9	108
147	Temperature-Dependent Exciton and Trap-Related Photoluminescence of CdTe Quantum Dots Embedded in a NaCl Matrix: Implication in Thermometry. Small, 2016, 12, 466-476.	10.0	107
148	Energy Transfer versus Charge Separation in Type-II Hybrid Organicâ~'Inorganic Nanocomposites. Nano Letters, 2009, 9, 2636-2640.	9.1	106
149	Monitoring surface charge migration in the spectral dynamics of singleCdSeâ^•CdSnanodot/nanorod heterostructures. Physical Review B, 2005, 72, .	3.2	105
150	Room-Temperature Exciton Storage in Elongated Semiconductor Nanocrystals. Physical Review Letters, 2007, 98, 017401.	7.8	105
151	Mechanisms underlying toxicity induced by CdTe quantum dots determined in an invertebrate model organism. Biomaterials, 2012, 33, 1991-2000.	11.4	105
152	Polyhedral Oligomeric Silsesquioxane Enhances the Brightness of Perovskite Nanocrystal-Based Green Light-Emitting Devices. Journal of Physical Chemistry Letters, 2016, 7, 4398-4404.	4.6	105
153	Chiral carbon dots: synthesis, optical properties, and emerging applications. Light: Science and Applications, 2022, 11, 75.	16.6	105
154	Encapsulating Cobalt Nanoparticles in Interconnected Nâ€Doped Hollow Carbon Nanofibers with Enriched CoNC Moiety for Enhanced Oxygen Electrocatalysis in Znâ€Air Batteries. Advanced Science, 2021, 8, e2101438.	11.2	104
155	Chemistry and engineering of cyclodextrins for molecular imaging. Chemical Society Reviews, 2017, 46, 6379-6419.	38.1	103
156	Cesium Lead Chloride/Bromide Perovskite Quantum Dots with Strong Blue Emission Realized via a Nitrate-Induced Selective Surface Defect Elimination Process. Journal of Physical Chemistry Letters, 2019, 10, 90-96.	4.6	103
157	Honeycomb-like carbon nanoflakes as a host for SnO ₂ nanoparticles allowing enhanced lithium storage performance. Journal of Materials Chemistry A, 2017, 5, 6817-6824.	10.3	101
158	Stable, Strongly Emitting Cesium Lead Bromide Perovskite Nanorods with High Optical Gain Enabled by an Intermediate Monomer Reservoir Synthetic Strategy. Nano Letters, 2019, 19, 6315-6322.	9.1	101
159	A light-emitting device based on a CdTe nanocrystal/polyaniline composite. Physical Chemistry Chemical Physics, 1999, 1, 1787-1789.	2.8	98
160	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie - International Edition, 2017, 56, 9571-9576.	13.8	98
161	Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices. Nanoscale, 2016, 8, 7197-7202.	5.6	97
162	Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen. Energy and Environmental Science, 2018, 11, 2414-2422.	30.8	97

#	Article	IF	CITATIONS
163	Nanocrystal-Encoded Fluorescent Microbeads for Proteomics:  Antibody Profiling and Diagnostics of Autoimmune Diseases. Nano Letters, 2007, 7, 2322-2327.	9.1	96
164	Nature of Absorption Bands in Oxygen-Functionalized Graphitic Carbon Dots. Journal of Physical Chemistry C, 2015, 119, 13369-13373.	3.1	96
165	Spontaneous Crystallization of Perovskite Nanocrystals in Nonpolar Organic Solvents: A Versatile Approach for their Shapeâ€Controlled Synthesis. Angewandte Chemie - International Edition, 2019, 58, 16558-16562.	13.8	96
166	Colloidal CdTe/HgTe quantum dots with high photoluminescence quantum efficiency at room temperature. Applied Physics Letters, 1999, 75, 1694-1696.	3.3	94
167	Nanoparticles Distribution Control by Polymers:  Aggregates versus Nonaggregates. Journal of Physical Chemistry C, 2007, 111, 555-564.	3.1	94
168	Multiexcitonic Dual Emission in CdSe/CdS Tetrapods and Nanorods. Nano Letters, 2010, 10, 4646-4650.	9.1	94
169	High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots. Applied Physics Letters, 2014, 104, .	3.3	93
170	Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells. Scientific Reports, 2017, 7, 7696.	3.3	93
171	Optical Properties of Carbon Dots in the Deepâ€Red to Nearâ€Infrared Region Are Attractive for Biomedical Applications. Small, 2021, 17, e2102325.	10.0	93
172	Down-conversion monochromatic light-emitting diodes with the color determined by the active layer thickness and concentration of carbon dots. Journal of Materials Chemistry C, 2015, 3, 6613-6615.	5.5	91
173	Composite Photonic Crystals from Semiconductor Nanocrystal/Polyelectrolyte-Coated Colloidal Spheres. Chemistry of Materials, 2003, 15, 2724-2729.	6.7	90
174	Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots. Applied Physics Letters, 2008, 93, .	3.3	90
175	Allâ€Copper Nanocluster Based Downâ€Conversion White Lightâ€Emitting Devices. Advanced Science, 2016, 3, 1600182.	11.2	89
176	Anodes and Sodiumâ€Free Cathodes in Sodium Ion Batteries. Advanced Energy Materials, 2020, 10, 2000288.	19.5	89
177	Air-induced fluorescence bursts from single semiconductor nanocrystals. Applied Physics Letters, 2004, 85, 381-383.	3.3	88
178	Development of Copper Nanoclusters for In Vitro and In Vivo Theranostic Applications. Advanced Materials, 2020, 32, e1906872.	21.0	88
179	High-Rate Unidirectional Energy Transfer in Directly Assembled CdTe Nanocrystal Bilayers. Small, 2005, 1, 392-395.	10.0	87
180	Photosensitization of TiO2Layers with CdSe Quantum Dots:  Correlation between Light Absorption and Photoinjection. Journal of Physical Chemistry C, 2007, 111, 14889-14892.	3.1	87

#	Article	IF	CITATIONS
181	Drug Nanocarriers Labeled With Near-infrared-emitting Quantum Dots (Quantoplexes): Imaging Fast Dynamics of Distribution in Living Animals. Molecular Therapy, 2009, 17, 1849-1856.	8.2	87
182	Carbon‣upported Nickel Selenide Hollow Nanowires as Advanced Anode Materials for Sodium″on Batteries. Small, 2018, 14, 1702669.	10.0	87
183	Lateral Patterning of Luminescent CdSe Nanocrystals by Selective Dewetting from Self-Assembled Organic Templates. Nano Letters, 2004, 4, 885-888.	9.1	86
184	Aqueous Synthesis of Methylammonium Lead Halide Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 9650-9654.	13.8	85
185	Monitoring Surface Charge Movement in Single Elongated Semiconductor Nanocrystals. Physical Review Letters, 2004, 93, 167402.	7.8	84
186	Using Polar Alcohols for the Direct Synthesis of Cesium Lead Halide Perovskite Nanorods with Anisotropic Emission. ACS Nano, 2019, 13, 8237-8245.	14.6	84
187	Carbonization conditions influence the emission characteristics and the stability against photobleaching of nitrogen doped carbon dots. Nanoscale, 2017, 9, 11730-11738.	5.6	83
188	Luminescent Down onversion Semiconductor Quantum Dots and Aligned Quantum Rods for Liquid Crystal Displays. Advanced Science, 2019, 6, 1901345.	11.2	83
189	Fast, Airâ€Stable Infrared Photodetectors based on Sprayâ€Deposited Aqueous HgTe Quantum Dots. Advanced Functional Materials, 2014, 24, 53-59.	14.9	82
190	Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16393-16400.	3.1	82
191	Carbon dots produced <i>via</i> space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states. Nanoscale Horizons, 2019, 4, 388-395.	8.0	82
192	Metal–Organic Framework Derived CoS ₂ Wrapped with Nitrogen-Doped Carbon for Enhanced Lithium/Sodium Storage Performance. ACS Applied Materials & Interfaces, 2020, 12, 12809-12820.	8.0	82
193	One‣tep Highâ€Yield Aqueous Synthesis of Sizeâ€Tunable Multispiked Gold Nanoparticles. Small, 2011, 7, 2188-2194.	10.0	81
194	Insight into Strain Effects on Band Alignment Shifts, Carrier Localization and Recombination Kinetics in CdTe/CdS Core/Shell Quantum Dots. Journal of the American Chemical Society, 2015, 137, 2073-2084.	13.7	81
195	Plasmonic Properties of Single Multispiked Gold Nanostars: Correlating Modeling with Experiments. Langmuir, 2012, 28, 8979-8984.	3.5	80
196	Charge Separation in Type II Tunneling Structures of Close-packed CdTe and CdSe Nanocrystals. Nano Letters, 2008, 8, 1482-1485.	9.1	78
197	Highly Integrated Supercapacitor‣ensor Systems via Material and Geometry Design. Small, 2016, 12, 3393-3399	10.0	78
198	Materials aspects of semiconductor nanocrystals for optoelectronic applications. Materials Horizons, 2017, 4, 155-205.	12.2	78

#	Article	IF	CITATIONS
199	CsPbl ₃ /PbSe Heterostructured Nanocrystals for High-Efficiency Solar Cells. ACS Energy Letters, 2020, 5, 2401-2410.	17.4	77
200	Hydrogel-Based Materials for Delivery of Herbal Medicines. ACS Applied Materials & Interfaces, 2017, 9, 11309-11320.	8.0	75
201	Ligand functionalized copper nanoclusters for versatile applications in catalysis, sensing, bioimaging, and optoelectronics. Materials Chemistry Frontiers, 2019, 3, 2326-2356.	5.9	75
202	A carbon dot-based tandem luminescent solar concentrator. Nanoscale, 2020, 12, 6664-6672.	5.6	75
203	Excitons and Biexciton Dynamics in Single CsPbBr ₃ Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 6934-6940.	4.6	73
204	Optical processes in carbon nanocolloids. CheM, 2021, 7, 606-628.	11.7	73
205	Pyrite nanocrystals: shape-controlled synthesis and tunable optical properties via reversible self-assembly. Journal of Materials Chemistry, 2011, 21, 17946.	6.7	72
206	Efficient Emission Facilitated by Multiple Energy Level Transitions in Uniform Graphitic Carbon Nitride Films Deposited by Thermal Vapor Condensation. ChemPhysChem, 2015, 16, 954-959.	2.1	72
207	Energy Level Modification with Carbon Dot Interlayers Enables Efficient Perovskite Solar Cells and Quantum Dot Based Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1910530.	14.9	72
208	Semiconductor Nanocrystals Photosensitize C60Crystals. Nano Letters, 2006, 6, 1559-1563.	9.1	71
209	Thermally Activated Upconversion Nearâ€Infrared Photoluminescence from Carbon Dots Synthesized via Microwave Assisted Exfoliation. Small, 2019, 15, e1905050.	10.0	70
210	Direct conversion of metal-organic frameworks into selenium/selenide/carbon composites with high sodium storage capacity. Nano Energy, 2019, 58, 392-398.	16.0	70
211	Aromatically C6- and C9-Substituted Phenanthro[9,10- <i>d</i>]imidazole Blue Fluorophores: Structure–Property Relationship and Electroluminescent Application. ACS Applied Materials & Interfaces, 2017, 9, 26268-26278.	8.0	69
212	Vacuum Calcination Induced Conversion of Selenium/Carbon Wires to Tubes for Highâ€Performance Sodium–Selenium Batteries. Advanced Functional Materials, 2018, 28, 1706609.	14.9	69
213	Spontaneous Selfâ€Assembly of Cesium Lead Halide Perovskite Nanoplatelets into Cuboid Crystals with High Intensity Blue Emission. Advanced Science, 2019, 6, 1900462.	11.2	69
214	Near-Infrared Electroluminescence from HgTe Nanocrystals. ChemPhysChem, 2004, 5, 1435-1438.	2.1	68
215	Low generation PAMAM dendrimer and CpG free plasmids allow targeted and extended transgene expression in tumors after systemic delivery. Journal of Controlled Release, 2010, 146, 99-105.	9.9	68
216	Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars. Nano Energy, 2015, 13, 827-835.	16.0	68

#	Article	IF	CITATIONS
217	Organic nanostructures of thermally activated delayed fluorescent emitters with enhanced intersystem crossing as novel metal-free photosensitizers. Chemical Communications, 2016, 52, 11744-11747.	4.1	68
218	Rare earth-free composites of carbon dots/metal–organic frameworks as white light emitting phosphors. Journal of Materials Chemistry C, 2019, 7, 2207-2211.	5.5	68
219	Energy Transfer in Solution-Based Clusters of CdTe Nanocrystals Electrostatically Bound by Calcium Ions. Journal of Physical Chemistry C, 2008, 112, 14589-14594.	3.1	67
220	Colloidal hybrid heterostructures based on II–VI semiconductor nanocrystals for photocatalytic hydrogen generation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 19, 52-61.	11.6	67
221	Multicompartment Microgel Beads for Co-Delivery of Multiple Drugs at Individual Release Rates. ACS Applied Materials & Interfaces, 2016, 8, 871-880.	8.0	66
222	Amino Functionalization of Carbon Dots Leads to Red Emission Enhancement. Journal of Physical Chemistry Letters, 2019, 10, 5111-5116.	4.6	66
223	Photoinduced Micropattern Alignment of Semiconductor Nanorods with Polarized Emission in a Liquid Crystal Polymer Matrix. Nano Letters, 2017, 17, 3133-3138.	9.1	65
224	Multidentate Ligand Polyethylenimine Enables Bright Color-Saturated Blue Light-Emitting Diodes Based on CsPbBr ₃ Nanoplatelets. ACS Energy Letters, 2021, 6, 477-484.	17.4	65
225	Combination of Photoinduced Alignment and Self-Assembly to Realize Polarized Emission from Ordered Semiconductor Nanorods. ACS Nano, 2015, 9, 11049-11055.	14.6	64
226	Aqueous Synthesis of Alloyed CdSe _{<i>x</i>} Te _{1-<i>x</i>} Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 15253-15259.	3.1	63
227	In-Situ Observation of Nanowire Growth from Luminescent CdTe Nanocrystals in a Phosphate Buffer Solution. ChemPhysChem, 2004, 5, 1600-1602.	2.1	62
228	Facile solution growth of vertically aligned ZnO nanorods sensitized with aqueous CdS and CdSe quantum dots for photovoltaic applications. Nanoscale Research Letters, 2011, 6, 340.	5.7	61
229	Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication. Nanoscale, 2019, 11, 3489-3494.	5.6	61
230	Vapor-Infiltration Approach toward Selenium/Reduced Graphene Oxide Composites Enabling Stable and High-Capacity Sodium Storage. ACS Nano, 2018, 12, 7397-7405.	14.6	60
231	Nanoscale Interaction Between CdSe or CdTe Nanocrystals and Molecular Dyes Fostering or Hindering Directional Charge Separation. Small, 2010, 6, 221-225.	10.0	59
232	Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel. Advanced Functional Materials, 2019, 29, 1903112.	14.9	59
233	Aqueous Manganese-Doped Core/Shell CdTe/ZnS Quantum Dots with Strong Fluorescence and High Relaxivity. Journal of Physical Chemistry C, 2013, 117, 18752-18761.	3.1	58
234	In Situ Fabrication of Flexible, Thermally Stable, Large-Area, Strongly Luminescent Copper Nanocluster/Polymer Composite Films. Chemistry of Materials, 2017, 29, 10206-10211.	6.7	58

Andrey L Rogach

#	Article	IF	CITATIONS
235	Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates. Nanoscale Research Letters, 2013, 8, 134.	5.7	57
236	Ligandâ€Controlled Formation and Photoluminescence Properties of CH ₃ NH ₃ PbBr ₃ Nanocubes and Nanowires. ChemNanoMat, 2017, 3, 303-310.	2.8	57
237	Twoâ€Step Oxidation Synthesis of Sulfur with a Red Aggregationâ€Induced Emission. Angewandte Chemie - International Edition, 2020, 59, 9997-10002.	13.8	57
238	Stability of Quantum Dot Solar Cells: A Matter of (Life)Time. Advanced Energy Materials, 2021, 11, 2003457.	19.5	57
239	Self-Assembly of Electron Donor–Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both One- and Two-Photon Cellular Imaging. ACS Applied Materials & Interfaces, 2016, 8, 11355-11365.	8.0	56
240	Changes in the Morphology and Optical Absorption of Colloidal Silver Reduced with Formic Acid in the Polymer Matrix under UV Irradiation. Journal of Physical Chemistry B, 1997, 101, 8129-8132.	2.6	55
241	Synthesis, morphology and optical properties of thiolâ€stabilized CdTe nanoclusters in aqueous solution. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1668-1670.	0.9	55
242	Shuttling Photoelectrochemical Electron Transport in Tricomponent CdS/rGO/TiO ₂ Nanocomposites. Journal of Physical Chemistry C, 2013, 117, 20406-20414.	3.1	55
243	Perovskite Quantum Dots with Atomic Crystal Shells for Light-Emitting Diodes with Low Efficiency Roll-Off. ACS Energy Letters, 2020, 5, 2927-2934.	17.4	55
244	Generating Shortâ€Chain Sulfur Suitable for Efficient Sodium–Sulfur Batteries via Atomic Copper Sites on a N,O odoped Carbon Composite. Advanced Energy Materials, 2021, 11, 2100989.	19.5	55
245	In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Research, 2019, 12, 1411-1416.	10.4	54
246	Electrons and photons in mesoscopic structures: Quantum dots in a photonic crystal. JETP Letters, 1998, 68, 142-147.	1.4	53
247	ll–VI semiconductor nanocrystals in thin films and colloidal crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 135-144.	4.7	53
248	Hierarchical CoS ₂ /N-Doped Carbon@MoS ₂ Nanosheets with Enhanced Sodium Storage Performance. ACS Applied Materials & Interfaces, 2020, 12, 54644-54652.	8.0	53
249	Spatio-temporal dynamics of coupled electrons and holes in nanosize CdSe-CdS semiconductor tetrapods. Physical Review B, 2010, 82, .	3.2	52
250	In Situ versus ex Situ Assembly of Aqueous-Based Thioacid Capped CdSe Nanocrystals within Mesoporous TiO ₂ Films for Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 484-489.	3.1	52
251	Solution Processed Hybrid Polymer: HgTe Quantum Dot Phototransistor with High Sensitivity and Fast Infrared Response up to 2400Ânm at Room Temperature. Advanced Science, 2020, 7, 2000068.	11.2	52
252	Cdâ€Rich Alloyed CsPb _{1â€} <i>_x</i> Cd <i>_x</i> Br ₃ Perovskite Nanorods with Tunable Blue Emission and Fermi Levels Fabricated through Crystal Phase Engineering. Advanced Science, 2020, 7, 2000930.	11.2	52

#	Article	IF	CITATIONS
253	Hierarchical Luminescence Patterning Based on Multiscaled Self-Assembly. Journal of the American Chemical Society, 2006, 128, 9592-9593.	13.7	51
254	Hierarchical growth of SnO2 nanostructured films on FTO substrates: structural defects induced by Sn(ii) self-doping and their effects on optical and photoelectrochemical properties. Nanoscale, 2014, 6, 6084.	5.6	51
255	On–Off switching of the phosphorescence signal in a carbon dot/polyvinyl alcohol composite for multiple data encryption. Nanoscale, 2019, 11, 14250-14255.	5.6	51
256	Size-selective synthesis of platinum nanoparticles on transition-metal dichalcogenides for the hydrogen evolution reaction. Chemical Communications, 2021, 57, 2879-2882.	4.1	51
257	Applications of Carbon Dots in Optoelectronics. Nanomaterials, 2021, 11, 364.	4.1	51
258	Realization of the Photostable Intrinsic Core Emission from Carbon Dots through Surface Deoxidation by Ultraviolet Irradiation. Journal of Physical Chemistry Letters, 2019, 10, 3094-3100.	4.6	50
259	Large improvement of electron extraction from CdSe quantum dots into a TiO2 thin layer by N3 dye coabsorption. Thin Solid Films, 2008, 516, 6994-6998.	1.8	49
260	Recycling Is Not Always Good: The Dangers of Self-Plagiarism. ACS Nano, 2012, 6, 1-4.	14.6	49
261	Interplay between Auger and Ionization Processes in Nanocrystal Quantum Dots. Journal of Physical Chemistry B, 2005, 109, 18214-18217.	2.6	48
262	Strongly Luminescent Films Fabricated by Thermolysis of Goldâ^'Thiolate Complexes in a Polymer Matrix. Chemistry of Materials, 2008, 20, 6169-6175.	6.7	48
263	Hydrothermal Synthesis of SnO2 Embedded MoO3-x Nanocomposites and Their Synergistic Effects on Lithium Storage. Electrochimica Acta, 2016, 216, 79-87.	5.2	48
264	Waterâ€Soluble Biocompatible Copolymer Hypromellose Grafted Chitosan Able to Load Exogenous Agents and Copper Nanoclusters with Aggregationâ€Induced Emission. Advanced Functional Materials, 2018, 28, 1802848.	14.9	48
265	Reversible transformation between CsPbBr ₃ and Cs ₄ PbBr ₆ nanocrystals. CrystEngComm, 2018, 20, 4900-4904.	2.6	48
266	Metal Halide Perovskite Nanorods: Shape Matters. Advanced Materials, 2020, 32, e2002736.	21.0	48
267	MOF-Derived CoS ₂ /N-Doped Carbon Composite to Induce Short-Chain Sulfur Molecule Generation for Enhanced Sodium–Sulfur Battery Performance. ACS Applied Materials & Interfaces, 2021, 13, 18010-18020.	8.0	48
268	CdTe Nanowire Networks:  Fast Self-Assembly in Solution, Internal Structure, and Optical Properties. Journal of Physical Chemistry C, 2007, 111, 18927-18931.	3.1	47
269	Anisotropic optical emission of single CdSe/CdS tetrapod heterostructures: Evidence for a wavefunction symmetry breaking. Physical Review B, 2008, 77, .	3.2	47
270	Ternary Sn–Ti–O Based Nanostructures as Anodes for Lithium Ion Batteries. Small, 2015, 11, 1364-1383.	10.0	47

#	ARTICLE	IF	CITATIONS
271	Stretchable and Thermally Stable Dual Emission Composite Films of On-Purpose Aggregated Copper Nanoclusters in Carboxylated Polyurethane for Remote White Light-Emitting Devices. ACS Applied Materials & Interfaces, 2016, 8, 33993-33998.	8.0	47
272	Hexagonal Zn _{1â^'x} Cd _x S (0.2 ≤ ≤) solid solution photocatalysts for H ₂ generation from water. Catalysis Science and Technology, 2017, 7, 982-987.	4.1	47
273	Mesoporous Aluminum Hydroxide Synthesized by a Singleâ€Source Precursorâ€Decomposition Approach as a Highâ€Quantumâ€Yield Blue Phosphor for UVâ€Pumped Whiteâ€Lightâ€Emitting Diodes. Advanced Material 2017, 29, 1604284.	s21.0	47
274	Influence of the solvent environment on luminescent centers within carbon dots. Nanoscale, 2020, 12, 602-609.	5.6	47
275	Carbon Dot-Based Composite Films for Simultaneously Harvesting Raindrop Energy and Boosting Solar Energy Conversion Efficiency in Hybrid Cells. ACS Nano, 2020, 14, 10359-10369.	14.6	47
276	Fluorescence energy transfer in hybrid structures of semiconductor nanocrystals. Nano Today, 2011, 6, 355-365.	11.9	46
277	A co-crystallization induced surface modification strategy with cyanuric acid modulates the bandgap emission of carbon dots. Nanoscale, 2020, 12, 10987-10993.	5.6	46
278	Sodium chloride protected CdTe quantum dot based solid-state luminophores with high color quality and fluorescence efficiency. Applied Physics Letters, 2013, 103, .	3.3	45
279	Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays. Light: Science and Applications, 2020, 9, 16.	16.6	45
280	Binary Superlattices of Nanoparticles: Self-Assembly Leads to"Metamaterials― Angewandte Chemie - International Edition, 2004, 43, 148-149.	13.8	44
281	A self-indicating cellulose-based gel with tunable performance for bioactive agent delivery. Journal of Drug Delivery Science and Technology, 2021, 63, 102428.	3.0	44
282	White Light Afterglow in Carbon Dots Achieved via Synergy between the Roomâ€Temperature Phosphorescence and the Delayed Fluorescence. Small, 2022, 18, e2105415.	10.0	44
283	Efficient near-infrared light-emitting diodes based on organometallic halide perovskite–poly(2-ethyl-2-oxazoline) nanocomposite thin films. Nanoscale, 2016, 8, 19846-19852.	5.6	43
284	Impact of D ₂ 0/H ₂ 0 Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects. ACS Nano, 2016, 10, 4301-4311.	14.6	43
285	Beyond quantum confinement: excitonic nonlocality in halide perovskite nanoparticles with Mie resonances. Nanoscale, 2019, 11, 6747-6754.	5.6	43
286	Energy transfer versus charge separation in hybrid systems of semiconductor quantum dots and Ru-dyes as potential co-sensitizers of TiO2-based solar cells. Journal of Applied Physics, 2011, 110, .	2.5	42
287	Channeling Exciton Migration into Electron Transfer in Formamidinium Lead Bromide Perovskite Nanocrystal/Fullerene Composites. Angewandte Chemie - International Edition, 2017, 56, 1214-1218.	13.8	42
288	Polyvinylpyrrolidone-Assisted Ultrasonic Synthesis of SnO Nanosheets and Their Use as Conformal Templates for Tin Dioxide Nanostructures. Langmuir, 2012, 28, 10597-10601.	3.5	41

#	Article	IF	CITATIONS
289	Hierarchical assembly of Ti(iv)/Sn(ii) co-doped SnO2 nanosheets along sacrificial titanate nanowires: synthesis, characterization and electrochemical properties. Nanoscale, 2013, 5, 9101.	5.6	41
290	Amine-Terminated Carbon Dots Linking Hole Transport Layer and Vertically Oriented Quasi-2D Perovskites through Hydrogen Bonds Enable Efficient LEDs. ACS Nano, 2022, 16, 9679-9690.	14.6	41
291	Semiconductor Block Copolymer Nanocomposites with Lamellar Morphology via Self-Organization. Macromolecules, 2008, 41, 6081-6088.	4.8	40
292	Multiple exciton generation and ultrafast exciton dynamics in HgTe colloidal quantum dots. Physical Chemistry Chemical Physics, 2013, 15, 16864.	2.8	40
293	Aggregationâ€induced emission of copper nanoclusters. Aggregate, 2021, 2, e112.	9.9	40
294	Metal Halide Perovskites as Emerging Thermoelectric Materials. ACS Energy Letters, 2021, 6, 3882-3905.	17.4	40
295	Effect of Metal Nanoparticle Concentration on Localized Surface Plasmon Mediated Förster Resonant Energy Transfer. Journal of Physical Chemistry C, 2012, 116, 26529-26534.	3.1	39
296	Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot – metal nanoparticle structures. Applied Physics Letters, 2012, 100, .	3.3	39
297	Synthesis and Characterization of Tin Titanate Nanotubes: Precursors for Nanoparticulate Snâ€Đoped TiO ₂ Anodes with Synergistically Improved Electrochemical Performance. ChemElectroChem, 2014, 1, 1563-1569.	3.4	39
298	Molecular design of upconversion nanoparticles for gene delivery. Chemical Science, 2017, 8, 7339-7358.	7.4	39
299	Au@HgxCd1-xTe core@shell nanorods by sequential aqueous cation exchange for near-infrared photodetectors. Nano Energy, 2019, 57, 57-65.	16.0	38
300	Branched Wires of CdTe Nanocrystals Using Amphiphilic Molecules as Templates. Small, 2005, 1, 524-527.	10.0	37
301	Waterâ€Assisted Size and Shape Control of CsPbBr ₃ Perovskite Nanocrystals. Angewandte Chemie, 2018, 130, 3395-3400.	2.0	37
302	Cd _{<i>x</i>} Hg _(1â^'<i>x</i>) Te Alloy Colloidal Quantum Dots: Tuning Optical Properties from the Visible to Nearâ€Infrared by Ion Exchange. Particle and Particle Systems Characterization, 2013, 30, 346-354.	2.3	36
303	Integrated Plasmonic Infrared Photodetector Based on Colloidal HgTe Quantum Dots. Advanced Materials Technologies, 2019, 4, 1900354.	5.8	36
304	CdSe:Te Nanocrystals:  Band-Edge versus Te-Related Emission. Journal of Physical Chemistry C, 2007, 111, 2974-2979.	3.1	35
305	Morphology Control of Luminescent Carbon Nanomaterials: From Dots to Rolls and Belts. ACS Nano, 2021, 15, 1579-1586.	14.6	35
306	Raman scattering and anti-Stokes emission from a single spherical microcavity with a CdTe quantum dot monolayer. Applied Physics Letters, 2003, 83, 2539-2541.	3.3	34

#	Article	IF	CITATIONS
307	Controlling loading and optical properties of gold nanoparticles on liposome membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 342, 92-96.	4.7	34
308	Polyhedral Oligomeric Silsesquioxane as a Ligand for CdSe Quantum Dots. Journal of Physical Chemistry C, 2013, 117, 1857-1862.	3.1	34
309	Single-crystalline Li4Ti5O12 nanorods and their application in high rate capability Li4Ti5O12/LiMn2O4 full cells. Journal of Power Sources, 2013, 242, 222-229.	7.8	34
310	Recent Progress in Quantum Dot Based White Light-Emitting Devices. Topics in Current Chemistry, 2016, 374, 42.	5.8	34
311	Microwave-assisted <i>in situ</i> large scale synthesis of a carbon dots@g-C ₃ N ₄ composite phosphor for white light-emitting devices. Materials Chemistry Frontiers, 2020, 4, 517-523.	5.9	34
312	Molecular Design of Layer-by-Layer Functionalized Liposomes for Oral Drug Delivery. ACS Applied Materials & Interfaces, 2020, 12, 43341-43351.	8.0	34
313	Toward Bright Red-Emissive Carbon Dots through Controlling Interaction among Surface Emission Centers. Journal of Physical Chemistry Letters, 2020, 11, 8121-8127.	4.6	34
314	Carbon Dots Detect Water-to-Ice Phase Transition and Act as Alcohol Sensors <i>via</i> Fluorescence Turn-Off/On Mechanism. ACS Nano, 2021, 15, 6582-6593.	14.6	34
315	Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation. Journal of Physical Chemistry Letters, 2021, 12, 604-611.	4.6	34
316	Surface Stabilization of Colloidal Perovskite Nanocrystals via Multi-amine Chelating Ligands. ACS Energy Letters, 2022, 7, 1963-1970.	17.4	34
317	A copper nanocluster incorporated nanogel: Confinementâ€assisted emission enhancement for zinc ion detection in living cells. Sensors and Actuators B: Chemical, 2020, 307, 127626.	7.8	33
318	Lattice Distortion in Mixed-Anion Lead Halide Perovskite Nanorods Leads to their High Fluorescence Anisotropy. , 2020, 2, 814-820.		33
319	Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules. Light: Science and Applications, 2022, 11, 92.	16.6	33
320	Structure-related optical properties of luminescent hetero-opals. Journal of Applied Physics, 2004, 95, 1029-1035.	2.5	32
321	Incorporating Copper Nanoclusters into Metalâ€Organic Frameworks: Confinementâ€Assisted Emission Enhancement and Application for Trinitrotoluene Detection. Particle and Particle Systems Characterization, 2017, 34, 1700029.	2.3	32
322	Optically Addressable Photoaligned Semiconductor Nanorods in Thin Liquid Crystal Films for Display Applications. Advanced Optical Materials, 2018, 6, 1800250.	7.3	32
323	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie, 2017, 129, 9699-9704.	2.0	31
324	Chemically Synthesized Carbon Nanorods with Dual Polarized Emission. ACS Nano, 2019, 13, 12024-12031.	14.6	31

#	Article	IF	CITATIONS
325	Carbon Nanoparticles as Versatile Auxiliary Components of Perovskiteâ€Based Optoelectronic Devices. Advanced Functional Materials, 2021, 31, 2010768.	14.9	31
326	Chiral carbon dots based on <scp>l</scp> / <scp>d</scp> -cysteine produced <i>via</i> room temperature surface modification and one-pot carbonization. Nanoscale, 2021, 13, 8058-8066.	5.6	31
327	Subwavelength emitters in the near-infrared based on mercury telluride nanocrystals. Applied Physics Letters, 2004, 84, 4732-4734.	3.3	30
328	Combining Ligand-Induced Quantum-Confined Stark Effect with Type II Heterojunction Bilayer Structure in CdTe and CdSe Nanocrystal-Based Solar Cells. ACS Nano, 2012, 6, 3128-3133.	14.6	30
329	Hydrogen Peroxide Assisted Synthesis of Highly Luminescent Sulfur Quantum Dots. Angewandte Chemie, 2019, 131, 7114-7118.	2.0	29
330	Control of efficiency of photon energy up-conversion in CdSe/ZnS quantum dots. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 94, 859-863.	0.6	28
331	Anti‣tokes cooling in semiconductor nanocrystal quantum dots: A feasibility study. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2497-2509.	1.8	28
332	Inorganic–organic nanocomposites of CdSe nanocrystals surface-modified with oligo- and poly(fluorene) moieties. Journal of Materials Chemistry, 2011, 21, 2656.	6.7	27
333	Highly luminescent covalently bonded layered double hydroxide–fluorescent dye nanohybrids. Journal of Materials Chemistry C, 2014, 2, 4490-4494.	5.5	27
334	SnO ₂ nanoarrays for energy storage and conversion. CrystEngComm, 2015, 17, 5593-5604.	2.6	27
335	Room Temperature Synthesis of HgTe Quantum Dots in an Aprotic Solvent Realizing High Photoluminescence Quantum Yields in the Infrared. Chemistry of Materials, 2017, 29, 7859-7867.	6.7	27
336	Modification of the spontaneous emission of CdTe nanocrystals in TiO2 inverted opals. Journal of Applied Physics, 2003, 94, 1205-1210.	2.5	26
337	Investigation of the Exchange Kinetics and Surface Recovery of Cd _{<i>x</i>} Hg _{1–<i>x</i>} Te Quantum Dots during Cation Exchange Using a Microfluidic Flow Reactor. Chemistry of Materials, 2017, 29, 2756-2768.	6.7	26
338	Electrospray-mediated preparation of compositionally homogeneous core–shell hydrogel microspheres for sustained drug release. RSC Advances, 2017, 7, 44482-44491.	3.6	26
339	Inkjet-printed aligned quantum rod enhancement films for their application in liquid crystal displays. Nanoscale, 2019, 11, 20837-20846.	5.6	26
340	Ligand Shell Engineering to Achieve Optimal Photoalignment of Semiconductor Quantum Rods for Liquid Crystal Displays. Advanced Functional Materials, 2019, 29, 1805094.	14.9	25
341	Towards next generation white LEDs: optics-electronics synergistic effect in a single-layer heterophase halide perovskite. Light: Science and Applications, 2021, 10, 46.	16.6	25
342	Recent Progress in Quantum Dot Based White Light-Emitting Devices. Topics in Current Chemistry Collections, 2017, , 123-147.	0.5	25

#	Article	IF	CITATIONS
343	Quantum dot emitters in two-dimensional photonic crystals of macroporous silicon. Applied Physics Letters, 2005, 87, 142107.	3.3	24
344	Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure. Nanoscale, 2013, 5, 3400.	5.6	24
345	Infrared Emitting HgTe Quantum Dots and Their Waveguide and Optoelectronic Devices. Zeitschrift Fur Physikalische Chemie, 2015, 229, 23-64.	2.8	24
346	Carrier Multiplication Mechanisms and Competing Processes in Colloidal Semiconductor Nanostructures. Materials, 2017, 10, 1095.	2.9	24
347	Oxalic Acid Enabled Emission Enhancement and Continuous Extraction of Chloride from Cesium Lead Chloride/Bromide Perovskite Nanocrystals. Small, 2019, 15, e1901828.	10.0	24
348	Biocompatible off-stoichiometric copper indium sulfide quantum dots with tunable near-infrared emission <i>via</i> aqueous based synthesis. Chemical Communications, 2019, 55, 15053-15056.	4.1	24
349	Strongly Luminescent Dion–Jacobson Tin Bromide Perovskite Microcrystals Induced by Molecular Proton Donors Chloroform and Dichloromethane. Advanced Functional Materials, 2021, 31, 2102182.	14.9	24
350	Uncovering the Role of Trioctylphosphine on Colloidal and Emission Stability of Sb-Alloyed Cs ₂ NalnCl ₆ Double Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2021, 13, 47845-47859.	8.0	24
351	Co-Doping of Cerium and Bismuth into Lead-Free Double Perovskite Cs ₂ AgInCl ₆ Nanocrystals Results in Improved Photoluminescence Efficiency. ACS Nanoscience Au, 2022, 2, 93-101.	4.8	24
352	Lab-in-a-drop: controlled self-assembly of CdSe/ZnS quantum dots and quantum rods into polycrystalline nanostructures with desired optical properties. Nanotechnology, 2007, 18, 185602.	2.6	23
353	Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices. Applied Physics Letters, 2009, 94, .	3.3	23
354	Reversible Interaction of Sb with an Active Se Matrix Enhances the Cycle Stability of Electrodes for Lithium-Ion Batteries. Chemistry of Materials, 2019, 31, 2469-2475.	6.7	23
355	Composite Films of CsPbBr3 Perovskite Nanocrystals in a Hydrophobic Fluoropolymer for Temperature Imaging in Digital Microfluidics. ACS Applied Materials & Interfaces, 2020, 12, 19805-19812.	8.0	23
356	Confined optical modes in small photonic molecules with semiconductor nanocrystals. Journal of Applied Physics, 2004, 96, 6761-6765.	2.5	22
357	Time-Resolved Förster Energy Transfer from Individual Semiconductor Nanoantennae to Single Dye Molecules. Journal of Physical Chemistry C, 2007, 111, 11511-11515.	3.1	22
358	Multiple exciton generation in cluster-free alloy Cd _x Hg _{1â^'x} Te colloidal quantum dots synthesized in water. Physical Chemistry Chemical Physics, 2014, 16, 25710-25722.	2.8	22
359	Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS Nano, 2016, 10, 10615-10617.	14.6	22
360	The influence of thermal treatment conditions (solvothermal <i>versus</i> microwave) and solvent polarity on the morphology and emission of phloroglucinol-based nitrogen-doped carbon dots. Nanoscale, 2021, 13, 3070-3078.	5.6	22

#	Article	IF	CITATIONS
361	Dual-functional hosts derived from metal-organic frameworks reduce dissolution of polyselenides and inhibit dendrite growth in a sodium-selenium battery. Energy Storage Materials, 2022, 51, 249-258.	18.0	22
362	Light emission in a directional photonic bandgap. Physica Status Solidi A, 2003, 197, 662-672.	1.7	21
363	Confocal microscopy and spectroscopy of nanocrystals on a high-Qmicrosphere resonator. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, 154-158.	1.4	21
364	Sodium Chloride Protected CdHgTe Quantum Dot Based Solid-State Near-Infrared Luminophore for Light-Emitting Devices and Luminescence Thermometry. ACS Photonics, 2017, 4, 1459-1465.	6.6	21
365	A Building Brick Principle to Create Transparent Composite Films with Multicolor Emission and Selfâ€Healing Function. Small, 2018, 14, e1800315.	10.0	21
366	Broad-Band Photodetectors Based on Copper Indium Diselenide Quantum Dots in a Methylammonium Lead Iodide Perovskite Matrix. ACS Applied Materials & Interfaces, 2020, 12, 35201-35210.	8.0	21
367	A Flexible Plasmonic-Membrane-Enhanced Broadband Tin-Based Perovskite Photodetector. Nano Letters, 2021, 21, 9195-9202.	9.1	21
368	Emission stimulation in a directional band gap of a CdTe-loaded opal photonic crystal. Physical Review E, 2004, 69, 046606.	2.1	20
369	Guided Self-Assembly of Fe3O4 Nanoparticles on Chemically Active Surface Templates Generated by Electro-Oxidative Nanolithography. Current Nanoscience, 2006, 2, 135-141.	1.2	20
370	A specific electrochemiluminescence sensor for selective and ultra-sensitive mercury(<scp>ii</scp>) detection based on dithiothreitol functionalized copper nanocluster/carbon nitride nanocomposites. Analyst, The, 2019, 144, 4425-4431.	3.5	20
371	Magneto-Optical Studies of HgTe/HgxCd1â^'xTe(S) Core-Shell Nanocrystals. ChemPhysChem, 2003, 4, 1203-1210.	2.1	19
372	Hydrothermal synthesis and electrochemical properties of tin titanate nanowires coupled with SnO2 nanoparticles for Li-ion batteries. CrystEngComm, 2014, 16, 7529-7535.	2.6	19
373	Aqueous synthesis of CdS and CdSe/CdS tetrapods for photocatalytic hydrogen generation. APL Materials, 2014, 2, 012104.	5.1	19
374	Surface-biofunctionalized multicore/shell CdTe@SiO ₂ composite particles for immunofluorescence assay. Nanotechnology, 2011, 22, 505104.	2.6	18
375	Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy. Nanoscale, 2014, 6, 9192-9197.	5.6	18
376	Confined annealing-induced transformation of tin oxide into sulfide for sodium storage applications. Journal of Materials Chemistry A, 2019, 7, 11877-11885.	10.3	18
377	Copperâ€Nanoclusterâ€Based Transparent Ultravioletâ€Shielding Polymer Films. ChemNanoMat, 2019, 5, 110-115.	2.8	18
378	Effect of donor-acceptor concentration ratios on nonradiative energy transfer in closely packed CdTe quantum dots. Applied Physics Letters, 2009, 95, 133123.	3.3	17

#	Article	IF	CITATIONS
379	Synthesis and Optical Properties of Cubic Chalcopyrite/Hexagonal Wurtzite Core/Shell Copper Indium Sulfide Nanocrystals. Journal of the American Chemical Society, 2019, 141, 20516-20524.	13.7	17
380	Development of Synthetic Methods to Grow Long-Wavelength Infrared-Emitting HgTe Quantum Dots in Dimethylformamide. Chemistry of Materials, 2020, 32, 3930-3943.	6.7	17
381	Bis-ammonium salts with strong chemisorption to halide ions for fast and durable aqueous redox Zn ion batteries. Nano Energy, 2022, 98, 107278.	16.0	17
382	An EXAFS study on thiolcapped CdTe nanocrystals. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 1561-1564.	0.9	16
383	Efficient energy transfer in layered hybrid organic/inorganic nanocomposites: A dual function of semiconductor nanocrystals. Applied Physics Letters, 2010, 96, 083109.	3.3	16
384	Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths. Nanotechnology, 2014, 25, 105704.	2.6	16
385	Quantum Dots Still Shining Strong 30 Years On. ACS Nano, 2014, 8, 6511-6512.	14.6	16
386	Förster energy transfer of dark excitons enhanced by a magnetic field in an ensemble of CdTe colloidal nanocrystals. Physical Review B, 2015, 92, .	3.2	16
387	Excitonic Character in Optical Properties of Tetrahedral CdX (X = S, Se, Te) Clusters. Journal of Physical Chemistry C, 2015, 119, 29171-29177.	3.1	16
388	Narrowing the Photoluminescence of Aqueous CdTe Quantum Dots via Ostwald Ripening Suppression Realized by Programmed Dropwise Precursor Addition. Journal of Physical Chemistry C, 2018, 122, 11109-11118.	3.1	16
389	Nano as a Rosetta Stone: The Global Roles and Opportunities for Nanoscience and Nanotechnology. ACS Nano, 2019, 13, 10853-10855.	14.6	16
390	Redefining the Experimental and Methods Sections. ACS Nano, 2019, 13, 4862-4864.	14.6	16
391	Phase-Controlled Growth of CuInS ₂ Shells to Realize Colloidal CuInSe ₂ /CuInS ₂ Core/Shell Nanostructures. ACS Nano, 2020, 14, 11799-11808.	14.6	16
392	Semiconductor Nanocrystals Emitting in the Second Nearâ€Infrared Window: Optical Properties and Application in Biomedical Imaging. Advanced Optical Materials, 2022, 10, .	7.3	16
393	Correlating Dynamics and Selectivity in Adsorption of Semiconductor Nanocrystals onto a Self-Organized Pattern. Nano Letters, 2007, 7, 3483-3488.	9.1	15
394	Comparative optical study of colloidal anatase titania nanorods and atomically thin wires. Nanoscale, 2013, 5, 1465.	5.6	15
395	Exciton spin dynamics of colloidal CdTe nanocrystals in magnetic fields. Physical Review B, 2014, 89,	3.2	15
396	PbSe quantum dot films with enhanced electron mobility employed in hybrid polymer/nanocrystal solar cells. RSC Advances, 2016, 6, 17029-17035.	3.6	15

#	Article	IF	CITATIONS
397	Channeling Exciton Migration into Electron Transfer in Formamidinium Lead Bromide Perovskite Nanocrystal/Fullerene Composites. Angewandte Chemie, 2017, 129, 1234-1238.	2.0	15
398	Growth of Multinary Copper-Based Sulfide Shells on CuInSe ₂ Nanocrystals for Significant Improvement of Their Near-Infrared Emission. Chemistry of Materials, 2020, 32, 7842-7849.	6.7	15
399	Strongly Luminescent Composites Based on Carbon Dots Embedded in a Nanoporous Silicate Glass. Nanomaterials, 2020, 10, 1063.	4.1	15
400	Bright and Stable Dion-Jacobson Tin Bromide Perovskite Microcrystals Realized by Primary Alcohol Dopants. Chemistry of Materials, 2021, 33, 5413-5421.	6.7	15
401	Thermomechanical control of electronic coupling in quantum dot solids. Journal of Applied Physics, 2010, 107, 123516.	2.5	14
402	One-pot synthesis of an emulsion-templated hydrogel-microsphere composite with tunable properties. Composites Part A: Applied Science and Manufacturing, 2018, 113, 318-329.	7.6	14
403	Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects. Nanoscale Research Letters, 2006, 1, 68-73.	5.7	13
404	Fluorinated Euâ€Doped SnO ₂ Nanostructures with Simultaneous Phase and Shape Control and Improved Photoluminescence. Particle and Particle Systems Characterization, 2013, 30, 332-337.	2.3	13
405	Formulation of a Composite System of Liquid Crystals and Lightâ€Emitting Semiconductor Quantum Rods: From Assemblies in Solution to Photoaligned Films. Advanced Materials Technologies, 2019, 4, 1900695.	5.8	13
406	Temperature-Controlled Fragmentation and Ripening: Synthesis of ZnSe Nanorods with Variable Dimensions and Crystal Structure Starting from Ultrathin ZnSe Nanowires. Chemistry of Materials, 2020, 32, 3960-3969.	6.7	13
407	Sensitizing Full‧pectrum Lanthanide Luminescence within a Semiconductor CaZnOS Host. Advanced Photonics Research, 2021, 2, 2000089.	3.6	13
408	Encapsulation of selenium in MOF-derived N,O-codoped porous flower-like carbon host for Na-Se batteries. Chemical Engineering Journal, 2022, 430, 132737.	12.7	13
409	Reply: Self-Assembly of Monodisperse Nanocrystals Into Faceted Crystal Superlattices. Advanced Materials, 2005, 17, 1325-1329.	21.0	12
410	Optical anisotropy of semiconductor nanowires beyond the electrostatic limit. Physical Review B, 2010, 82, .	3.2	12
411	Nearâ€Infraredâ€Emitting Cd _{<i>x</i>} Hg _{1â°'<i>x</i>} Se Nanorods Fabricated by Ion Exchange in an Aqueous Medium. ChemPhysChem, 2013, 14, 2853-2858.	2.1	12
412	Aqueous-Based Cadmium Telluride Quantum Dot/Polyurethane/Polyhedral Oligomeric Silsesquioxane Composites for Color Enhancement in Display Backlights. Journal of Physical Chemistry C, 2018, 122, 13391-13398.	3.1	12
413	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Down Microwaveâ€Assisted Synthesis. Angewandte Chemie, 2018, 130, 5935-5939.	2.0	12
414	Template synthesis of silver indium sulfide based nanocrystals performed through cation exchange in organic and aqueous media. Nano Research, 2021, 14, 2321.	10.4	12

#	Article	IF	CITATIONS
415	Synthesis of Anisotropic ZnSe Nanorods with Zinc Blende Crystal Structure. Angewandte Chemie - International Edition, 2020, 59, 5385-5391.	13.8	12
416	Stable Luminescent Composite Microspheres Based on Porous Silica with Embedded CsPbBr ₃ Perovskite Nanocrystals. ChemNanoMat, 2020, 6, 1080-1085.	2.8	12
417	Phase-Dependent Shell Growth and Optical Properties of ZnSe/ZnS Core/Shell Nanorods. Chemistry of Materials, 2021, 33, 3413-3427.	6.7	12
418	Carbon Dots with an Emission in the Near Infrared Produced from Organic Dyes in Porous Silica Microsphere Templates. Nanomaterials, 2022, 12, 543.	4.1	12
419	Thiolâ€stabilized CdSe and CdTe nanocrystals in the size quantization regime: Synthesis, optical and structural properties. Macromolecular Symposia, 1998, 136, 87-89.	0.7	11
420	Reply to "Comment on â€~Gold Nanoshells Improve Single Nanoparticle Molecular Sensors'― Nano Letters, 2005, 5, 811-812.	9.1	11
421	Energetic disorder limits energy transfer in semiconductor nanocrystal–DNA–dye conjugates. Applied Physics Letters, 2009, 95, 143101.	3.3	11
422	Single-mode waveguiding in bundles of self-assembled semiconductor nanowires. Applied Physics Letters, 2010, 97, 221915.	3.3	11
423	General observation of the memory effect in metal-insulator-ITO structures due to indium diffusion. Semiconductor Science and Technology, 2015, 30, 074002.	2.0	11
424	Emission Quenching and Recovery of Illuminated Perovskite Quantum Dots Due to lodide Ion Migration. Journal of Physical Chemistry Letters, 2020, 11, 6168-6175.	4.6	11
425	Monodisperse CuInS ₂ /CdS and CuInZnS ₂ /CdS Core–Shell Nanorods with a Strong Nearâ€Infrared Emission. Advanced Optical Materials, 2022, 10, .	7.3	11
426	Excitonic versus Free-Carrier Contributions to the Nonlinearly Excited Photoluminescence in CsPbBr ₃ Perovskites. ACS Photonics, 2022, 9, 179-189.	6.6	11
427	Probing the Exciton Density of States in Semiconductor Nanocrystals Using Integrated Photoluminescence Spectroscopy. Monatshefte Für Chemie, 2002, 133, 909-918.	1.8	10
428	Composite Langmuir–Blodgett films of behenic acid and CdTe nanoparticles: the structure and reorganization on solid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 233-241.	4.7	10
429	Gamma ray shifted and enhanced photoluminescence of graphene quantum dots. Journal of Materials Chemistry C, 2016, 4, 10538-10544.	5.5	10
430	Ultrafast Exciton Dynamics in Cd x Hg (1 â^' x) Te alloy Quantum Dots. Chemical Physics, 2016, 469-470, 25-30.	1.9	10
431	Ligand density control boosts the efficiency of all-inorganic CsPbBr3 perovskite nanocrystal based light emitting diodes. Science Bulletin, 2017, 62, 314-315.	9.0	10
432	Thiol-Capped CdSe and CdTe Nanoclusters: Synthesis by a Wet Chemical Route, Structural and Optical Properties. Materials Research Society Symposia Proceedings, 1998, 536, 365.	0.1	9

#	Article	IF	CITATIONS
433	Semiconductor nanowires self-assembled from colloidal CdTe nanocrystal building blocks: optical properties and application perspectives. Journal of Materials Chemistry, 2012, 22, 20831.	6.7	9
434	Enhanced hydrogen evolution rates at high pH with a colloidal cadmium sulphide–platinum hybrid system. APL Materials, 2014, 2, 126102.	5.1	9
435	44-4L: <i>Late-News Paper</i> : Photo-Aligned Quantum Rod Dispersed Liquid Crystal Polymer Films. Digest of Technical Papers SID International Symposium, 2016, 47, 602-604.	0.3	9
436	Carbon Dots: Nearâ€Infrared Excitation/Emission and Multiphotonâ€Induced Fluorescence of Carbon Dots (Adv. Mater. 13/2018). Advanced Materials, 2018, 30, 1870092.	21.0	9
437	Aqueous Synthesis of Methylammonium Lead Halide Perovskite Nanocrystals. Angewandte Chemie, 2018, 130, 9798-9802.	2.0	9
438	Chargeâ€Transfer Complexes: Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel (Adv. Funct. Mater.) Tj ETQqO	0 014:øBT /	Oværlock 10 1
439	Enhanced Photoluminescence of Halide Perovskite Nanocrystals Mediated by a Higher-Order Topological Metasurface. Journal of Physical Chemistry C, 2021, 125, 9884-9890.	3.1	9
440	Room Temperature Fabrication of Stable, Strongly Luminescent Dion–Jacobson Tin Bromide Perovskite Microcrystals Achieved through Use of Primary Alcohols. Nanomaterials, 2021, 11, 2738.	4.1	9
441	Europium fluoride based luminescent materials: From hydrogels to porous cryogels, and crystalline NaEuF4 and EuF3 micro/nanostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 179, 48-51.	3.5	8
442	Single Source Precursor Chemical Vapor Decomposition Method to Fabricate Stable, Bright Emissive Aluminum Hydroxide Phosphors for UVâ€Pumped White Lightâ€Emitting Devices. Advanced Optical Materials, 2018, 6, 1701115.	7.3	8
443	Two‧tep Oxidation Synthesis of Sulfur with a Red Aggregationâ€Induced Emission. Angewandte Chemie, 2020, 132, 10083-10088.	2.0	8
444	Tunable Mie Resonances of Tin-based Iodide Perovskite Islandlike Films with Enhanced Infrared Photoluminescence. Journal of Physical Chemistry Letters, 2020, 11, 3332-3338.	4.6	8
445	Continuous Flow Synthesis of Persistent Luminescent Chromium-Doped Zinc Gallate Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 7067-7075.	4.6	8
446	Near-infrared-emitting semiconductor quantum dots for tumor imaging and targeting. Current Opinion in Molecular Therapeutics, 2010, 12, 331-9.	2.8	8
447	Water-Stable CsPbBr ₃ /Cs ₄ PbBr ₆ Nanocrystals with a Mixed Fluoropolymer Shell for Optical Temperature Sensing. ACS Applied Nano Materials, 2022, 5, 5025-5034.	5.0	8
448	Connecting Together Nanocenters around the World. ACS Nano, 2017, 11, 8531-8532.	14.6	7
449	Identification of Molecular Fluorophore as a Component of Carbon Dots able to Induce Gelation in a Fluorescent Multivalent-Metal-Ion-Free Alginate Hydrogel. Scientific Reports, 2019, 9, 15080.	3.3	7
450	Induction of Wurtzite to Zinc-Blende Phase Transformation in ZnSe Nanorods During Cu(I) Cation Exchange. Chemistry of Materials, 2021, 33, 2398-2407.	6.7	7

#	Article	IF	CITATIONS
451	Size-selective photoluminescence excitation spectroscopy in CdTe quantum dots. , 2003, 4876, 432.		6
452	A Year for Nanoscience. ACS Nano, 2014, 8, 11901-11903.	14.6	6
453	Proton Transferâ€Driven Modification of 3D Hybrid Perovskites to Form Oriented 2D Ruddlesden–Popper Phases. Small Science, 2022, 2, .	9.9	6
454	Regeneration of spent cathodes of Li-ion batteries into multifunctional electrodes for overall water splitting and rechargeable Zn-air batteries by ultrafast carbothermal shock. Science China Materials, 2022, 65, 2393-2400.	6.3	6
455	Incorporation of Thiol-Stabilized CdTe Nanoclusters into Langmuir-Blodgett Films. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1999, 35, 157-164.	1.6	5
456	Up-Conversion Luminescence in Colloidal CdTe Nanocrystals. Materials Research Society Symposia Proceedings, 2002, 737, 96.	0.1	5
457	Spontaneous emission from semiconductor nanocrystals in coupled spherical microcavities. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 858-861.	0.8	5
458	Decorated wires as a reaction product of the microwave-assisted synthesis of CdSe in the presence of glycine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 737-741.	4.7	5
459	Be Critical but Fair. ACS Nano, 2013, 7, 8313-8316.	14.6	5
460	Big Roles for Nanocenters. ACS Nano, 2015, 9, 8639-8640.	14.6	5
461	Spontane Kristallisation von Perowskitâ€Nanokristallen in unpolaren organischen Lösungsmitteln: Ein vielseitiges Konzept für deren morphologiekontrollierende Synthese. Angewandte Chemie, 2019, 131, 16710-16715.	2.0	5
462	Polypyrrole and Carbon Nanotube Coâ€Composited Titania Anodes with Enhanced Sodium Storage Performance in Etherâ€Based Electrolyte. Advanced Sustainable Systems, 2019, 3, 1800154.	5.3	5
463	Photoelectrochemical Performance Enhancement of ZnSe Nanorods versus Dots: Combined Experimental and Computational Insights. Journal of Physical Chemistry Letters, 2020, 11, 10414-10420.	4.6	5
464	Atomic Sulfur Passivation Improves the Photoelectrochemical Performance of ZnSe Nanorods. Nanomaterials, 2020, 10, 1081.	4.1	5
465	Strong Photoluminescence in the Near-Infrared from Colloidally-Prepared HgTe Nanocrystals. Materials Research Society Symposia Proceedings, 1998, 536, 217.	0.1	4
466	Design of a Waterâ€Soluble Hybrid Nanocomposite of CdTe Quantum Dots and an Iridium Complex for Photoinduced Charge Transfer. ChemPhysChem, 2012, 13, 2589-2595.	2.1	4
467	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	14.6	4
468	Integrated near-infrared photodetector based on colloidal HgTe quantum dot loaded plasmonic		4

waveguide., 2017,,.

#	Article	IF	CITATIONS
469	Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1399-1412.	2.8	4
470	Composite Nanospheres Comprising Luminescent Carbon Dots Incorporated into a Polyhedral Oligomeric Silsesquioxane Matrix. Journal of Physical Chemistry C, 2021, 125, 15094-15102.	3.1	4
471	Twist-to-Untwist Evolution and Cation Polarization Behavior of Hybrid Halide Perovskite Nanoplatelets Revealed by Cryogenic Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 2021, 12, 12187-12195.	4.6	4
472	Stimulated emission due to light localization in the bandgap of disordered opals. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 1522-1530.	0.8	3
473	Large energy transfer distance to a plane of gold nanoparticles. , 2012, , .		3
474	We Take It Personally. ACS Nano, 2012, 6, 10417-10419.	14.6	3
475	Grand Plans for Nano. ACS Nano, 2015, 9, 11503-11505.	14.6	3
476	Methods to form atomically thin carbon coatings on SnS and SnO2 nanostructures. RSC Advances, 2016, 6, 61180-61184.	3.6	3
477	Aggregation-free DNA nanocage/Quantum Dot complexes based on electrostatic adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495, 62-67.	4.7	3
478	Light propagation in opal heterojunctions. , 2004, , .		2
479	Enhanced F rster resonance energy transfer between the CdTe quantum dots in proximity to gold nanoparticles. , 2007, , .		2
480	How Many Nano Journals Does the World Need?. ACS Nano, 2012, 6, 9349-9349.	14.6	2
481	Nanothermometry: Temperature-Dependent Exciton and Trap-Related Photoluminescence of CdTe Quantum Dots Embedded in a NaCl Matrix: Implication in Thermometry (Small 4/2016). Small, 2016, 12, 548-548.	10.0	2
482	Light-Emitting Devices: All-Copper Nanocluster Based Down-Conversion White Light-Emitting Devices (Adv. Sci. 11/2016). Advanced Science, 2016, 3, .	11.2	2
483	Cadmium Telluride Quantum Dots as a Fluorescence Marker for Adipose Tissue Grafts. Annals of Plastic Surgery, 2017, 78, 217-222.	0.9	2
484	Shape-Controlled Synthesis of Copper Indium Sulfide Nanostructures: Flowers, Platelets and Spheres. Nanomaterials, 2019, 9, 1779.	4.1	2
485	Photoluminescence: Thermally Activated Upconversion Nearâ€Infrared Photoluminescence from Carbon Dots Synthesized via Microwave Assisted Exfoliation (Small 50/2019). Small, 2019, 15, 1970288.	10.0	2
486	Synthesis of Anisotropic ZnSe Nanorods with Zinc Blende Crystal Structure. Angewandte Chemie, 2020. 132. 5423-5429.	2.0	2

#	Article	IF	CITATIONS
487	Photonic Crystals Based on Two-Layer Opaline Heterostructures. Materials Research Society Symposia Proceedings, 2002, 722, 771.	0.1	2
488	Optical Properties of Coloidally Synthesised II-VI Semiconductor Nanocrystals. , 2000, , 379-393.		1
489	Optical Characterization of Cadmium Telluride Doped Heterostructured Opaline Photonic Crystal. Materials Research Society Symposia Proceedings, 2001, 708, 781.	0.1	1
490	Controlled coupling of a single emitter to a single mode of a microsphere: where do we stand?. , 2003, , .		1
491	Highly emissive nanowires grown from CdTe nanocrystals in a phosphate buffer solution. , 2005, 5824, 123.		1
492	Coupled cavity modes in photonic molecules with semiconductor nanocrystals. , 2005, , .		1
493	Modification of Photon States in Photonic Molecules with Semiconductor Nanocrystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2005, 99, 493.	0.6	1
494	Light Emitting Opal-Based Photonic Crystal Heterojunctions. , 2006, , 132-152.		1
495	Radiation pressure induced splitting of resonant modes in a nanocrystal-coated microcavity. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3689-3692.	0.8	1
496	Solution-grown CdTe nanowires: Self-assembly, optical properties and strong temperature dependent electronic coupling. , 2010, , .		1
497	Förster resonance energy transfer in mixed-size CdTe quantum dots with optimized donor-acceptor concentration ratio. , 2011, , .		1
498	Solar Cells: Heterojunction Engineering of CdTe and CdSe Quantum Dots on TiO2 Nanotube Arrays: Intricate Effects of Size-Dependency and Interfacial Contact on Photoconversion Efficiencies (Adv.) Tj ETQq0 0 0	rg B4.∮ Ove	rlack 10 Tf 5(
499	Exciting Times for Nano. ACS Nano, 2013, 7, 10437-10439.	14.6	1
500	Plasmon-exciton strong coupling in a hybrid system of gold nanostars and J-aggregates. , 2013, , .		1
501	Enhancing FÃ $f q$ rster nonradiative energy transfer via plasmon interaction. , 2016, , .		1
502	41â€4: Microscale Pattern Polarized Emission from Semiconductor Nanorods by Photoâ€Induced Alignment Technology. Digest of Technical Papers SID International Symposium, 2017, 48, 589-591.	0.3	1
503	A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.	14.6	1
504	Wide-range emitting carbon dots synthesized from O-phenylenediamine by microwave-assisted method. AIP Conference Proceedings, 2020, , .	0.4	1

#	Article	IF	CITATIONS
505	Correction to Temperature Controlled Fragmentation and Ripening: Synthesis of ZnSe Nanorods with Variable Dimensions and Crystal Structure Starting from Ultrathin ZnSe Nanowires. Chemistry of Materials, 2021, 33, 4247-4247.	6.7	1
506	Highly Luminescent and Stable 2D/3D Octadecylammonium/Formamidinium Lead Bromide Perovskite Films. Journal of Physical Chemistry C, 2021, 125, 17501-17508.	3.1	1
507	A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three-Dimensional Superlattices. , 2001, 13, 1868.		1
508	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	14.6	1
509	Nucleation Temperatureâ€Dependent Synthesis of Polytypic CuInSe ₂ Nanostructures with Variable Tetrapodâ€Like and Coreâ€Shell Morphologies. ChemNanoMat, 0, , .	2.8	1
510	Electrons and photons in mesoscopic structures: quantum dots in a photonic crystal and in a microcavity. , 1999, , .		0
511	Optical Characterization of Cadmium Telluride Doped Heterostructured Opaline Photonic Crystal. Materials Research Society Symposia Proceedings, 2001, 694, 1.	0.1	0
512	Optical Characterization of Cadmium Telluride Doped Heterostructured Opaline Photonic Crystal. Materials Research Society Symposia Proceedings, 2001, 707, 781.	0.1	0
513	Enhanced coupling of electronic and photonic states in a microcavity-quantum dot system. , 2005, , .		0
514	Resonant Raman Scattering In Spherical InP QDs: The Role Of The Optical Deformation Potential Interaction. AIP Conference Proceedings, 2005, , .	0.4	0
515	Highly emissive CdTe nanowires grown in a phosphate buffer solution. , 2007, , .		0
516	Emission Properties of Quantum Dots in a Levitated Microdrop. , 2007, , .		0
517	NIR-emitting nanocrystals for photonic applications. , 2007, , .		0
518	Highly emissive CdTe nanowires grown in a phosphate buffer solution: FLIM imaging and spectroscopic studies. Proceedings of SPIE, 2007, , .	0.8	0
519	Photonic molecules modes in resonantly coupled spherical microcavities with semiconductor nanocrystals. , 2007, , .		0
520	<title>Photonic molecule modes in coupled spherical microcavities with CdTe nanocrystals</title> . , 2008, , .		0
521	Influence of localised surface plasmons on energy transfer between quantum dots. , 2010, , .		0
522	ACS Nano in 2011 and Looking Forward to 2012. ACS Nano, 2011, 5, 9301-9302.	14.6	0

0

#	Article	IF	CITATIONS
523	Modification of the FRET rate in quantum dot structures. , 2011, , .		Ο
524	Energy Storage: Ternary Sn-Ti-O Based Nanostructures as Anodes for Lithium Ion Batteries (Small) Tj ETQq0 0 0 r	gBT /Over 10.0	lock 10 Tf 50
525	Frontispiece: Channeling Exciton Migration into Electron Transfer in Formamidinium Lead Bromide Perovskite Nanocrystal/Fullerene Composites. Angewandte Chemie - International Edition, 2017, 56, .	13.8	0
526	Frontispiz: Channeling Exciton Migration into Electron Transfer in Formamidinium Lead Bromide Perovskite Nanocrystal/Fullerene Composites. Angewandte Chemie, 2017, 129, .	2.0	0
527	Chemical Sensing: Incorporating Copper Nanoclusters into Metalâ€Organic Frameworks: Confinementâ€Assisted Emission Enhancement and Application for Trinitrotoluene Detection (Part.) Tj ETQq1 1	0.72854314	rg & T /Over <mark>l</mark> o
528	Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.	14.6	0
529	Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.	14.6	0
530	Polarization Sensitive Plasmonic Photodetector Based on HgTe Quantum Dots. , 2018, , .		0
531	Pâ€124: Photo Emissive Nanorods Display. Digest of Technical Papers SID International Symposium, 2018, 49, 1674-1676.	0.3	0
532	Pâ€11.16: Synthesis of CsPbBr ₃ Nanorods with Tuneable Optical Anisotropy for Optoelectronic Applications. Digest of Technical Papers SID International Symposium, 2019, 50, 949-952.	0.3	0
533	40.4: Photoâ€Induced Continuous Alignment of Semiconductor Quantum Rods. Digest of Technical Papers SID International Symposium, 2019, 50, 452-452.	0.3	0
534	Influence of heteroatoms on optical properties and photoluminescence kinetics of carbon dots. Journal of Physics: Conference Series, 2020, 1461, 012008.	0.4	0
535	CHEMICALLY GROWN II-VI SEMICONDUCTOR QUANTUM DOTS FOR OPTOELECTRONIC AND PHOTONIC APPLICATIONS. , 2001, , .		0
536	WHISPERING GALLERY MODE EMISSION FROM A CORE-SHELL SYSTEM OF CdTe NANOCRYSTALS ON A SPHERICAL MICROCAVITY. , 2003, , .		0
537	COUPLED CAVITY MODES IN PHOTONIC MOLECULES WITH SEMICONDUCTOR NANOCRYSTALS. , 2005, , .		0
538	ENHANCED RAMAN SCATTERING AND WHISPERING GALLERY MODE ANTI-STOKES EMISSION IN SPHERICAL MICROCAVITY WITH CdTe NANOCRYSTALS., 2005,,.		0
539	DECORATED NANOWIRES AS A PRODUCT OF MICROWAVE SYNTHESIS OF CdSe IN PRESENCE OF GLYCINE. , 2007, , .		0

540 WHITE LIGHT EMITTING NANOSTRUCTURES. , 2007, , .

#	Article	IF	CITATIONS
541	In vivo tracking of adipose tissue grafts with cadmium-telluride quantum dots. Archives of Plastic Surgery, 2018, 45, 111-117.	0.9	0
542	Perovskite Nanocrystals in Light-Emitting Devices. , 0, , .		0
543	Light-Emitting Devices with Perovskite Nanocrystals. , 0, , .		0
544	Semitransparent visualizers of infrared lasers based on perovskite quantum dots. Journal of Physics: Conference Series, 2021, 2015, 012112.	0.4	0
545	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	14.6	0