
Megan E Mcnerney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6348262/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic studies controvert the existence of the CUX1 p75 isoform. Scientific Reports, 2022, 12, 151.	3.3	1
2	CRISPR screening in human hematopoietic stem and progenitor cells reveals an enrichment for tumor suppressor genes within chromosome 7 commonly deleted regions. Leukemia, 2022, 36, 1421-1425.	7.2	3
3	The significance of CUX1 and chromosome 7 in myeloid malignancies. Current Opinion in Hematology, 2022, 29, 92-102.	2.5	6
4	Loss of a 7q gene, <i>CUX1</i> , disrupts epigenetically driven DNA repair and drives therapy-related myeloid neoplasms. Blood, 2021, 138, 790-805.	1.4	13
5	Venetoclax imparts distinct cell death sensitivity and adaptivity patterns in T cells. Cell Death and Disease, 2021, 12, 1005.	6.3	8
6	CUX1 Deficiency Potentiates RAS Signaling to Drive Malignancy. Blood, 2021, 138, 1159-1159.	1.4	0
7	Cytotoxic Therapy–Induced Effects on Both Hematopoietic and Marrow Stromal Cells Promotes Therapy-Related Myeloid Neoplasms. Blood Cancer Discovery, 2020, 1, 32-47.	5.0	16
8	A phase 1 study of azacitidine with high-dose cytarabine and mitoxantrone in high-risk acute myeloid leukemia. Blood Advances, 2020, 4, 599-606.	5.2	9
9	Deficiency of CUX1, Encoded on 7q, Blocks the Normal HSC DNA Damage Response and Drives Highly Penetrant Therapy-Related Myeloid Neoplasms in Mice. Blood, 2019, 134, 641-641.	1.4	5
10	System for Informatics in the Molecular Pathology Laboratory. Journal of Molecular Diagnostics, 2018, 20, 522-532.	2.8	8
11	Gene dosage effect of CUX1 in a murine model disrupts HSC homeostasis and controls the severity and mortality of MDS. Blood, 2018, 131, 2682-2697.	1.4	36
12	The Harmful Consequences of Increased Fitness in Hematopoietic Stem Cells. Cell Stem Cell, 2018, 23, 634-635.	11.1	4
13	The haploinsufficient tumor suppressor, CUX1, acts as an analog transcriptional regulator that controls target genes through distal enhancers that loop to target promoters. Nucleic Acids Research, 2017, 45, 6350-6361.	14.5	21
14	Therapy-related myeloid neoplasms: when genetics and environment collide. Nature Reviews Cancer, 2017, 17, 513-527.	28.4	270
15	Clinical Validation of a Next-Generation Sequencing Genomic Oncology Panel via Cross-Platform Benchmarking against Established Amplicon Sequencing Assays. Journal of Molecular Diagnostics, 2017, 19, 43-56.	2.8	105
16	Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression. PLoS Genetics, 2017, 13, e1006589.	3.5	53
17	Deficiency of <i>Cux1</i> , Encoded on Human Chromosome 7q, Causes Aberrant Hematopoietic Stem Cell Function and Spontaneous Myeloproliferative Disease in Mice. Blood, 2017, 130, 789-789.	1.4	10
18	Retroviral insertional mutagenesis identifies the del(5q) genes, CXXC5, TIFAB and ETF1, as well as the Wnt pathway, as potential targets in del(5q) myeloid neoplasms. Haematologica, 2016, 101, e232-e236.	3.5	13

MEGAN E MCNERNEY

#	Article	IF	CITATIONS
19	Enhancer-Promoter Looping Deciphers Dosage of the Haploinsufficient Transcription Factor, CUX1. Blood, 2016, 128, 2700-2700.	1.4	0
20	Cooperative loss of RAS feedback regulation drives myeloid leukemogenesis. Nature Genetics, 2015, 47, 539-543.	21.4	39
21	Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 969-975.	4.4	66
22	The spectrum of somatic mutations in highâ€risk acute myeloid leukaemia with â€7/del(7q). British Journal of Haematology, 2014, 166, 550-556.	2.5	29
23	Widespread genetic epistasis among cancer genes. Nature Communications, 2014, 5, 4828.	12.8	63
24	Dominant Role of Oncogene Dosage and Absence of Tumor Suppressor Activity in <i>Nras-</i> Driven Hematopoietic Transformation. Cancer Discovery, 2013, 3, 993-1001.	9.4	60
25	CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. Blood, 2013, 121, 975-983.	1.4	130
26	Retroviral Insertional Mutagenesis In Egr1+/- mice, Haploinsufficient For a Human Del(5q) Myeloid Leukemia Gene, Develop Myeloid Neoplasms With Proviral Insertions In Genes Syntenic To Human 5q. Blood, 2013, 122, 1275-1275.	1.4	0
27	An Integrated Genomic Approach to the Assessment and Treatment of Acute Myeloid Leukemia. Seminars in Oncology, 2011, 38, 215-224.	2.2	21
28	Next-Generation Sequencing Analysis of 23 Therapy-Related Acute Myeloid Leukemia Transcriptomes. Blood, 2010, 116, 850-850.	1.4	2
29	Development of warm auto- and allo-antibodies in a 3-year old boy with sickle cell haemoglobinopathy following his first transfusion of a single unit of red blood cells. Blood Transfusion, 2010, 8, 126-8.	0.4	7
30	Natural killer cell subsets in allograft rejection and tolerance. Current Opinion in Organ Transplantation, 2007, 12, 10-16.	1.6	0
31	Requirement of homotypic NK-cell interactions through 2B4(CD244)/CD48 in the generation of NK effector functions. Blood, 2006, 107, 3181-3188.	1.4	78
32	2B4 (CD244)-CD48 interactions provide a novel MHC class I-independent system for NK-cell self-tolerance in mice. Blood, 2005, 106, 1337-1340.	1.4	50
33	A new self: MHC-class-I-independent Natural-killer-cell self-tolerance. Nature Reviews Immunology, 2005, 5, 363-374.	22.7	156
34	Targeted Disruption of the <i>2B4</i> Gene in Mice Reveals an In Vivo Role of 2B4 (CD244) in the Rejection of B16 Melanoma Cells. Journal of Immunology, 2005, 174, 800-807.	0.8	88
35	2B4 (CD244) is a non-MHC binding receptor with multiple functions on natural killer cells and CD8+ T cells. Molecular Immunology, 2005, 42, 489-494.	2.2	90
36	2B4 Acts As a Non–Major Histocompatibility Complex Binding Inhibitory Receptor on Mouse Natural Killer Cells. Journal of Experimental Medicine, 2004, 199, 1245-1254.	8.5	179

#	Article	IF	CITATIONS
37	Regulatory Defects in Cbl and Mitogen-Activated Protein Kinase (Extracellular Signal-Related Kinase) Pathways Cause Persistent Hyperexpression of CD40 Ligand in Human Lupus T Cells. Journal of Immunology, 2000, 165, 6627-6634.	0.8	90