
Xiaming Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6346517/publications.pdf Version: 2024-02-01

XIAMING FENC

#	Article	IF	CITATIONS
1	Melamine-containing polyphosphazene wrapped ammonium polyphosphate: A novel multifunctional organic-inorganic hybrid flame retardant. Journal of Hazardous Materials, 2018, 344, 839-848.	12.4	262
2	Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. Journal of Materials Chemistry A, 2013, 1, 4383.	10.3	227
3	Flame-retardant-wrapped polyphosphazene nanotubes: A novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins. Journal of Hazardous Materials, 2017, 325, 327-339.	12.4	223
4	Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism. Polymer Chemistry, 2014, 5, 1145-1154.	3.9	190
5	A novel strategy to simultaneously electrochemically prepare and functionalize graphene with a multifunctional flame retardant. Chemical Engineering Journal, 2017, 316, 514-524.	12.7	165
6	Self-standing cuprous oxide nanoparticles on silica@ polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect. Chemical Engineering Journal, 2017, 309, 802-814.	12.7	164
7	Mussel-inspired functionalization of electrochemically exfoliated graphene: Based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane. Journal of Hazardous Materials, 2018, 352, 57-69.	12.4	142
8	A facile strategy to simultaneously exfoliate and functionalize boron nitride nanosheets via Lewis acid-base interaction. Chemical Engineering Journal, 2017, 330, 309-321.	12.7	135
9	MoS ₂ /Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews, 2017, 57, 440-466.	10.9	132
10	In situ synthesis of a MoS ₂ /CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition. Journal of Materials Chemistry A, 2014, 2, 13299.	10.3	129
11	Studies on Synthesis of Electrochemically Exfoliated Functionalized Graphene and Polylactic Acid/Ferric Phytate Functionalized Graphene Nanocomposites as New Fire Hazard Suppression Materials. ACS Applied Materials & Interfaces, 2016, 8, 25552-25562.	8.0	119
12	The effect of metal oxide decorated graphene hybrids on the improved thermal stability and the reduced smoke toxicity in epoxy resins. Chemical Engineering Journal, 2014, 250, 214-221.	12.7	109
13	Polydopamine-bridged synthesis of ternary h-BN@PDA@SnO2 as nanoenhancers for flame retardant and smoke suppression of epoxy composites. Composites Part A: Applied Science and Manufacturing, 2018, 111, 94-105.	7.6	106
14	Liquid-exfoliated MoS2 by chitosan and enhanced mechanical and thermal properties of chitosan/MoS2 composites. Composites Science and Technology, 2014, 93, 76-82.	7.8	105
15	Novel Melamine/ <i>o</i> -Phthalaldehyde Covalent Organic Frameworks Nanosheets: Enhancement Flame Retardant and Mechanical Performances of Thermoplastic Polyurethanes. ACS Applied Materials & Interfaces, 2017, 9, 23017-23026.	8.0	98
16	Enhanced interphase between thermoplastic matrix and UHMWPE fiber sized with CNT-modified polydopamine coating. Composites Science and Technology, 2019, 174, 212-220.	7.8	97
17	Cyclotriphosphazene-bridged periodic mesoporous organosilica-integrated cellulose nanofiber anisotropic foam with highly flame-retardant and thermally insulating properties. Chemical Engineering Journal, 2019, 375, 121933.	12.7	93
18	The effect of doped heteroatoms (nitrogen, boron, phosphorus) on inhibition thermal oxidation of reduced graphene oxide. RSC Advances, 2016, 6, 105021-105029.	3.6	81

XIAMING FENG

#	Article	IF	CITATIONS
19	Multireusable Thermoset with Anomalous Flame-Triggered Shape Memory Effect. ACS Applied Materials & Interfaces, 2019, 11, 16075-16086.	8.0	79
20	Versatile Phosphate Diester-Based Flame Retardant Vitrimers via Catalyst-Free Mixed Transesterification. ACS Applied Materials & Interfaces, 2020, 12, 57486-57496.	8.0	73
21	Catalyst-free β-hydroxy phosphate ester exchange for robust fire-proof vitrimers. Chemical Engineering Journal, 2021, 417, 129132.	12.7	73
22	Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Chitosan and Their Synergistic Reinforcing Effects in PVA Films. Industrial & Engineering Chemistry Research, 2013, 52, 12906-12914.	3.7	72
23	Integrated effect of supramolecular self-assembled sandwich-like melamine cyanurate/MoS2 hybrid sheets on reducing fire hazards of polyamide 6 composites. Journal of Hazardous Materials, 2016, 320, 252-264.	12.4	68
24	TiO2 loaded on graphene nanosheet as reinforcer and its effect on the thermal behaviors of poly(vinyl chloride) composites. Chemical Engineering Journal, 2015, 260, 524-531.	12.7	67
25	Biobased Tannic Acid Cross-Linked Epoxy Thermosets with Hierarchical Molecular Structure and Tunable Properties: Damping, Shape Memory, and Recyclability. ACS Sustainable Chemistry and Engineering, 2020, 8, 874-883.	6.7	65
26	Novel onion-like graphene aerogel beads for efficient solar vapor generation under non-concentrated illumination. Journal of Materials Chemistry A, 2019, 7, 4400-4407.	10.3	62
27	Facile Construction of Flame-Retardant-Wrapped Molybdenum Disulfide Nanosheets for Properties Enhancement of Thermoplastic Polyurethane. Industrial & Engineering Chemistry Research, 2017, 56, 7229-7238.	3.7	61
28	Functionalized Graphene from Electrochemical Exfoliation for Thermoplastic Polyurethane: Thermal Stability, Mechanical Properties, and Flame Retardancy. Industrial & Engineering Chemistry Research, 2016, 55, 10681-10689.	3.7	59
29	High-Performance Poly(ethylene oxide)/Molybdenum Disulfide Nanocomposite Films: Reinforcement of Properties Based on the Gradient Interface Effect. ACS Applied Materials & Interfaces, 2015, 7, 13164-13173.	8.0	58
30	A 3D Nanostructure Based on Transition-Metal Phosphide Decorated Heteroatom-Doped Mesoporous Nanospheres Interconnected with Graphene: Synthesis and Applications. ACS Applied Materials & Interfaces, 2016, 8, 32528-32540.	8.0	51
31	Molybdenum disulfide nanosheets as barrier enhancing nanofillers in thermal decomposition of polypropylene composites. Chemical Engineering Journal, 2016, 295, 278-287.	12.7	47
32	Enhanced mechanical and barrier properties of polyurethane nanocomposite films with randomly distributed molybdenum disulfide nanosheets. Composites Science and Technology, 2016, 127, 142-148.	7.8	47
33	Synthesis of a novel triazine-based polymeric flame retardant and its application in polypropylene. Polymer Degradation and Stability, 2016, 134, 202-210.	5.8	46
34	Facile fabrication of organically modified boron nitride nanosheets and its effect on the thermal stability, flame retardant, and mechanical properties of thermoplastic polyurethane. Polymers for Advanced Technologies, 2018, 29, 2545-2552.	3.2	45
35	Synthesis of a Novel Triazine-Based Hyperbranched Char Foaming Agent and the Study of Its Enhancement on Flame Retardancy and Thermal Stability of Polypropylene. Industrial & Engineering Chemistry Research, 2013, 52, 17015-17022.	3.7	41
36	A single α-cobalt hydroxide/sodium alginate bilayer layer-by-layer assembly for conferring flame retardancy to flexible polyurethane foams. Materials Chemistry and Physics, 2017, 191, 52-61.	4.0	41

XIAMING FENG

#	Article	IF	CITATIONS
37	Defect-free MoS2 nanosheets: Advanced nanofillers for polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 2016, 81, 61-68.	7.6	39
38	Room-Temperature Self-Healable and Mechanically Robust Thermoset Polymers for Healing Delamination and Recycling Carbon Fibers. ACS Applied Materials & Interfaces, 2021, 13, 53099-53110.	8.0	36
39	Machine learning assisted discovery of new thermoset shape memory polymers based on a small training dataset. Polymer, 2021, 214, 123351.	3.8	32
40	Exfoliation and modification of covalent organic frameworks by a green one-step strategy: Enhanced thermal, mechanical and flame retardant performances of biopolymer nanocomposite film. Composites Part A: Applied Science and Manufacturing, 2018, 110, 162-171.	7.6	30
41	Two-Dimensional Metal Phenylphosphonates as Novel Flame Retardants for Polystyrene. Industrial & Engineering Chemistry Research, 2017, 56, 7192-7206.	3.7	29
42	Cicada wing-inspired solar transmittance enhancement and hydrophobicity design for graphene-based solar steam generation: A novel gas phase deposition approach. Applied Energy, 2022, 320, 119322.	10.1	24
43	A facile and cost-effective approach to the reduction of exfoliated graphite oxide using sodium hypophosphite under acidic conditions. Journal of Materials Chemistry C, 2013, 1, 690-694.	5.5	20
44	High-temperature shape memory photopolymer with intrinsic flame retardancy and record-high recovery stress. Applied Materials Today, 2021, 23, 101056.	4.3	18
45	From Drug Molecules to Thermoset Shape Memory Polymers: A Machine Learning Approach. ACS Applied Materials & Interfaces, 2021, 13, 60508-60521.	8.0	15
46	A Thermoset Shape Memory Polymer-Based Syntactic Foam with Flame Retardancy and 3D Printability. ACS Applied Polymer Materials, 2022, 4, 1183-1195.	4.4	12
47	Reinforcement of organo-modified molybdenum disulfide nanosheets on the mechanical and thermal properties of polyurethane acrylate films. Composites Science and Technology, 2016, 137, 188-195.	7.8	11
48	Eco-friendly synthesis of ferric ion-polyphenol-graphene aerogel for solar steam generation. Materials Letters, 2022, 313, 131738.	2.6	11
49	UV curable, flame retardant, and pressure-sensitive adhesives with two-way shape memory effect. Polymer, 2022, 249, 124835.	3.8	11
50	Preparation of layered graphitic carbon nitride/montmorillonite nanohybrids for improving thermal stability of sodium alginate nanocomposites. RSC Advances, 2015, 5, 11761-11765.	3.6	10
51	Preparation of UV-curable functionalized phosphazene-containing nanotube/polyurethane acrylate nanocomposite coatings with enhanced thermal and mechanical properties. RSC Advances, 2015, 5, 73775-73782.	3.6	9
52	A novel UV-curing flame retardant film with significantly intumescent effect. Polymer Degradation and Stability, 2015, 119, 288-294.	5.8	8
53	A soft syntactic foam actuator with high recovery stress, actuation strain, and energy output. Materials Today Communications, 2022, 31, 103303.	1.9	7
54	The influence of typical layered inorganic compounds on the improved thermal stability and fire resistance properties of polystyrene nanocomposites. Polymer Composites, 2017, 38, E320.	4.6	6

XIAMING FENG

#	Article	IF	CITATIONS
55	Hierarchical MoS ₂ /polyaniline binary hybrids with high performance for improving fire safety of epoxy resin. Polymers for Advanced Technologies, 2022, 33, 163-172.	3.2	6
56	A hybrid shape memory polymer filled metallic foam composite: shape restoring, strain sensing, Joule heating, strengthening, and toughening. Smart Materials and Structures, 2022, 31, 095009.	3.5	2
57	Healing efficiency characterization of self-healing polymers. , 2022, , 27-56.		1
58	Overview of crack self-healing. , 2022, , 1-26.		1
59	Recyclable Thermoset Polymers for 4D Printing. , 2021, , .		0
60	Multifunctional Polymer Composites: Self-Healing, Shape Memory, 3D Printing, and Flame Retardancy. , 2021, , .		0
61	A Novel Approach to Simultaneously Obtain Well-Hydrophobic and Photothermal Materials for Organic Contaminant Removal and Solar Steam Generation. SSRN Electronic Journal, 0, , .	0.4	0
62	Multifunctional thermoset polymers with self-healing ability. , 2022, , 457-482.		0