Felix Vajdos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6346325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of Potent and Selective Periphery-Restricted Quinazoline Inhibitors of the Cyclic Nucleotide Phosphodiesterase PDE1. Journal of Medicinal Chemistry, 2018, 61, 4635-4640.	6.4	19
2	Identification of Cyanamide-Based Janus Kinase 3 (JAK3) Covalent Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 10665-10699.	6.4	55
3	Dual Inhibition of TYK2 and JAK1 for the Treatment of Autoimmune Diseases: Discovery of ((<i>S</i>)-2,2-Difluorocyclopropyl)((1 <i>R</i> ,5 <i>S</i>)-3-(2-((1-methyl-1 <i>H</i> -pyrazol-4-yl)amino)pyrimidin- (PF-06700841). Journal of Medicinal Chemistry, 2018, 61, 8597-8612.	-46y4)-3,8-	di aze bicyclo
4	Discovery of 3-Cyano- <i>N</i> -(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridir A Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor C2 Inverse Agonist, Journal of Medicinal Chemistry, 2018, 61, 10415-10439	n-5-yl)ben 6.4	zamide: 26
5	Design of a Janus Kinase 3 (JAK3) Specific Inhibitor 1-((2 <i>S</i> ,5 <i>R</i>)-5-((7 <i>H</i> -Pyrrolo[2,3- <i>d</i>]pyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop-2-en (PF-06651600) Allowing for the Interrogation of JAK3 Signaling in Humans. Journal of Medicinal Chemistry, 2017, 60, 1971-1993	1-1-one 6.4	111
6	Aminomethyl-Derived Beta Secretase (BACE1) Inhibitors: Engaging Gly230 without an Anilide Functionality. Journal of Medicinal Chemistry, 2017, 60, 386-402.	6.4	33
7	Discovery of a JAK3-Selective Inhibitor: Functional Differentiation of JAK3-Selective Inhibition over pan-JAK or JAK1-Selective Inhibition. ACS Chemical Biology, 2016, 11, 3442-3451.	3.4	127
8	Discovery of spirocyclic-diamine inhibitors of mammalian acetyl CoA-carboxylase. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5352-5356.	2.2	13
9	Discovery of a Series of Efficient, Centrally Efficacious BACE1 Inhibitors through Structure-Based Drug Design. Journal of Medicinal Chemistry, 2015, 58, 2678-2702.	6.4	42
10	Decreasing the Rate of Metabolic Ketone Reduction in the Discovery of a Clinical Acetyl-CoA Carboxylase Inhibitor for the Treatment of Diabetes. Journal of Medicinal Chemistry, 2014, 57, 10512-10526.	6.4	74
11	Small-molecule phosphodiesterase probes: discovery of potent and selective CNS-penetrable quinazoline inhibitors of PDE1. MedChemComm, 2014, 5, 1290-1296.	3.4	31
12	Discovery and synthesis of novel 4-aminopyrrolopyrimidine Tie-2 kinase inhibitors for the treatment of solid tumors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3059-3063.	2.2	10
13	Spirocyclic Sulfamides as β-Secretase 1 (BACE-1) Inhibitors for the Treatment of Alzheimer's Disease: Utilization of Structure Based Drug Design, WaterMap, and CNS Penetration Studies To Identify Centrally Efficacious Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 9224-9239.	6.4	60
14	Discovery and Optimization of a Novel Spiropyrrolidine Inhibitor of β-Secretase (BACE1) through Fragment-Based Drug Design. Journal of Medicinal Chemistry, 2012, 55, 9069-9088.	6.4	54
15	Structure-guided Inhibitor Design for Human Acetyl-coenzyme A Carboxylase by Interspecies Active Site Conversion. Journal of Biological Chemistry, 2011, 286, 41510-41519.	3.4	5
16	Discovery of small molecule isozyme non-specific inhibitors of mammalian acetyl-CoA carboxylase 1 and 2. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2383-2388.	2.2	55
17	Antitumor Activity and Pharmacology of a Selective Focal Adhesion Kinase Inhibitor, PF-562,271. Cancer Research, 2008, 68, 1935-1944.	0.9	348
18	The 2.0 à crystal structure of the ERα ligand-binding domain complexed with lasofoxifene. Protein Science, 2007, 16, 897-905.	7.6	54

Felix Vajdos

#	Article	IF	CITATIONS
19	Suppressor of Fused Regulates Gli Activity through a Dual Binding Mechanism. Molecular and Cellular Biology, 2004, 24, 8627-8641.	2.3	117
20	Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell, 2004, 5, 317-328.	16.8	977
21	Structural insights into the catalytic mechanism of cyclophilin A. Nature Structural and Molecular Biology, 2003, 10, 475-481.	8.2	141
22	Comprehensive Functional Maps of the Antigen-binding Site of an Anti-ErbB2 Antibody Obtained with Shotgun Scanning Mutagenesis. Journal of Molecular Biology, 2002, 320, 415-428.	4.2	111
23	Crystal structure of cyclophilin A complexed with a binding site peptide from the HIVâ€1 capsid protein. Protein Science, 1997, 6, 2297-2307.	7.6	84
24	Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid. Cell, 1996, 87, 1285-1294.	28.9	686
25	How to measure and predict the molar absorption coefficient of a protein. Protein Science, 1995, 4, 2411-2423.	7.6	3,742