Hyacinthe Randriamahazaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6346561/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seamlessly Conductive 3D Nanoarchitecture of Core–Shell Niâ€Co Nanowire Network for Highly Efficient Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1601492.	19.5	260
2	Highly Stable Air Working Bimorph Actuator Based on a Graphene Nanosheet/Carbon Nanotube Hybrid Electrode. Advanced Materials, 2012, 24, 4317-4321.	21.0	125
3	Giant Plasmon Resonance Shift Using Poly(3,4-ethylenedioxythiophene) Electrochemical Switching. Journal of the American Chemical Society, 2010, 132, 10224-10226.	13.7	101
4	Chemical capacitance of nanoporous-nanocrystalline TiO2in a room temperature ionic liquid. Physical Chemistry Chemical Physics, 2006, 8, 1827-1833.	2.8	99
5	Synthesis and characterization of conducting interpenetrating polymer networks for new actuators. Polymer, 2005, 46, 7771-7778.	3.8	84
6	Grafting Oligothiophenes on Surfaces by Diazonium Electroreduction: A Step toward Ultrathin Junction with Well-Defined Metal/Oligomer Interface. Journal of the American Chemical Society, 2009, 131, 14920-14927.	13.7	76
7	Nernstian-Potential-Driven Redox-Targeting Reactions of Battery Materials. CheM, 2017, 3, 1036-1049.	11.7	73
8	Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry. Electrochimica Acta, 2005, 51, 627-640.	5.2	68
9	Electrografting Polyaniline on Carbon through the Electroreduction of Diazonium Salts and the Electrochemical Polymerization of Aniline. Journal of Physical Chemistry C, 2008, 112, 16103-16109.	3.1	65
10	lonic Liquid Viscosity Effects on the Functionalization of Electrode Material through the Electroreduction of Diazonium. Langmuir, 2010, 26, 18542-18549.	3.5	62
11	Electromechanical Analysis by Means of Complex Capacitance of Bucky-Gel Actuators Based on Single-Walled Carbon Nanotubes and an Ionic Liquid. Journal of Physical Chemistry C, 2010, 114, 17982-17988.	3.1	52
12	Electrochemical Impedance Spectroscopy and Electromechanical Behavior of Bucky-Gel Actuators Containing Ionic Liquids. Journal of Physical Chemistry C, 2010, 114, 14627-14634.	3.1	48
13	Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid). ACS Applied Materials & Interfaces, 2016, 8, 28316-28324.	8.0	48
14	Modification of carbon electrode in ionic liquid through the reduction of phenyl diazonium salt. Electrochemical evidence in ionic liquid. Electrochemistry Communications, 2008, 10, 1060-1063.	4.7	47
15	Electrochemical Switches Based on Ultrathin Organic Films: From Diode-like Behavior to Charge Transfer Transparency. Journal of Physical Chemistry C, 2008, 112, 18638-18643.	3.1	46
16	Electrografting and Controlled Surface Functionalization of Carbon Based Surfaces for Electroanalysis. Electroanalysis, 2016, 28, 13-26.	2.9	45
17	Electrosynthesis of well-organized nanoporous poly(3,4-ethylenedioxythiophene) by nanosphere lithography. Electrochemistry Communications, 2010, 12, 872-875.	4.7	39
18	Electrochemical oxidation of primary amine in ionic liquid media: Formation of organic layer attached to electrode surface. Electrochemistry Communications, 2010, 12, 246-249.	4.7	36

#	Article	IF	CITATIONS
19	Hostâ^'Guest Complexation: A Convenient Route for the Electroreduction of Diazonium Salts in Aqueous Media and the Formation of Composite Materials. Journal of the American Chemical Society, 2010, 132, 1690-1698.	13.7	36
20	Formation of negative oxidation states of platinum and gold in redox ionic liquid: Electrochemical evidence. Electrochemistry Communications, 2008, 10, 1205-1209.	4.7	27
21	Multifunctional Indium Tin Oxide Electrode Generated by Unusual Surface Modification. Scientific Reports, 2016, 6, 36708.	3.3	25
22	Microelectrodes modification through the reduction of aryl diazonium and their use in scanning electrochemical microscopy (SECM). Electrochemistry Communications, 2009, 11, 647-650.	4.7	22
23	Recent Advances in the Development of Organic and Organometallic Redox Shuttles for Lithiumâ€ion Redox Flow Batteries. ChemSusChem, 2020, 13, 2142-2159.	6.8	22
24	Medium Effects on the Nucleation and Growth Mechanisms during the Redox Switching Dynamics of Conducting Polymers: Case of Poly(3,4-ethylenedioxythiophene). Journal of Physical Chemistry B, 2011, 115, 205-216.	2.6	17
25	Electron Storage System Based on a Two-Way Inversion of Redox Potentials. Journal of the American Chemical Society, 2020, 142, 5162-5176.	13.7	17
26	Long-Life Air Working Semi-IPN/Ionic Liquid: New Precursor of Artificial Muscles. Molecular Crystals and Liquid Crystals, 2006, 448, 95/[697]-102/[704].	0.9	15
27	Master curve for analyzing the electrochemical ageing and memory effects of poly(3,4-ethylenedioxythiophene). Smart Materials and Structures, 2011, 20, 124010.	3.5	15
28	Electrochemical Fabrication of Highly Stable Redox-Active Nanojunctions. Analytical Chemistry, 2011, 83, 9709-9714.	6.5	14
29	Highly Conductive, Capacitive, Flexible and Soft Electrodes Based on a 3D Graphene–Nanotube–Palladium Hybrid and Conducting Polymer. Small, 2014, 10, 5023-5029.	10.0	12
30	Surface Initiated Immobilization of Molecules Contained in an Ionic Liquid Framework. Analytical Chemistry, 2016, 88, 1017-1021.	6.5	12
31	Redox monomer ionic liquid based on quaternary ammonium: From electrochemistry to polymer brushes. Electrochemistry Communications, 2017, 82, 25-29.	4.7	12
32	Electrochemical investigation of thin PEDOT film above an insulating substrate using scanning electrochemical microscopy. Electrochemistry Communications, 2009, 11, 2304-2307.	4.7	10
33	Potential- and surface-dependent behaviour of thrombin adsorbed on carbon electrodes. Analytica Chimica Acta, 1992, 257, 247-256.	5.4	8
34	Surface functionalization of ferrocene based ionic liquid onto carbon surface using stepwise grafting. Journal of Electroanalytical Chemistry, 2014, 713, 28-31.	3.8	8
35	Surface functionalization with redox active molecule-based imidazolium via click chemistry. Electrochemistry Communications, 2016, 70, 13-17.	4.7	8
36	Platinum/poly(N-ferrocenylmethyl-N-allylimidazolium bromide) quasi-reference electrode for electrochemistry in non-aqueous and ionic liquid solutions. Electrochemistry Communications, 2016, 73. 5-9.	4.7	6

#	Article	IF	CITATIONS
37	Effect of surface activation on charge and mass transfer rates of the hexacyanoferrate(III)/(II) redox probe at fibrinogen-modified carbon paste electrodes. Analytica Chimica Acta, 1997, 340, 99-108.	5.4	5
38	Electrochemical generation of stable copper nanowires with quantized conductance in DNA media. Electrochemistry Communications, 2011, 13, 272-274.	4.7	5
39	Local electrochemical reactivity of single layer graphene deposited on flexible and transparent plastic film using scanning electrochemical microscopy. Carbon, 2018, 130, 566-573.	10.3	5
40	Electrochemistry of bi-redox ionic liquid from solution to bi-functional carbon surface. Electrochimica Acta, 2020, 354, 136689.	5.2	5
41	Electrochemical activation of human factor XII (Hageman factor) immobilized on carbon electrodes. Analytica Chimica Acta, 1993, 283, 719-726.	5.4	4
42	Electrochemical synthesis and the functionalization of few layer graphene in ionic liquid and redox ionic liquid. Science China Chemistry, 2018, 61, 598-603.	8.2	4
43	Formation of Metallic Nanowires via Electrochemistry in Aqueous Surfactant Media. Journal of Physical Chemistry C, 2011, 115, 549-553.	3.1	3
44	Towards Understanding the Solventâ€Dynamic Control of the Transport and Heterogeneous Electronâ€Transfer Processes in Ionic Liquids. ChemPhysChem, 2017, 18, 415-426.	2.1	3
45	Electrochemistry of electromechanical actuators based on carbon nanotubes and ionic liquids. , 2013,		2
46	Electroactuators: from understanding to micro-robotics and energy conversion: general discussion. Faraday Discussions, 2017, 199, 525-545.	3.2	2