
Henri Batoko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6346452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cargo receptors and adaptors for selective autophagy in plant cells. FEBS Letters, 2022, 596, 2104-2132.	2.8	7
2	VPS34 Complexes in Plants: Untangled Enough?. Trends in Plant Science, 2021, 26, 303-305.	8.8	6
3	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C)verlock 10) Tf 50 662 1,430
4	Editorial: Organelle Autophagy in Plant Development. Frontiers in Plant Science, 2020, 11, 502.	3.6	1
5	A Plant-Specific N-terminal Extension Reveals Evolutionary Functional Divergence within Translocator Proteins. IScience, 2020, 23, 100889.	4.1	9
6	In memoriam André Goffeau: From proteins to genes to genomes—The Goffeaumic approach to life sciences. Yeast, 2019, 36, 157-159.	1.7	0
7	Autophagy-related approaches for improving nutrient use efficiency and crop yield protection. Journal of Experimental Botany, 2018, 69, 1335-1353.	4.8	97
8	Lipids in membrane dynamics during autophagy in plants. Journal of Experimental Botany, 2018, 69, 1287-1299.	4.8	26
9	Protein degradation mechanisms modulate abscisic acid signaling and responses during abiotic stress. Plant Science, 2018, 267, 48-54.	3.6	18
10	The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water. Current Biology, 2018, 28, 3165-3173.e5.	3.9	94
11	The multistressâ€induced Translocator protein (TSPO) differentially modulates storage lipids metabolism in seeds and seedlings. Plant Journal, 2018, 96, 274-286.	5.7	14
12	Multiscale and Multimodal Approaches to Study Autophagy in Model Plants. Cells, 2018, 7, 5.	4.1	18
13	Understanding and exploiting autophagy signaling in plants. Essays in Biochemistry, 2017, 61, 675-685.	4.7	32
14	TRANSAUTOPHAGY: European network for multidisciplinary research and translation of autophagy knowledge. Autophagy, 2016, 12, 614-617.	9.1	2
15	Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. Plant Molecular Biology, 2016, 92, 731-744.	3.9	59
16	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
17	Long-Term Persistence of Yersinia pseudotuberculosis in Entomopathogenic Nematodes. PLoS ONE, 2015, 10, e0116818.	2.5	11
18	Enigmatic Translocator protein (TSPO) and cellular stress regulation. Trends in Biochemical Sciences, 2015, 40, 497-503.	7.5	52

HENDI RATOR

Ηένρι Βάτοκο

#	Article	IF	CITATIONS
19	Method for fluorescent marker swapping and its application in Steinernema nematode colonization studies. Journal of Microbiological Methods, 2015, 113, 34-37.	1.6	2
20	Translocator proteins, porphyrins and abiotic stress: new light?. Trends in Plant Science, 2015, 20, 261-263.	8.8	7
21	The <i>Arabidopsis</i> Abiotic Stress-Induced TSPO-Related Protein Reduces Cell-Surface Expression of the Aquaporin PIP2;7 through Protein-Protein Interactions and Autophagic Degradation. Plant Cell, 2014, 26, 4974-4990.	6.6	128
22	Selective autophagy of non-ubiquitylated targets in plants: looking for cognate receptor/adaptor proteins. Frontiers in Plant Science, 2014, 5, 308.	3.6	29
23	Identification and differential induction of ABCG transporter genes in wheat cultivars challenged by a deoxynivalenol-producing Fusarium graminearum strain. Molecular Biology Reports, 2014, 41, 6181-6194.	2.3	11
24	Repression of early lateral root initiation events by transient water deficit in barley and maize. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1534-1541.	4.0	36
25	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
26	Identification, characterization and mapping of differentially expressed genes in a winter wheat cultivar (Centenaire) resistant to Fusarium graminearum infection. Molecular Biology Reports, 2012, 39, 9583-9600.	2.3	16
27	Isolation of heat shock-induced Nicotiana tabacum transcription promoters and their potential as a tool for plant research and biotechnology. Transgenic Research, 2011, 20, 799-810.	2.4	26
28	The <i>Arabidopsis</i> Multistress Regulator TSPO Is a Heme Binding Membrane Protein and a Potential Scavenger of Porphyrins via an Autophagy-Dependent Degradation Mechanism Â. Plant Cell, 2011, 23, 785-805.	6.6	176
29	Arabidopsis TSPO and porphyrins metabolism. Plant Signaling and Behavior, 2011, 6, 1383-1385.	2.4	18
30	Autophagy involvement in responses to abscisic acid by plant cells. Autophagy, 2011, 7, 655-656.	9.1	22
31	A TSPO-related protein localizes to the early secretory pathway in Arabidopsis, but is targeted to mitochondria when expressed in yeast. Journal of Experimental Botany, 2011, 62, 497-508.	4.8	17
32	ABA, porphyrins and plant TSPO-related protein. Plant Signaling and Behavior, 2009, 4, 1087-1090.	2.4	26
33	The Arabidopsis TSPOâ€related protein is a stress and abscisic acidâ€regulated, endoplasmic reticulum–Golgiâ€localized membrane protein. Plant Journal, 2009, 60, 242-256.	5.7	89
34	FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12359-12364.	7.1	309
35	The <i>Arabidopsis thaliana</i> trehalase is a plasma membraneâ€bound enzyme with extracellular activity. FEBS Letters, 2007, 581, 4010-4016.	2.8	46
36	Genetic interactions in the control of flowering time and reproductive structure development in tomato (Solanum lycopersicum). New Phytologist, 2006, 170, 701-710.	7.3	26

Ηένγι Βάτοκο

#	Article	IF	CITATIONS
37	Characterization of tomato (Solanum lycopersicum L.) mutants affected in their flowering time and in the morphogenesis of their reproductive structure. Journal of Experimental Botany, 2006, 57, 1381-1390.	4.8	43
38	A Rab-E GTPase Mutant Acts Downstream of the Rab-D Subclass in Biosynthetic Membrane Traffic to the Plasma Membrane in Tobacco Leaf Epidermis. Plant Cell, 2005, 17, 2020-2036.	6.6	124
39	Targeting of a Nicotiana plumbaginifolia H+-ATPase to the Plasma Membrane Is Not by Default and Requires Cytosolic Structural Determinants. Plant Cell, 2004, 16, 1772-1789.	6.6	60
40	Predictable activation of tissue-specific expression from a single gene locus using the pOp/LhG4 transactivation system in Arabidopsis. Plant Biotechnology Journal, 2004, 3, 91-101.	8.3	25
41	UNIFLORA, a pivotal gene that regulates floral transition and meristem identity in tomato () Tj ETQq1 1 0.784314	1 rgBT /Ov	erlock 10 Tf
42	The Abscisic Acid–Related SNARE Homolog NtSyr1 Contributes to Secretion and Growth. Plant Cell, 2002, 14, 387-406.	6.6	148
43	Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant Journal, 2002, 29, 661-678.	5.7	247
44	Organelle Motility in Plant Cells: Imaging Golgi and ER Dynamics with GFP. Current Protocols in Cell Biology, 2001, 9, Unit 13.3.	2.3	1
45	Plant cytokinesis: KNOLLE joins the club. Current Biology, 2001, 11, R423-R426.	3.9	11
46	A Plant Plasma Membrane H+-ATPase Expressed in Yeast Is Activated by Phosphorylation at Its Penultimate Residue and Binding of 14-3-3 Regulatory Proteins in the Absence of Fusicoccin. Journal of Biological Chemistry, 2000, 275, 17762-17770.	3.4	131
47	A Rab1 GTPase Is Required for Transport between the Endoplasmic Reticulum and Golgi Apparatus and for Normal Golgi Movement in Plants. Plant Cell, 2000, 12, 2201-2217.	6.6	550
48	Modulation of plant plasma membrane H+-ATPase by phytotoxic lipodepsipeptides produced by the plant pathogen Pseudomonas fuscovaginae. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1372, 216-226.	2.6	31
49	Involvement of Toxins Produced by Pseudomonas fuscovaginae in Aetiology of Rice Bacterial Sheath Brown Rot. Journal of Phytopathology, 1997, 145, 525-531.	1.0	10
50	Inhibition of rice (Oryza sativa L.) seedling elongation by a Pseudomonas fuscovaginae toxin. Euphytica, 1994, 76, 139-143.	1.2	10
51	The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact With Water. SSRN Electronic Journal, 0, , .	0.4	1