
David Coomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6348674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting leaf traits of temperate broadleaf deciduous trees from hyperspectral reflectance: can a general model be applied across a growing season?. Remote Sensing of Environment, 2022, 269, 112767.	11.0	12
2	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	11.0	108
3	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	86
4	The Shift from Energy to Water Limitation in Local Canopy Height from Temperate to Tropical Forests in China. Forests, 2022, 13, 639.	2.1	1
5	Functional susceptibility of tropical forests to climate change. Nature Ecology and Evolution, 2022, 6, 878-889.	7.8	8
6	Tallo: A global tree allometry and crown architecture database. Global Change Biology, 2022, 28, 5254-5268.	9.5	24
7	Challenging the link between functional and spectral diversity with radiative transfer modeling and data. Remote Sensing of Environment, 2022, 280, 113170.	11.0	9
8	Riparian buffers act as microclimatic refugia in oil palm landscapes. Journal of Applied Ecology, 2021, 58, 431-442.	4.0	27
9	The mechanical stability of the world's tallest broadleaf trees. Biotropica, 2021, 53, 110-120.	1.6	20
10	Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sensing of Environment, 2021, 252, 112122.	11.0	38
11	Leech bloodâ€meal invertebrateâ€derived DNA reveals differences in Bornean mammal diversity across habitats. Molecular Ecology, 2021, 30, 3299-3312.	3.9	24
12	Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 2021, 30, 459-475.	5.8	27
13	Resource availability and disturbance shape maximum tree height across the Amazon. Global Change Biology, 2021, 27, 177-189.	9.5	26
14	Carbon flux and forest dynamics: Increased deadwood decomposition in tropical rainforest treeâ€fall canopy gaps. Global Change Biology, 2021, 27, 1601-1613.	9.5	22
15	Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño. Nature Communications, 2021, 12, 1526.	12.8	31
16	Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 2021, 12, 3137.	12.8	28
17	The impact of logging on vertical canopy structure across a gradient of tropical forest degradation intensity in Borneo. Journal of Applied Ecology, 2021, 58, 1764-1775.	4.0	26
18	Individual tree detection and crown segmentation based on metabolic theory from airborne laser scanning data. Journal of Applied Remote Sensing, 2021, 15, .	1.3	3

#	Article	IF	CITATIONS
19	The motion of trees in the wind: a data synthesis. Biogeosciences, 2021, 18, 4059-4072.	3.3	28
20	Multisensor Data Fusion for Improved Segmentation of Individual Tree Crowns in Dense Tropical Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 3927-3936.	4.9	15
21	Monitoring ash dieback (<i>Hymenoscyphus fraxineus</i>) in British forests using hyperspectral remote sensing. Remote Sensing in Ecology and Conservation, 2021, 7, 306-320.	4.3	15
22	3D Segmentation of Trees Through a Flexible Multiclass Graph Cut Algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 754-776.	6.3	39
23	Occurrence of bloodâ€feeding terrestrial leeches (Haemadipsidae) in a degraded forest ecosystem and their potential as ecological indicators. Biotropica, 2020, 52, 302-312.	1.6	9
24	Tree survival and growth responses in the aftermath of a strong earthquake. Journal of Ecology, 2020, 108, 107-121.	4.0	9
25	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
26	Imaging spectroscopy reveals the effects of topography and logging on the leaf chemistry of tropical forest canopy trees. Global Change Biology, 2020, 26, 989-1002.	9.5	37
27	Maximizing the value of forest restoration for tropical mammals by detecting three-dimensional habitat associations. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26254-26262.	7.1	30
28	Resilience of Spanish forests to recent droughts and climate change. Global Change Biology, 2020, 26, 7079-7098.	9.5	27
29	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	12.6	1
30	Evaluating the potential of fullâ€waveform lidar for mapping panâ€tropical tree species richness. Global Ecology and Biogeography, 2020, 29, 1799-1816.	5.8	31
31	Standardizing Ecosystem Morphological Traits from 3D Information Sources. Trends in Ecology and Evolution, 2020, 35, 656-667.	8.7	72
32	Forest microclimate dynamics drive plant responses to warming. Science, 2020, 368, 772-775.	12.6	385
33	Global Airborne Laser Scanning Data Providers Database (GlobALS)—A New Tool for Monitoring Ecosystems and Biodiversity. Remote Sensing, 2020, 12, 1877.	4.0	16
34	Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 2020, 579, 80-87.	27.8	439
35	Good things take time—Diversity effects on tree growth shift from negative to positive during stand development in boreal forests. Journal of Ecology, 2020, 108, 2198-2211.	4.0	21
36	Capturing juvenile tree dynamics from count data using Approximate Bayesian Computation. Ecography, 2020, 43, 406-418.	4.5	15

#	Article	IF	CITATIONS
37	Characterizing and Evaluating Integrated Landscape Initiatives. One Earth, 2020, 2, 174-187.	6.8	29
38	A Research Agenda for Microclimate Ecology in Human-Modified Tropical Forests. Frontiers in Forests and Global Change, 2020, 2, .	2.3	33
39	Partial river flow recovery with forest age is rare in the decades following establishment. Global Change Biology, 2020, 26, 1458-1473.	9.5	26
40	Dynamics of a humanâ€modified tropical peat swamp forest revealed by repeat lidar surveys. Global Change Biology, 2020, 26, 3947-3964.	9.5	17
41	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	12.6	3
42	Densities of Bornean orangâ€utans (Pongo pygmaeus morio) in heavily degraded forest and oil palm plantations in Sabah, Borneo. American Journal of Primatology, 2019, 81, e23030.	1.7	19
43	Reconciling the contribution of environmental and stochastic structuring of tropical forest diversity through the lens of imaging spectroscopy. Ecology Letters, 2019, 22, 1608-1619.	6.4	9
44	A critique of general allometry-inspired models for estimating forest carbon density from airborne LiDAR. PLoS ONE, 2019, 14, e0215238.	2.5	4
45	How do trees respond to species mixing in experimental compared to observational studies?. Ecology and Evolution, 2019, 9, 11254-11265.	1.9	8
46	The giant trees of the Amazon basin. Frontiers in Ecology and the Environment, 2019, 17, 373-374.	4.0	28
47	Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe. Clobal Ecology and Biogeography, 2019, 28, 1774-1786.	5.8	115
48	The World's Tallest Tropical Tree in Three Dimensions. Frontiers in Forests and Global Change, 2019, 2,	2.3	38
49	Accurate Measurement of Tropical Forest Canopy Heights and Aboveground Carbon Using Structure From Motion. Remote Sensing, 2019, 11, 928.	4.0	46
50	Forest fragmentation in China and its effect on biodiversity. Biological Reviews, 2019, 94, 1636-1657.	10.4	118
51	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	27.8	371
52	Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Communications, 2019, 10, 2171.	12.8	92
53	A Comparative Assessment of the Performance of Individual Tree Crowns Delineation Algorithms from ALS Data in Tropical Forests. Remote Sensing, 2019, 11, 1086.	4.0	73
54	Unconditional Transfers and Tropical Forest Conservation: Evidence from a Randomized Control Trial in Sierra Leone. American Journal of Agricultural Economics, 2019, 101, 894-918.	4.3	32

#	Article	IF	CITATIONS
55	The distribution of plants and seed dispersers in response to habitat fragmentation in an artificial island archipelago. Journal of Biogeography, 2019, 46, 1152-1162.	3.0	18
56	Ground Data are Essential for Biomass Remote Sensing Missions. Surveys in Geophysics, 2019, 40, 863-880.	4.6	91
57	Semi-Supervised Learning with Graphs: Covariance Based Superpixels For Hyperspectral Image Classification. , 2019, , .		3
58	Larger fragments have more lateâ€successional species of woody plants than smaller fragments after 50 years of secondary succession. Journal of Ecology, 2019, 107, 582-594.	4.0	43
59	Identifying the tree species compositions that maximize ecosystem functioning in European forests. Journal of Applied Ecology, 2019, 56, 733-744.	4.0	58
60	Advances in Microclimate Ecology Arising from Remote Sensing. Trends in Ecology and Evolution, 2019, 34, 327-341.	8.7	229
61	A simple approach to forest structure classification using airborne laser scanning that can be adopted across bioregions. Forest Ecology and Management, 2019, 433, 111-121.	3.2	22
62	Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 2018, 21, 989-1000.	6.4	215
63	Blind image fusion for hyperspectral imaging with the directional total variation. Inverse Problems, 2018, 34, 044003.	2.0	40
64	Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant, Cell and Environment, 2018, 41, 245-260.	5.7	81
65	Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biological Conservation, 2018, 217, 289-310.	4.1	91
66	Airborne laser scanning of natural forests in New Zealand reveals the influences of wind on forest carbon. Forest Ecosystems, 2018, 5, .	3.1	17
67	Extreme and Highly Heterogeneous Microclimates in Selectively Logged Tropical Forests. Frontiers in Forests and Global Change, 2018, 1, .	2.3	37
68	Canopy structure and topography jointly constrain the microclimate of humanâ€modified tropical landscapes. Global Change Biology, 2018, 24, 5243-5258.	9.5	158
69	Assessing the Progress of REDD+ Projects towards the Sustainable Development Goals. Forests, 2018, 9, 589.	2.1	17
70	Riparian reserves help protect forest bird communities in oil palm dominated landscapes. Journal of Applied Ecology, 2018, 55, 2744-2755.	4.0	53
71	Effect of Tree Phenology on LiDAR Measurement of Mediterranean Forest Structure. Remote Sensing, 2018, 10, 659.	4.0	5
72	Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning. Biogeosciences, 2018, 15, 3811-3830.	3.3	47

#	Article	lF	CITATIONS
73	Inferring diversity patterns along an elevation gradient from stacked SDMs: A case study on Mesoamerican ferns. Global Ecology and Conservation, 2018, 16, e00433.	2.1	14
74	Nitrous oxide emissions from sugarcane fields in the Brazilian Cerrado. Agriculture, Ecosystems and Environment, 2017, 246, 55-65.	5.3	21
75	Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sensing of Environment, 2017, 194, 77-88.	11.0	142
76	Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Ecological Modelling, 2017, 366, 15-26.	2.5	38
77	Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests. Forest Ecology and Management, 2017, 406, 163-171.	3.2	31
78	Effects of plot size, stand density, and scan density on the relationship between airborne laser scanning metrics and the Gini coefficient of tree size inequality. Canadian Journal of Forest Research, 2017, 47, 1590-1602.	1.7	13
79	Nationally Representative Plot Network Reveals Contrasting Drivers of Net Biomass Change in Secondary and Old-Growth Forests. Ecosystems, 2017, 20, 944-959.	3.4	32
80	Forest soils in France are sequestering substantial amounts of carbon. Science of the Total Environment, 2017, 574, 616-628.	8.0	58
81	Denial of longâ€ŧerm issues with agriculture on tropical peatlands will have devastating consequences. Global Change Biology, 2017, 23, 977-982.	9.5	114
82	Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 2017, 23, 177-190.	9.5	254
83	On the challenges of using field spectroscopy to measure the impact of soil type on leaf traits. Biogeosciences, 2017, 14, 3371-3385.	3.3	18
84	Detecting the fingerprint of drought across Europe's forests: do carbon isotope ratios and stem growth rates tell similar stories?. Forest Ecosystems, 2017, 4, .	3.1	19
85	An Alternative Approach to Using LiDAR Remote Sensing Data to Predict Stem Diameter Distributions across a Temperate Forest Landscape. Remote Sensing, 2017, 9, 944.	4.0	22
86	Mapping Aboveground Carbon in Oil Palm Plantations Using LiDAR: A Comparison of Tree-Centric versus Area-Based Approaches. Remote Sensing, 2017, 9, 816.	4.0	18
87	Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland. Biogeosciences, 2016, 13, 961-973.	3.3	25
88	Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia. PLoS ONE, 2016, 11, e0154307.	2.5	6
89	Drivers of aboveground wood production in a lowland tropical forest of West Africa: teasing apart the roles of tree density, tree diversity, soil phosphorus, and historical logging. Ecology and Evolution, 2016, 6, 4004-4017.	1.9	34
90	Tree entric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods in Ecology and Evolution, 2016, 7, 1236-1245.	5.2	200

#	Article	IF	CITATIONS
91	Taylor's law and related allometric power laws in New Zealand mountain beech forests: the roles of space, time and environment. Oikos, 2016, 125, 1342-1357.	2.7	18
92	Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nature Communications, 2016, 7, 11109.	12.8	185
93	Combining spatial data with survey data improves predictions of boundaries between settlements. Applied Geography, 2016, 77, 1-7.	3.7	11
94	Individual Tree Species Classification From Airborne Multisensor Imagery Using Robust PCA. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 2554-2567.	4.9	53
95	Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354, .	12.6	864
96	Aboveground biomass estimation in tropical forests at single tree level with ALS data. , 2016, , .		1
97	Post-volcanic forest succession on New Zealand's North Island: an appraisal from long-term plot data. New Zealand Journal of Botany, 2016, 54, 11-29.	1.1	2
98	Climate modulates the effects of tree diversity on forest productivity. Journal of Ecology, 2016, 104, 388-398.	4.0	109
99	Asymmetric competition causes multimodal size distributions in spatially structured populations. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152404.	2.6	3
100	Biotic homogenization can decrease landscape-scale forest multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3557-3562.	7.1	196
101	Tropical nature reserves are losing their buffer zones, but leakage is not to blame. Environmental Research, 2016, 147, 580-589.	7.5	27
102	Plant functional traits have globally consistent effects on competition. Nature, 2016, 529, 204-207.	27.8	655
103	Light accelerates plant responses to warming. Nature Plants, 2015, 1, 15110.	9.3	70
104	A simple area-based model for predicting airborne LiDAR first returns from stem diameter distributions: an example study in an uneven-aged, mixed temperate forest. Canadian Journal of Forest Research, 2015, 45, 1338-1350.	1.7	14
105	A Comparison of Novel Optical Remote Sensing-Based Technologies for Forest-Cover/Change Monitoring. Remote Sensing, 2015, 7, 2781-2807.	4.0	17
106	Airborne LiDAR Detects Selectively Logged Tropical Forest Even in an Advanced Stage of Recovery. Remote Sensing, 2015, 7, 8348-8367.	4.0	41
107	Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp. Biogeosciences, 2015, 12, 6707-6719.	3.3	14
108	Crown plasticity enables trees to optimize canopy packing in mixedâ€species forests. Functional Ecology, 2015, 29, 1078-1086.	3.6	279

#	Article	IF	CITATIONS
109	Mapping individual trees from airborne multi-sensor imagery. , 2015, , .		2
110	Centuryâ€scale effects of invasive deer and rodents on the dynamics of forests growing on soils of contrasting fertility. Ecological Monographs, 2015, 85, 157-180.	5.4	26
111	Nonparametric Image Registration of Airborne LiDAR, Hyperspectral and Photographic Imagery of Wooded Landscapes. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 6073-6084.	6.3	19
112	The impact of selective logging and clearcutting on forest structure, tree diversity and aboveâ€ground biomass of African tropical forests. Ecological Research, 2015, 30, 119-132.	1.5	122
113	Biodiversity Mapping in a Tropical West African Forest with Airborne Hyperspectral Data. PLoS ONE, 2014, 9, e97910.	2.5	54
114	Stand Structure and Recent Climate Change Constrain Stand Basal Area Change in European Forests: A Comparison Across Boreal, Temperate, and Mediterranean Biomes. Ecosystems, 2014, 17, 1439-1454.	3.4	47
115	Masting, mixtures and modes: are two models better than one?. Oikos, 2014, 123, 1144-1152.	2.7	3
116	Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils. New Phytologist, 2014, 202, 431-441.	7.3	29
117	Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89, 49-58.	11.1	208
118	Wood production response to climate change will depend critically on forest composition and structure. Global Change Biology, 2014, 20, 3632-3645.	9.5	87
119	Rate of tree carbon accumulation increases continuously with tree size. Nature, 2014, 507, 90-93.	27.8	663
120	Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecology Letters, 2014, 17, 1560-1569.	6.4	232
121	Using species distribution models to inform IUCN Red List assessments. Biological Conservation, 2014, 177, 174-184.	4.1	116
122	Applications of airborne lidar for the assessment of animal species diversity. Methods in Ecology and Evolution, 2014, 5, 719-729.	5.2	93
123	Competition for light and water play contrasting roles in driving diversity–productivity relationships in Iberian forests. Journal of Ecology, 2014, 102, 1202-1213.	4.0	174
124	Overstorey and topographic effects on understories: Evidence for linkage from cork oak (Quercus) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
125	Global change and Mediterranean forests: current impacts and potential responses. , 2014, , 47-76.		37

126 Recent changes in tropical forest biomass and dynamics. , 2014, , 77-108.

10

#	Article	IF	CITATIONS
127	Disequilibrium and transient dynamics: disentangling responses to climate change versus broader anthropogenic impacts on temperate forests of eastern North America. , 2014, , 109-128.		5
128	The functional role of biodiversity in the context of global change. , 2014, , 195-238.		67
129	Tree performance across gradients of soil resource availability. , 2014, , 309-340.		2
130	Detecting and projecting changes in forest biomass from plot data. , 2014, , 381-416.		24
131	Analysis of anthropogenic impacts on forest biodiversity as a contribution to empirical theory. , 2014, , 417-446.		7
132	Sustainable management, earthquake disturbances, and transient dynamics: modelling timber harvesting impacts in mixed-species forests. Annals of Forest Science, 2013, 70, 287-298.	2.0	12
133	Soil drainage and phosphorus depletion contribute to retrogressive succession along a New Zealand chronosequence. Plant and Soil, 2013, 367, 77-91.	3.7	56
134	A general combined model to describe treeâ€diameter distributions within subtropical and temperate forest communities. Oikos, 2013, 122, 1636-1642.	2.7	22
135	Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18561-18565.	7.1	523
136	Quantifying variation in forest disturbance, and its effects on aboveground biomass dynamics, across the eastern <scp>U</scp> nited <scp>S</scp> tates. Global Change Biology, 2013, 19, 1504-1517.	9.5	67
137	Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. International Journal of Applied Earth Observation and Geoinformation, 2013, 21, 7-16.	2.8	118
138	Remotely sensed indicators of forest conservation status: Case study from a Natura 2000 site in southern Portugal. Ecological Indicators, 2013, 24, 636-647.	6.3	23
139	A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspectives in Plant Ecology, Evolution and Systematics, 2013, 15, 281-291.	2.7	179
140	Identification of 100 fundamental ecological questions. Journal of Ecology, 2013, 101, 58-67.	4.0	605
141	Latitudinal gradients as natural laboratories to infer species' responses to temperature. Journal of Ecology, 2013, 101, 784-795.	4.0	315
142	Getting the biggest birch for the bang: restoring and expanding upland birchwoods in the Scottish Highlands by managing red deer. Ecology and Evolution, 2013, 3, 1890-1901.	1.9	12
143	The Effects of Sampling Bias and Model Complexity on the Predictive Performance of MaxEnt Species Distribution Models. PLoS ONE, 2013, 8, e55158.	2.5	398
144	Patterns and Drivers of Tree Mortality in Iberian Forests: Climatic Effects Are Modified by Competition. PLoS ONE, 2013, 8, e56843.	2.5	172

#	Article	IF	CITATIONS
145	Response to Comment on "Plant Species Richness and Ecosystem Multifunctionality in Global Drylands― Science, 2012, 337, 155-155.	12.6	8
146	SOIL NUTRIENT SUPPLY AND CHIONOCHLOA GRASSES. Bulletin of the Ecological Society of America, 2012, 93, 229-232.	0.2	0
147	Soil nutrient supply modulates temperatureâ€induction cues in mastâ€seeding grasses. Ecology, 2012, 93, 462-469.	3.2	38
148	Use of an Airborne Lidar System to Model Plant Species Composition and Diversity of Mediterranean Oak Forests. Conservation Biology, 2012, 26, 840-850.	4.7	64
149	Testing the metabolic theory of ecology. Ecology Letters, 2012, 15, 1465-1474.	6.4	155
150	How landscapes change: Integration of spatial patterns and human processes in temperate landscapes of southern Chile. Applied Geography, 2012, 32, 822-831.	3.7	92
151	Impacts of culling and exclusion of browsers on vegetation recovery across New Zealand forests. Biological Conservation, 2012, 153, 64-71.	4.1	46
152	Elegance versus Speed: Examining the Competition between Conifer and Angiosperm Trees. International Journal of Plant Sciences, 2012, 173, 673-694.	1.3	133
153	Comment on "Plant Species Richness and Ecosystem Multifunctionality in Global Drylands― Science, 2012, 337, 155-155.	12.6	26
154	Carbon storage in terrestrial ecosystems: do browsing and grazing herbivores matter?. Biological Reviews, 2012, 87, 72-94.	10.4	152
155	The more stems the merrier: advantages of multiâ€stemmed architecture for the demography of understorey trees in a temperate broadleaf woodland. Journal of Ecology, 2012, 100, 171-183.	4.0	32
156	A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. Journal of Ecology, 2012, 100, 42-64.	4.0	92
157	Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecology Letters, 2012, 15, 831-840.	6.4	284
158	Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Global Ecology and Biogeography, 2012, 21, 1017-1028.	5.8	185
159	Seeing the forest for the deer: Do reductions in deer-disturbance lead to forest recovery?. Biological Conservation, 2011, 144, 376-382.	4.1	93
160	Estimating the wood density of species for carbon stock assessments. Methods in Ecology and Evolution, 2011, 2, 214-220.	5.2	59
161	Long-term tree fern dynamics linked to disturbance and shade tolerance. Journal of Vegetation Science, 2011, 22, 72-84.	2.2	26
162	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002

#	Article	IF	CITATIONS
163	Effects of competition on tree radialâ€growth vary in importance but not in intensity along climatic gradients. Journal of Ecology, 2011, 99, 300-312.	4.0	100
164	Moving on from Metabolic Scaling Theory: hierarchical models of tree growth and asymmetric competition for light. Journal of Ecology, 2011, 99, 748-756.	4.0	82
165	Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. Journal of Ecology, 2011, 99, 954-963.	4.0	221
166	Evolution of the climatic niche in scaly tree ferns (Cyatheaceae, Polypodiopsida). Botanical Journal of the Linnean Society, 2011, 165, 1-19.	1.6	32
167	Influence of foliar traits on forage selection by introduced red deer in New Zealand. Basic and Applied Ecology, 2011, 12, 56-63.	2.7	15
168	Arbuscular mycorrhizal inoculum potential: a mechanism promoting positive diversity–invasibility relationships in mountain beech forests in New Zealand?. Mycorrhiza, 2011, 21, 309-314.	2.8	17
169	Differential responses of vertebrate and invertebrate herbivores to traits of New Zealand subalpine shrubs. Ecology, 2011, 92, 994-999.	3.2	24
170	Disturbance affects short-term facilitation, but not long-term saturation, of exotic plant invasion in New Zealand forest. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1457-1466.	2.6	16
171	Culture and Biodiversity Losses Linked—Response. Science, 2011, 331, 31-31.	12.6	2
172	Size-Specific Tree Mortality Varies with Neighbourhood Crowding and Disturbance in a Montane Nothofagus Forest. PLoS ONE, 2011, 6, e26670.	2.5	63
173	Temperate and Tropical Podocarps: How Ecologically Alike Are They?. Smithsonian Contributions To Botany, 2011, , 119-140.	0.7	28
174	Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species. Oecologia, 2010, 162, 479-489.	2.0	39
175	Interspecific relationships among growth, mortality and xylem traits of woody species from New Zealand. Functional Ecology, 2010, 24, 253-262.	3.6	99
176	What drives retrogressive succession? Plant strategies to tolerate infertile and poorly drained soils. Functional Ecology, 2010, 24, 714-722.	3.6	27
177	Do leaves of plants on phosphorusâ€impoverished soils contain high concentrations of phenolic defence compounds?. Functional Ecology, 2010, 24, 52-61.	3.6	46
178	Assessing the impacts of fragmentation on plant communities in New Zealand: scaling from survey plots to landscapes. Global Ecology and Biogeography, 2010, 19, 741-754.	5.8	31
179	Spatioâ€ŧemporal feeding selection of red deer in a mountainous landscape. Austral Ecology, 2010, 35, 752-764.	1.5	9
180	Trends in entropy production during ecosystem development in the Amazon Basin. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1437-1447.	4.0	44

#	Article	IF	CITATIONS
181	Biodiversity Conservation: Challenges Beyond 2010. Science, 2010, 329, 1298-1303.	12.6	832
182	Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 2010, 97, 207-215.	1.7	355
183	Influences of Forest Structure, Climate and Species Composition on Tree Mortality across the Eastern US. PLoS ONE, 2010, 5, e13212.	2.5	136
184	Response to comment on Coomes et al . â€~Scaling of xylem vessels and veins within the leaves of oak species'. Biology Letters, 2009, 5, 381-382.	2.3	1
185	Landscapeâ€level vegetation recovery from herbivory: progress after four decades of invasive red deer control. Journal of Applied Ecology, 2009, 46, 1064-1072.	4.0	120
186	Sizeâ€dependence of growth and mortality influence the shade tolerance of trees in a lowland temperate rain forest. Journal of Ecology, 2009, 97, 685-695.	4.0	68
187	A greater range of shadeâ€tolerance niches in nutrientâ€rich forests: an explanation for positive richness–productivity relationships?. Journal of Ecology, 2009, 97, 705-717.	4.0	113
188	Testing the Metabolic Scaling Theory of tree growth. Journal of Ecology, 2009, 97, 1369-1373.	4.0	54
189	The benefits of being in a bad neighbourhood: plant community composition influences red deer foraging decisions. Oikos, 2009, 118, 18-24.	2.7	69
190	Global metaâ€analysis of wood decomposition rates: a role for trait variation among tree species?. Ecology Letters, 2009, 12, 45-56.	6.4	394
191	Towards a worldwide wood economics spectrum. Ecology Letters, 2009, 12, 351-366.	6.4	2,219
192	The reliability of palatability estimates obtained from rumen contents analysis and a fieldâ€based index of diet selection. Journal of Zoology, 2009, 278, 243-248.	1.7	13
193	Mapping community change in modified landscapes. Biological Conservation, 2009, 142, 2872-2880.	4.1	21
194	Tree fern trunks facilitate seedling regeneration in a productive lowland temperate rain forest. Oecologia, 2008, 155, 325-335.	2.0	37
195	NEOENDEMISM IN MADAGASCAN SCALY TREE FERNS RESULTS FROM RECENT, COINCIDENT DIVERSIFICATION BURSTS. Evolution; International Journal of Organic Evolution, 2008, 62, 1876-1889.	2.3	88
196	(Russo <i>etÂal.</i> 2007): A reâ€analysis of growth–size scaling relationships of woody plant species. Ecology Letters, 2008, 11, 311-312.	6.4	4
197	Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile. Ecological Modelling, 2008, 212, 439-449.	2.5	138
198	Scaling of xylem vessels and veins within the leaves of oak species. Biology Letters, 2008, 4, 302-306.	2.3	74

#	Article	IF	CITATIONS
199	Monocot Leaves are Eaten Less than Dicot Leaves in Tropical Lowland Rain Forests: Correlations with Toughness and Leaf Presentation. Annals of Botany, 2008, 101, 1379-1389.	2.9	41
200	Scaling of tree vascular transport systems along gradients of nutrient supply and altitude. Biology Letters, 2007, 3, 87-90.	2.3	61
201	Growth–size scaling relationships of woody plant species differ from predictions of the Metabolic Ecology Model. Ecology Letters, 2007, 10, 889-901.	6.4	58
202	Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Global Ecology and Biogeography, 2007, 16, 426-439.	5.8	186
203	Mortality and tree-size distributions in natural mixed-age forests. Journal of Ecology, 2007, 95, 27-40.	4.0	233
204	How spatial structure alters population and community dynamics in a natural plant community. Journal of Ecology, 2007, 95, 79-89.	4.0	54
205	Resistance and resilience of New Zealand tree species to browsing. Journal of Ecology, 2007, 95, 1014-1026.	4.0	47
206	Effects of size, competition and altitude on tree growth. Journal of Ecology, 2007, 95, 1084-1097.	4.0	341
207	Rapid deforestation and fragmentation of Chilean Temperate Forests. Biological Conservation, 2006, 130, 481-494.	4.1	454
208	Challenges to the generality of WBE theory. Trends in Ecology and Evolution, 2006, 21, 593-596.	8.7	65
209	Herbivory and plant competition reduce mountain beech seedling growth and establishment in New Zealand. Plant Ecology, 2006, 183, 245-256.	1.6	24
210	Pair-wise competition-trials amongst seedlings of ten dipterocarp species; the role of initial height, growth rate and leaf attributes. Journal of Tropical Ecology, 2005, 21, 317-328.	1.1	8
211	The hare, the tortoise and the crocodile: the ecology of angiosperm dominance, conifer persistence and fern filtering. Journal of Ecology, 2005, 93, 918-935.	4.0	182
212	N and P in New Zealand Soil Chronosequences and Relationships with Foliar N and P. Biogeochemistry, 2005, 75, 305-328.	3.5	113
213	Response to Comment on "A Brief History of Seed Size". Science, 2005, 310, 783.2-783.	12.6	19
214	Seed mass and the competition/colonization trade-off: competitive interactions and spatial patterns in a guild of annual plants. Journal of Ecology, 2004, 92, 97-109.	4.0	153
215	Factors Preventing the Recovery of New Zealand Forests Following Control of Invasive Deer. Conservation Biology, 2003, 17, 450-459.	4.7	137
216	Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecology Letters, 2003, 6, 980-989.	6.4	173

#	Article	IF	CITATIONS
217	Colonization, tolerance, competition and seed-size variation within functional groups. Trends in Ecology and Evolution, 2003, 18, 283-291.	8.7	297
218	Long-term influences of introduced deer on the composition and structure of New Zealand Nothofagus forests. Forest Ecology and Management, 2003, 181, 99-117.	3.2	92
219	Long-Term Effects of Wildfire on Ecosystem Properties Across an Island Area Gradient. Science, 2003, 300, 972-975.	12.6	283
220	Are differences in seed mass among species important in structuring plant communities? Evidence from analyses of spatial and temporal variation in dune-annual populations. Oikos, 2002, 96, 421-432.	2.7	38
221	Designing systems to monitor carbon stocks in forests and shrublands. Forest Ecology and Management, 2002, 164, 89-108.	3.2	155
222	Title is missing!. Plant Ecology, 2002, 163, 23-38.	1.6	27
223	IMPACTS OF ROOT COMPETITION IN FORESTS AND WOODLANDS: A THEORETICAL FRAMEWORK AND REVIEW OF EXPERIMENTS. Ecological Monographs, 2000, 70, 171-207.	5.4	548
224	Impacts of Root Competition in Forests and Woodlands: A Theoretical Framework and Review of Experiments. Ecological Monographs, 2000, 70, 171.	5.4	15
225	IDENTIFYING AGGREGATION AND ASSOCIATION IN FULLY MAPPED SPATIAL DATA. Ecology, 1999, 80, 554-565.	3.2	59
226	RESPONSES OF JUVENILE TREES TO ABOVE- AND BELOWGROUND COMPETITION IN NUTRIENT-STARVED AMAZONIAN RAIN FOREST. Ecology, 1998, 79, 768-782.	3.2	87
227	Responses of Juvenile Trees to above- and Belowground Competition in Nutrient-Starved Amazonian Rain Forest. Ecology, 1998, 79, 768.	3.2	1
228	Seed mass and nutrient content in nutrient-starved tropical rainforest in Venezuela. Seed Science Research, 1997, 7, 269-280.	1.7	57
229	Amazonian caatinga and related communities at La Esmeralda, Venezuela: forest structure, physiognomy and floristics, and control by soil factors. Plant Ecology, 1996, 122, 167-191.	1.2	82
230	Forests and global change: an overview. , 0, , 1-18.		1
231	Floristic shifts versus critical transitions in Amazonian forest systems. , 0, , 131-160.		4