Pawan Sinha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6347963/publications.pdf Version: 2024-02-01

ΔΑΥΜΑΝ SINHA

#	Article	IF	CITATIONS
1	Prenatal auditory experience and its sequelae. Developmental Science, 2023, 26, e13278.	2.4	2
2	Vulnerability of facial attractiveness perception to early and multiâ€year visual deprivation. Developmental Science, 2022, , .	2.4	0
3	Development of Visual Memory Capacity Following Early-Onset and Extended Blindness. Psychological Science, 2022, 33, 847-858.	3.3	1
4	Visual perspective taking is not automatic in a simplified Dot task: Evidence from newly sighted children, primary school children and adults. Neuropsychologia, 2022, 172, 108256.	1.6	1
5	Human (but not animal) motion can be recognized at first sight – After treatment for congenital blindness. Neuropsychologia, 2022, 174, 108307.	1.6	3
6	Head turning is an effective cue for gaze following: Evidence from newly sighted individuals, school children and adults. Neuropsychologia, 2022, , 108330.	1.6	1
7	Reduced Sensory Habituation in Autism and Its Correlation with Behavioral Measures. Journal of Autism and Developmental Disorders, 2021, 51, 3153-3164.	2.7	28
8	Autonomic and Electrophysiological Evidence for Reduced Auditory Habituation in Autism. Journal of Autism and Developmental Disorders, 2021, 51, 2218-2228.	2.7	11
9	Prediction in Autism Spectrum Disorder: A Systematic Review of Empirical Evidence. Autism Research, 2021, 14, 604-630.	3.8	64
10	Impact of Temporal Visual Flicker on Spatial Contrast Sensitivity in Myopia. Frontiers in Neuroscience, 2021, 15, 710344.	2.8	1
11	Influence of visual feedback persistence on visuo-motor skill improvement. Scientific Reports, 2021, 11, 17347.	3.3	4
12	Resilience of temporal processing to early and extended visual deprivation. Vision Research, 2021, 186, 80-86.	1.4	7
13	Drawing from the Mind's Eye: The Development of Drawing in Sight-Restored Children Journal of Vision, 2021, 21, 2842.	0.3	0
14	Mechanisms underlying simultaneous brightness contrast: Early and innate. Vision Research, 2020, 173, 41-49.	1.4	15
15	Response to Katzhendler and Weinshall: Initial visual degradation during development may be adaptive. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18767-18768.	7.1	1
16	White-Matter Plasticity Following Sight-Restoration in Congenitally Blind Patients. Journal of Vision, 2019, 19, 277d.	0.3	1
17	Temporal consequences of spatial acuity reduction. Journal of Vision, 2019, 19, 206c.	0.3	0
18	Characterizing Global Motion Perception Following Treatment for Bilateral Congenital Cataracts. Journal of Vision, 2019, 19, 285c.	0.3	1

#	Article	IF	CITATIONS
19	Development of facial expression recognition following extended blindness: The importance of motion. Journal of Vision, 2019, 19, 21a.	0.3	3
20	How the Brain Learns to See Biological Motion After Recovering from Visual Deprivation. Journal of Vision, 2019, 19, 191a.	0.3	0
21	Recognizing Facial Slivers. Journal of Cognitive Neuroscience, 2018, 30, 951-962.	2.3	14
22	Potential downside of high initial visual acuity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11333-11338.	7.1	77
23	Why Does the Cortex Reorganize after Sensory Loss?. Trends in Cognitive Sciences, 2018, 22, 569-582.	7.8	51
24	Emergence of categorical face perception after extended early-onset blindness. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6139-6143.	7.1	31
25	Pawan Sinha. Current Biology, 2017, 27, R329-R331.	3.9	Ο
26	Enhancing research with Plenary Labs. Science and Public Policy, 2017, 44, 434-439.	2.4	0
27	Neural Correlates of Dynamic Face Perception. Journal of Vision, 2017, 17, 266.	0.3	Ο
28	How does poor initial acuity impact visual development? A computational investigation. Journal of Vision, 2017, 17, 1105.	0.3	0
29	NeuroScience and Service. Neuron, 2016, 92, 647-652.	8.1	6
30	Neural correlates of the food/non-food visual distinction. Biological Psychology, 2016, 115, 35-42.	2.2	18
31	Reduced Habituation to Naturalistic Stimuli in Autism. Journal of Vision, 2016, 16, 478.	0.3	2
32	A possible account of impairments in configural face processing following early visual deprivation. Journal of Vision, 2016, 16, 1120.	0.3	0
33	Top-Down Knowledge Improves Recognition of Noisy Haptic Patterns in the Blind and Sighted. Journal of Vision, 2016, 16, 144.	0.3	Ο
34	Immediate susceptibility to visual illusions after sight onset. Current Biology, 2015, 25, R358-R359.	3.9	45
35	Motion sequence analysis in the presence of figural cues. Neurocomputing, 2015, 147, 485-491.	5.9	1
36	Neural Correlates of Letter Reversal in Children and Adults. PLoS ONE, 2014, 9, e98386.	2.5	30

#	Article	IF	CITATIONS
37	Results of late surgical intervention in children with early-onset bilateral cataracts. British Journal of Ophthalmology, 2014, 98, 1424-1428.	3.9	41
38	Development of pattern vision following early and extended blindness. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2035-2039.	7.1	84
39	Improvement in Spatial Imagery Following Sight Onset Late in Childhood. Psychological Science, 2014, 25, 693-701.	3.3	19
40	Perception of Tactile Graphics: Embossings Versus Cutouts. Multisensory Research, 2014, 27, 111-125.	1.1	13
41	Autism as a disorder of prediction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15220-15225.	7.1	396
42	Once Blind and Now They See. Scientific American, 2013, 309, 48-55.	1.0	21
43	Restoring Vision through "Project Prakash― The Opportunities for Merging Science and Service. PLoS Biology, 2013, 11, e1001741.	5.6	15
44	Lateralization of face processing in the human brain. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2052-2061.	2.6	136
45	EEG responses to facial contrast-chimeras. Journal of Integrative Neuroscience, 2012, 11, 201-211.	1.7	6
46	Imaging prior information in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7935-7940.	7.1	37
47	Recognizing Degraded Faces: The Contribution of Configural and Featural Cues. Perception, 2012, 41, 1497-1511.	1.2	39
48	Superimposed Hemifields in Primary Visual Cortex of Achiasmic Individuals. Neuron, 2012, 75, 353-355.	8.1	10
49	Sight restoration. F1000 Medicine Reports, 2012, 4, 17.	2.9	19
50	The newly sighted fail to match seen with felt. Nature Neuroscience, 2011, 14, 551-553.	14.8	188
51	A Perceptually Based Comparison of Image Similarity Metrics. Perception, 2011, 40, 1269-1281.	1.2	27
52	EEG correlates of categorical and graded face perception. Neuropsychologia, 2011, 49, 3847-3853.	1.6	23
53	Face Recognition by Computers and Humans. Computer, 2010, 43, 46-55.	1.1	80
54	Analyzing Dynamic Faces: Key Computational Challenges. , 2010, , 177-186.		1

4

#	Article	IF	CITATIONS
55	Visual Parsing After Recovery From Blindness. Psychological Science, 2009, 20, 1484-1491.	3.3	105
56	Learned prediction affects body perception. Visual Cognition, 2009, 17, 679-699.	1.6	2
57	Role of ordinal contrast relationships in face encoding. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5353-5358.	7.1	68
58	The role of sequence order in determining view canonicality for novel wire-frame objects. Attention, Perception, and Psychophysics, 2009, 71, 712-723.	1.3	4
59	Biederman and Cooper's 1991 Paper. Perception, 2009, 38, 809-825.	1.2	17
60	Challenges in object recognition: selectivity vs invariance. Perception, 2009, 38, 820-1; discussion 824-5.	1.2	0
61	Portraits and perception: configural information in creating and recognizing face images. Spatial Vision, 2008, 21, 119-135.	1.4	1
62	Observinga Object Motion Induces Increased Generalization and Sensitivity. Perception, 2008, 37, 1160-1174.	1.2	15
63	Real-World Face Recognition: The Importance of Surface Reflectance Properties. Perception, 2007, 36, 1368-1374.	1.2	66
64	"Filling-in―colour in natural scenes. Visual Cognition, 2007, 15, 765-778.	1.6	18
65	The utility of surface reflectance for the recognition of upright and inverted faces. Vision Research, 2007, 47, 157-165.	1.4	89
66	Visual object concept discovery: Observations in congenitally blind children, and a computational approach. Neurocomputing, 2007, 70, 2218-2233.	5.9	16
67	Face Recognition by Humans: Nineteen Results All Computer Vision Researchers Should Know About. Proceedings of the IEEE, 2006, 94, 1948-1962.	21.3	509
68	ls Pigmentation Important for Face Recognition? Evidence from Contrast Negation. Perception, 2006, 35, 749-759.	1.2	129
69	Receptive Field Structures for Recognition. Neural Computation, 2006, 18, 497-520.	2.2	7
70	Vision Following Extended Congenital Blindness. Psychological Science, 2006, 17, 1009-1014.	3.3	141
71	Receptive Field Structures for Recognition. Neural Computation, 2006, 18, 497-520.	2.2	7
72	Perceiving Illumination Inconsistencies in Scenes. Perception, 2005, 34, 1301-1314.	1.2	113

#	Article	IF	CITATIONS
73	Contextually Evoked Object-Specific Responses in Human Visual Cortex. Science, 2004, 304, 115-117.	12.6	156
74	Object recognition and Random Image Structure Evolution. Cognitive Science, 2004, 28, 259-287.	1.7	62
75	The Role of Eyebrows in Face Recognition. Perception, 2003, 32, 285-293.	1.2	282
76	Use of 2D Similarity Metrics for 3D Object Recognition. IETE Journal of Research, 2003, 49, 113-125.	2.6	0
77	Contribution of Color to Face Recognition. Perception, 2002, 31, 995-1003.	1.2	167
78	Effects of early experience on children's recognition of facial displays of emotion Developmental Psychology, 2002, 38, 784-791.	1.6	239
79	Role of motion integration in contour perception. Vision Research, 2001, 41, 705-710.	1.4	6
80	Last but Not Least. Perception, 2000, 29, 1005-1008.	1.2	47
81	Top-down influences on stereoscopic depth-perception. Nature Neuroscience, 1998, 1, 254-257.	14.8	156
82	Doggone Dalmatian!. Perception, 1997, 26, 667-667.	1.2	0
83	Top–down learning of low-level vision tasks. Current Biology, 1997, 7, 991-994.	3.9	35
84	The Coherence of Subjective Gratings. Vision Research, 1996, 36, 3661-3665.	1.4	0
85	Role of learning in three-dimensional form perception. Nature, 1996, 384, 460-463.	27.8	170