Hao Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/634733/publications.pdf

Version: 2024-02-01

257450 1,998 36 24 citations h-index papers

g-index 37 37 37 2847 docs citations times ranked citing authors all docs

377865

34

#	Article	IF	CITATIONS
1	A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis. Advanced Materials, 2017, 29, 1702243.	21.0	303
2	Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nature Communications, 2018, 9, 4433.	12.8	209
3	Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents. Biomaterials, 2014, 35, 7679-7689.	11.4	183
4	Construction of Degradable Multilayer Films for Enhanced Antibacterial Properties. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4136-4143.	8.0	117
5	Osmosisâ€Powered Hydrogel Microneedles for Microliters of Skin Interstitial Fluid Extraction within Minutes. Advanced Healthcare Materials, 2020, 9, e1901683.	7.6	111
6	Polydopamine Nanocoating for Effective Photothermal Killing of Bacteria and Fungus upon Nearâ€Infrared Irradiation. Advanced Materials Interfaces, 2016, 3, 1600767.	3.7	99
7	Cryomicroneedles for transdermal cell delivery. Nature Biomedical Engineering, 2021, 5, 1008-1018.	22.5	97
8	Surface Enhanced Raman Spectroscopy Based Biosensor with a Microneedle Array for Minimally Invasive <i>In Vivo</i> Glucose Measurements. ACS Sensors, 2020, 5, 1777-1785.	7.8	69
9	Direct Adhesion of Endothelial Cells to Bioinspired Poly(dopamine) Coating Through Endogenous Fibronectin and Integrin $\hat{1}$ < sub>5 $\hat{1}$. Macromolecular Bioscience, 2013, 13, 483-493.	4.1	67
10	Effect of Polyelectrolyte Film Stiffness on Endothelial Cells During Endothelial-to-Mesenchymal Transition. Biomacromolecules, 2015, 16, 3584-3593.	5.4	57
11	Upconversion Nanoparticle Powered Microneedle Patches for Transdermal Delivery of siRNA. Advanced Healthcare Materials, 2020, 9, e1900635.	7.6	57
12	Layer-by-layer assembly as a robust method to construct extracellular matrix mimic surfaces to modulate cell behavior. Progress in Polymer Science, 2019, 92, 1-34.	24.7	54
13	Facile fabrication of robust superhydrophobic multilayered film based on bioinspired poly(dopamine)-modified carbon nanotubes. Physical Chemistry Chemical Physics, 2014, 16, 2936.	2.8	51
14	Surface-mediated functional gene delivery: An effective strategy for enhancing competitiveness of endothelial cells over smooth muscle cells. Biomaterials, 2013, 34, 3345-3354.	11.4	47
15	Advances in the Formulations of Microneedles for Manifold Biomedical Applications. Advanced Materials Technologies, 2020, 5, 1900552.	5.8	47
16	Surface-mediated transfection of a pDNA vector encoding short hairpin RNA to downregulate TGF- \hat{l}^21 expression for the prevention of in-stent restenosis. Biomaterials, 2017, 116, 95-105.	11.4	40
17	Improved Endothelial Function of Endothelial Cell Monolayer on the Soft Polyelectrolyte Multilayer Film with Matrix-Bound Vascular Endothelial Growth Factor. ACS Applied Materials & amp; Interfaces, 2016, 8, 14357-14366.	8.0	38
18	Substrate Stiffness Combined with Hepatocyte Growth Factor Modulates Endothelial Cell Behavior. Biomacromolecules, 2016, 17, 2767-2776.	5.4	36

#	Article	IF	CITATIONS
19	Surface modulation of complex stiffness via layer-by-layer assembly as a facile strategy for selective cell adhesion. Biomaterials Science, 2015, 3, 352-360.	5.4	34
20	Dynamic stiffness of polyelectrolyte multilayer films based on disulfide bonds for in situ control of cell adhesion. Journal of Materials Chemistry B, 2015, 3, 7546-7553.	5.8	31
21	Mechanical Adaptability of the MMPâ€Responsive Film Improves the Functionality of Endothelial Cell Monolayer. Advanced Healthcare Materials, 2017, 6, 1601410.	7.6	29
22	Stiffness of polyelectrolyte multilayer film influences endothelial function of endothelial cell monolayer. Colloids and Surfaces B: Biointerfaces, 2017, 149, 379-387.	5.0	26
23	A selfâ€adhesive microneedle patch with drug loading capability through swelling effect. Bioengineering and Translational Medicine, 2020, 5, e10157.	7.1	26
24	Dynamic spongy films to immobilize hydrophobic antimicrobial peptides for self-healing bactericidal coating. Journal of Materials Chemistry B, 2016, 4, 6358-6365.	5.8	24
25	Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20340-20347.	8.0	24
26	Temporal pressure enhanced topical drug delivery through micropore formation. Science Advances, 2020, 6, eaaz6919.	10.3	21
27	Cucurbit[8]uril Supramolecular Assembly for Positively Charged Ultrathin Films as Nanocontainers. Langmuir, 2013, 29, 14101-14107.	3.5	20
28	In Situ Generation of Zinc Oxide Nanobushes on Microneedles as Antibacterial Coating. SLAS Technology, 2019, 24, 181-187.	1.9	19
29	The (PrS/HGFâ€pDNA) multilayer films for geneâ€eluting stent coating: Geneâ€protecting, anticoagulation, antibacterial properties, and <i>in vivo</i> antirestenosis evaluation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 430-439.	3.4	16
30	Improved Antithrombotic Function of Oriented Endothelial Cell Monolayer on Microgrooves. ACS Biomaterials Science and Engineering, 2018, 4, 1976-1985.	5.2	16
31	Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells. Colloids and Surfaces B: Biointerfaces, 2016, 147, 172-179.	5.0	15
32	Oligonucleotide Molecular Sprinkler for Intracellular Detection and Spontaneous Regulation of mRNA for Theranostics of Scar Fibroblasts. Small, 2018, 14, e1802546.	10.0	8
33	Nanostructured Multilayer Films Assembled from Poly(dopamine)â€Coated Carbon Nanotubes for Controlling Cell Behavior. ChemNanoMat, 2017, 3, 319-327.	2.8	4
34	Detection of Bacteria in Water with \hat{l}^2 -Galactosidase-Coated Magnetic Nanoparticles. SLAS Technology, 2018, 23, 624-630.	1.9	3
35	Endothelial Cells: Mechanical Adaptability of the MMPâ€Responsive Film Improves the Functionality of Endothelial Cell Monolayer (Adv. Healthcare Mater. 14/2017). Advanced Healthcare Materials, 2017, 6, .	7.6	0
36	CONSTRUCTION OF CYCLODEXTRIN-MODIFIED POLYPLEXES & ht; l> via&ht ll> HOST-GUEST ASSEMBLY. Acta Polymerica Sinica, 2013, 012, 1429-1433.	0.0	0