Terence R Flotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6345735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene Therapy for Rare Neurological Disorders. Clinical Pharmacology and Therapeutics, 2022, 111, 743-757.	4.7	7
2	AAV gene therapy for Tay-Sachs disease. Nature Medicine, 2022, 28, 251-259.	30.7	49
3	Liver-directed SERPINA1 gene therapy attenuates progression of spontaneous and tobacco smoke-induced emphysema in α1-antitrypsin null mice. Molecular Therapy - Methods and Clinical Development, 2022, 25, 425-438.	4.1	5
4	Gene and Cell Therapy for Inherited and Acquired Immune Deficiency. Human Gene Therapy, 2021, 32, 1-3.	2.7	0
5	Liver targeting with rAAV7: balancing tropism with immune profiles. Gene Therapy, 2021, 28, 115-116.	4.5	Ο
6	Large-scale molecular epidemiological analysis of AAV in a cancer patient population. Oncogene, 2021, 40, 3060-3071.	5.9	7
7	Common pathways to Dean of Medicine at U.S. medical schools. PLoS ONE, 2021, 16, e0249078.	2.5	12
8	CRISPR/Cas-Dependent and Nuclease-Free <i>In Vivo</i> Therapeutic Gene Editing. Human Gene Therapy, 2021, 32, 275-293.	2.7	26
9	Supporting Families Considering Participation in a Clinical Trial: Parent-Provider Perspectives. Pediatrics, 2021, 147, .	2.1	3
10	Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nature Communications, 2021, 12, 2121.	12.8	155
11	In Reply to Ramotshwana et al. Academic Medicine, 2021, 96, e15-e16.	1.6	0
12	InÂvivo gene editing works in humans: Results of a phase 1 clinical trial for TTR amyloidosis. Molecular Therapy, 2021, 29, 2633-2634.	8.2	6
13	Modulating Immune Responses to AAV by expanded polyclonal T-regulatory cells and capsid specific chimeric antigen receptor T-regulatory cells. Molecular Therapy - Methods and Clinical Development, 2021, 23, 490-506.	4.1	16
14	A Safe and Reliable Technique for CNS Delivery of AAV Vectors in the Cisterna Magna. Molecular Therapy, 2020, 28, 411-421.	8.2	58
15	Two-Plasmid Packaging System for Recombinant Adeno-Associated Virus. BioResearch Open Access, 2020, 9, 219-228.	2.6	12
16	Accelerated Graduation and the Deployment of New Physicians During the COVID-19 Pandemic. Academic Medicine, 2020, 95, 1492-1494.	1.6	41
17	Volume and Infusion Rate Dynamics of Intraparenchymal Central Nervous System Infusion in a Large Animal Model. Human Gene Therapy, 2020, 31, 617-625.	2.7	5
18	Moving Forward After Two Deaths in a Gene Therapy Trial of Myotubular Myopathy. Human Gene Therapy, 2020, 31, 695-696.	2.7	145

#	Article	IF	CITATIONS
19	Muscle-Directed Delivery of an AAV1 Vector Leads to Capsid-Specific T Cell Exhaustion in Nonhuman Primates and Humans. Molecular Therapy, 2020, 28, 747-757.	8.2	23
20	Engraftment of Human Hepatocytes in the PiZ-NSG Mouse Model. Methods in Molecular Biology, 2020, 2164, 75-85.	0.9	4
21	Recombinant Adeno-Associated Virus Gene Therapy in Light of Luxturna (and Zolgensma and Glybera): Where Are We, and How Did We Get Here?. Annual Review of Virology, 2019, 6, 601-621.	6.7	217
22	Getting Tough on Capsid Screening: Tough Decoys Enable Barcoding of Vectors Capable of both Entry and Expression. Human Gene Therapy, 2019, 30, 919-920.	2.7	0
23	AAV9 gene replacement therapy for respiratory insufficiency in veryâ€long chain acyl oA dehydrogenase deficiency. Journal of Inherited Metabolic Disease, 2019, 42, 870-877.	3.6	5
24	Bridging from Intramuscular to Limb Perfusion Delivery of rAAV: Optimization in a Non-human Primate Study. Molecular Therapy - Methods and Clinical Development, 2019, 13, 233-242.	4.1	10
25	Muscle-Directed Gene Therapy for Alpha-1 Antitrypsin Deficiency. , 2019, , 775-786.		0
26	Editing out five <i>Serpina1</i> paralogs to create a mouse model of genetic emphysema. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2788-2793.	7.1	62
27	A Rationally Engineered Capsid Variant of AAV9 for Systemic CNS-Directed and Peripheral Tissue-Detargeted Gene Delivery in Neonates. Molecular Therapy - Methods and Clinical Development, 2018, 9, 234-246.	4.1	42
28	<i>In Vivo</i> Genome Editing Partially Restores Alpha1-Antitrypsin in a Murine Model of AAT Deficiency. Human Gene Therapy, 2018, 29, 853-860.	2.7	54
29	Adeno-Associated Virus Neutralizing Antibodies in Large Animals and Their Impact on Brain Intraparenchymal Gene Transfer. Molecular Therapy - Methods and Clinical Development, 2018, 11, 65-72.	4.1	38
30	DNA Vaccination in 2018: An Update. Human Gene Therapy, 2018, 29, 963-965.	2.7	1
31	The rapidly evolving state of gene therapy. FASEB Journal, 2018, 32, 1733-1740.	0.5	33
32	Results at 5 Years After Gene Therapy for RPE65-Deficient Retinal Dystrophy. Human Gene Therapy, 2018, 29, 1428-1437.	2.7	48
33	Class I-restricted T-cell responses to a polymorphic peptide in a gene therapy clinical trial for α-1-antitrypsin deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1655-1659.	7.1	52
34	Retro-Orbital Venous Sinus Delivery of rAAV9 Mediates High-Level Transduction of Brain and Retina Compared with Temporal Vein Delivery in Neonatal Mouse Pups. Human Gene Therapy, 2017, 28, 228-230.	2.7	12
35	5 Year Expression and Neutrophil Defect Repair after Gene Therapy in Alpha-1 Antitrypsin Deficiency. Molecular Therapy, 2017, 25, 1387-1394.	8.2	84
36	CAR T-Cell Therapy: Progress and Prospects. Human Gene Therapy Methods, 2017, 28, 61-66.	2.1	45

#	Article	IF	CITATIONS
37	Survival Advantage of Both Human Hepatocyte Xenografts and Genome-Edited Hepatocytes for Treatment of α-1 Antitrypsin Deficiency. Molecular Therapy, 2017, 25, 2477-2489.	8.2	62
38	Quantification of Total Human Alpha-1 Antitrypsin by Sandwich ELISA. Methods in Molecular Biology, 2017, 1639, 211-216.	0.9	2
39	Therapeutics: Gene Therapy for Alpha-1 Antitrypsin Deficiency. Methods in Molecular Biology, 2017, 1639, 267-275.	0.9	9
40	The Gene Therapy Resource Program: A Decade of Dedication to Translational Research by the National Heart, Lung, and Blood Institute. Human Gene Therapy Clinical Development, 2017, 28, 178-186.	3.1	2
41	Recombinant Adeno-Associated Virus Vector Genomes Take the Form of Long-Lived, Transcriptionally Competent Episomes in Human Muscle. Human Gene Therapy, 2016, 27, 32-42.	2.7	18
42	Results at 2 Years after Gene Therapy for RPE65-Deficient Leber Congenital Amaurosis and Severe Early-Childhood–Onset Retinal Dystrophy. Ophthalmology, 2016, 123, 1606-1620.	5.2	184
43	Development of rAAV2-CFTR: History of the First rAAV Vector Product to be Used in Humans. Human Gene Therapy Methods, 2016, 27, 49-58.	2.1	19
44	Adeno-Associated Virus Type 2 and Hepatocellular Carcinoma?. Human Gene Therapy, 2015, 26, 779-781.	2.7	71
45	Ethical Implications of the Cost of Molecularly Targeted Therapies. Human Gene Therapy, 2015, 26, 573-574.	2.7	6
46	Progress with Recombinant Adeno-Associated Virus Vectors for Gene Therapy of Alpha-1 Antitrypsin Deficiency. Human Gene Therapy Methods, 2015, 26, 77-81.	2.1	12
47	Efficient and Targeted Transduction of Nonhuman Primate Liver With Systemically Delivered Optimized AAV3B Vectors. Molecular Therapy, 2015, 23, 1867-1876.	8.2	73
48	Delivery of Adeno-Associated Virus Gene Therapy by Intravascular Limb Infusion Methods. Human Gene Therapy Clinical Development, 2015, 26, 159-164.	3.1	4
49	Current status of gene therapy for α-1 antitrypsin deficiency. Expert Opinion on Biological Therapy, 2015, 15, 329-336.	3.1	29
50	What Is Suppression of Anti–Adeno-Associated Virus Capsid T-Cells Achieving?. Human Gene Therapy, 2014, 25, 178-179.	2.7	3
51	Charting a Clear Path: The ASGCT Standardized Pathways Conference. Molecular Therapy, 2014, 22, 1235-1238.	8.2	10
52	Gene-Based Therapy for Alpha-1 Antitrypsin Deficiency. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2013, 10, 44-49.	1.6	47
53	Birth of a New Therapeutic Platform: 47 Years of Adeno-associated Virus Biology From Virus Discovery to Licensed Gene Therapy. Molecular Therapy, 2013, 21, 1976-1981.	8.2	16
54	A Single Intravenous rAAV Injection as Late as P20 Achieves Efficacious and Sustained CNS Gene Therapy in Canavan Mice. Molecular Therapy, 2013, 21, 2136-2147.	8.2	77

#	Article	IF	CITATIONS
55	Recombinant Adeno-Associated Virus Integration Sites in Murine Liver After Ornithine Transcarbamylase Gene Correction. Human Gene Therapy, 2013, 24, 520-525.	2.7	40
56	Human Treg responses allow sustained recombinant adeno-associated virus–mediated transgene expression. Journal of Clinical Investigation, 2013, 123, 5310-5318.	8.2	133
57	Sustained miRNA-mediated Knockdown of Mutant AAT With Simultaneous Augmentation of Wild-type AAT Has Minimal Effect on Global Liver miRNA Profiles. Molecular Therapy, 2012, 20, 590-600.	8.2	105
58	Long-term Correction of Very Long-chain Acyl-CoA Dehydrogenase Deficiency in Mice Using AAV9 Gene Therapy. Molecular Therapy, 2012, 20, 1131-1138.	8.2	20
59	Histone Deacetylase Inhibitor (HDACi) Suberoylanilide Hydroxamic Acid (SAHA)-mediated Correction of α1-Antitrypsin Deficiency. Journal of Biological Chemistry, 2012, 287, 38265-38278.	3.4	72
60	Cell and Gene Therapy for Genetic Diseases: Inherited Disorders Affecting the Lung and Those Mimicking Sudden Infant Death Syndrome. Human Gene Therapy, 2012, 23, 548-556.	2.7	17
61	Gene Transfer in the Lung Using Recombinant Adenoâ€Associated Virus. Current Protocols in Microbiology, 2012, 26, Unit14D.2.	6.5	13
62	Preclinical Study Design for rAAV. Methods in Molecular Biology, 2012, 807, 317-337.	0.9	3
63	Effect of Cigarette Smoke Exposure and Structural Modifications on the α-1 Antitrypsin Interaction with Caspases. Molecular Medicine, 2012, 18, 445-454.	4.4	43
64	Preclinical Evaluation of a Recombinant Adeno-Associated Virus Vector Expressing Human Alpha-1 Antitrypsin Made Using a Recombinant Herpes Simplex Virus Production Method. Human Gene Therapy, 2011, 22, 155-165.	2.7	58
65	N-Glycosylation Augmentation of the Cystic Fibrosis Epithelium Improves <i>Pseudomonas aeruginosa</i> Clearance. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 824-830.	2.9	8
66	Lack of Cystic Fibrosis Transmembrane Conductance Regulator in CD3 ⁺ Lymphocytes Leads to Aberrant Cytokine Secretion and Hyperinflammatory Adaptive Immune Responses. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 922-929.	2.9	106
67	Phase 2 Clinical Trial of a Recombinant Adeno-Associated Viral Vector Expressing α ₁ -Antitrypsin: Interim Results. Human Gene Therapy, 2011, 22, 1239-1247.	2.7	297
68	Recombinant Adeno-Associated Virus-Mediated Gene Transfer for the Potential Therapy of Adenosine Deaminase-Deficient Severe Combined Immune Deficiency. Human Gene Therapy, 2011, 22, 935-949.	2.7	6
69	Gene therapy for alpha-1 antitrypsin deficiency. Human Molecular Genetics, 2011, 20, R87-R92.	2.9	43
70	Moving Forward Toward a Cure for Parkinson's: Neuropathology of the Nigrostriatal Pathway Determines the Location of Growth Factor Delivery. Molecular Therapy, 2011, 19, 827-829.	8.2	2
71	Modulation of Exaggerated-IgE Allergic Responses by Gene Transfer-mediated Antagonism of IL-13 and IL-17e. Molecular Therapy, 2010, 18, 511-518.	8.2	7
72	Dual Reporter Comparative Indexing of rAAV Pseudotyped Vectors in Chimpanzee Airway. Molecular Therapy, 2010, 18, 594-600.	8.2	49

#	Article	IF	CITATIONS
73	Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16363-16368.	7.1	295
74	Recombinant AAV Serotype and Capsid Mutant Comparison for Pulmonary Gene Transfer of α-1-Antitrypsin Using Invasive and Noninvasive Delivery. Molecular Therapy, 2009, 17, 81-87.	8.2	48
75	Gene Therapy for Cystic Fibrosis. Clinical Reviews in Allergy and Immunology, 2008, 35, 164-178.	6.5	48
76	Partial correction of the CFTRâ€dependent ABPA mouse model with recombinant adenoâ€associated virus gene transfer of truncated CFTR gene. Journal of Gene Medicine, 2008, 10, 51-60.	2.8	29
77	Recombinant adenoâ€associated virusâ€mediated gene delivery of long chain acyl coenzyme A dehydrogenase (LCAD) into LCADâ€deficient mice. Journal of Gene Medicine, 2008, 10, 1113-1123.	2.8	7
78	CFTR mutations impart elevated immune reactivity in a murine model of cystic fibrosis related diabetes. Cytokine, 2008, 44, 154-159.	3.2	15
79	Recombinant Adeno-Associated Virus-Mediated Global Anterograde Delivery of Glial Cell Line-Derived Neurotrophic Factor to the Spinal Cord: Comparison of Rubrospinal and Corticospinal Tracts in the Rat. Human Gene Therapy, 2008, 19, 71-82.	2.7	36
80	Biochemical Correction of Short-Chain Acyl-Coenzyme A Dehydrogenase Deficiency After Portal Vein Injection of rAAV8-SCAD. Human Gene Therapy, 2008, 19, 579-588.	2.7	10
81	Cystic Fibrosis Transmembrane Regulator Missing the First Four Transmembrane Segments Increases Wild Type and ΔF508 Processing*. Journal of Biological Chemistry, 2008, 283, 21926-21933.	3.4	33
82	Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15112-15117.	7.1	639
83	In Utero Efficacy of Cystic Fibrosis Gene Therapy: Difficult Studies, Positive or Negative. Molecular Therapy, 2008, 16, 806-807.	8.2	0
84	Towards a rAAV-based gene therapy for ADA-SCID: from ADA deficiency to current and future treatment strategies. Pharmacogenomics, 2008, 9, 947-968.	1.3	8
85	Apparently Nonspecific Enzyme Elevations After Portal Vein Delivery of Recombinant Adeno-Associated Virus Serotype 2 Vector in Hepatitis C Virus-Infected Chimpanzees. Human Gene Therapy, 2008, 19, 681-689.	2.7	7
86	Treatment of Leber Congenital Amaurosis Due to <i>RPE65</i> Mutations by Ocular Subretinal Injection of Adeno-Associated Virus Gene Vector: Short-Term Results of a Phase I Trial. Human Gene Therapy, 2008, 19, 979-990.	2.7	880
87	Expression of a Truncated Cystic Fibrosis Transmembrane Conductance Regulator with an AAV5-pseudotyped Vector in Primates. Molecular Therapy, 2007, 15, 756-763.	8.2	48
88	Preclinical Characterization of A Recombinant Adeno-Associated Virus Type 1-Pseudotyped Vector Demonstrates Dose-Dependent Injection Site Inflammation And Dissemination of Vector Genomes to Distant Sites. Human Gene Therapy, 2007, 18, 245-256.	2.7	48
89	Viral Vector–mediated and Cell-based Therapies for Treatment of Cystic Fibrosis. Molecular Therapy, 2007, 15, 229-241.	8.2	67
90	Gene therapy: The first two decades and the current state-of-the-art. Journal of Cellular Physiology, 2007. 213. 301-305.	4.1	105

#	Article	IF	CITATIONS
91	In vivo post-transcriptional gene silencing of \hat{I}_{\pm} -1 antitrypsin by adeno-associated virus vectors expressing siRNA. Laboratory Investigation, 2007, 87, 893-902.	3.7	57
92	α-1 Antitrypsin Inhibits Caspase-3 Activity, Preventing Lung Endothelial Cell Apoptosis. American Journal of Pathology, 2006, 169, 1155-1166.	3.8	270
93	Recent developments in the protection of pediatric research subjects. Journal of Pediatrics, 2006, 149, 285-286.e2.	1.8	9
94	Enhanced IgE allergic response to Aspergillus fumigatus in CFTRâ^'/â^' mice. Laboratory Investigation, 2006, 86, 130-140.	3.7	29
95	Safety in Nonhuman Primates of Ocular AAV2-RPE65, a Candidate Treatment for Blindness in Leber Congenital Amaurosis. Human Gene Therapy, 2006, 17, 845-858.	2.7	142
96	Therapeutic level of functional human alpha 1 antitrypsin (hAAT) secreted from murine muscle transduced by adenoâ€associated virus (rAAV1) vector. Journal of Gene Medicine, 2006, 8, 730-735.	2.8	62
97	Systemic Correction of a Fatty Acid Oxidation Defect by Intramuscular Injection of a Recombinant Adeno-Associated Virus Vector. Human Gene Therapy, 2006, 17, 71-80.	2.7	17
98	Phase I Trial of Intramuscular Injection of a Recombinant Adeno-Associated Virus Serotype 2α1-Antitrypsin (AAT) Vector in AAT-Deficient Adults. Human Gene Therapy, 2006, 17, 1177-1186.	2.7	168
99	Safety of Recombinant Adeno-Associated Virus Type 2–RPE65 Vector Delivered by Ocular Subretinal Injection. Molecular Therapy, 2006, 13, 1074-1084.	8.2	196
100	Recent Developments in Recombinant AAV-Mediated Gene Therapy for Lung Diseases. Current Gene Therapy, 2005, 5, 361-366.	2.0	53
101	Efficient Transduction of Vascular Endothelial Cells with Recombinant Adeno-Associated Virus Serotype 1 and 5 Vectors. Human Gene Therapy, 2005, 16, 235-247.	2.7	84
102	Localized Gene Expression Following Administration of Adeno-associated Viral Vectors via Pancreatic Ducts. Molecular Therapy, 2005, 12, 519-527.	8.2	30
103	Efficient Hepatic Delivery and Expression from a Recombinant Adeno-associated Virus 8 Pseudotyped α1-Antitrypsin Vector. Molecular Therapy, 2005, 12, 867-875.	8.2	53
104	Correlation Between DNA Transfer and Cystic Fibrosis Airway Epithelial Cell Correction After Recombinant Adeno-Associated Virus Serotype 2 Gene Therapy. Human Gene Therapy, 2005, 16, 921-928.	2.7	35
105	Adeno-Associated Virus-Based Gene Therapy for Inherited Disorders. Pediatric Research, 2005, 58, 1143-1147.	2.3	45
106	Adeno-Associated Virus: A Ubiquitous Commensal of Mammals. Human Gene Therapy, 2005, 16, 401-407.	2.7	60
107	Adeno-Associated Virus-Mediated Gene Transfer for Lung Diseases. Human Gene Therapy, 2005, 16, 643-648.	2.7	13
108	DNA-dependent PK inhibits adeno-associated virus DNA integration. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2112-2116.	7.1	91

#	Article	IF	CITATIONS
109	Ex Vivo transduced liver progenitor cells as a platform for gene therapy in mice. Hepatology, 2004, 40, 918-924.	7.3	37
110	Immune Responses to Recombinant Adeno-Associated Virus Vectors: Putting Preclinical Findings into Perspective. Human Gene Therapy, 2004, 15, 716-717.	2.7	90
111	Functional Characterization of a Recombinant Adeno- Associated Virus 5-Pseudotyped Cystic Fibrosis Transmembrane Conductance Regulator Vector. Human Gene Therapy, 2004, 15, 832-841.	2.7	57
112	Phase I Trial of Intramuscular Injection of a Recombinant Adeno-Associated Virus Alpha 1-Antitrypsin (rAAV2-CB-hAAT) Gene Vector to AAT-Deficient Adults. Human Gene Therapy, 2004, 15, 93-128.	2.7	130
113	Functional Characterization of a Recombinant Adeno-Associated Virus 5-Pseudotyped Cystic Fibrosis Transmembrane Conductance Regulator Vector. Human Gene Therapy, 2004, 15, 832-841.	2.7	41
114	Phase I Trial of Intranasal and Endobronchial Administration of a Recombinant Adeno-Associated Virus Serotype 2 (rAAV2)-CFTR Vector in Adult Cystic Fibrosis Patients: A Two-Part Clinical Study. Human Gene Therapy, 2003, 14, 1079-1088.	2.7	213
115	The signal and the trap: Targeted delivery and retention of proteins in the mitochondrion. Molecular Therapy, 2003, 7, 715-716.	8.2	0
116	Successful transgene expression with serial doses of aerosolized rAAV2 vectors in rhesus macaques. Molecular Therapy, 2003, 8, 918-926.	8.2	42
117	A Phase II, Double-Blind, Randomized, Placebo-Controlled Clinical Trial of tgAAVCF Using Maxillary Sinus Delivery in Patients with Cystic Fibrosis with Antrostomies. Human Gene Therapy, 2002, 13, 1349-1359.	2.7	239
118	Recombinant Adeno-Associated Virus Gene Therapy for Cystic Fibrosis and $\hat{I}\pm 1$ -Antitrypsin Deficiency. Chest, 2002, 121, 98S-102S.	0.8	21
119	Adeno-Associated Viral Vectors for CF Gene Therapy. , 2002, 70, 599-608.		2
120	Intramuscular Administration of Recombinant Adeno-Associated Virus 2 α-1 Antitrypsin (rAAV-SERPINA1) Vectors in a Nonhuman Primate Model: Safety and Immunologic Aspects. Molecular Therapy, 2002, 6, 329-335.	8.2	87
121	Production of clinical-grade recombinant adeno-associated virus vectors. Current Opinion in Biotechnology, 2002, 13, 418-423.	6.6	61
122	CMV-β-Actin Promoter Directs Higher Expression from an Adeno-Associated Viral Vector in the Liver than the Cytomegalovirus or Elongation Factor 1α Promoter and Results in Therapeutic Levels of Human Factor X in Mice. Human Gene Therapy, 2001, 12, 563-573.	2.7	163
123	Recombinant Adeno-Associated Virus Vector-Based Gene Transfer for Defects in Oxidative Metabolism. Human Gene Therapy, 2000, 11, 2067-2078.	2.7	33
124	Mutational Analysis of the Adeno-Associated Virus Type 2 (AAV2) Capsid Gene and Construction of AAV2 Vectors with Altered Tropism. Journal of Virology, 2000, 74, 8635-8647.	3.4	344
125	Delayed Expression of Adeno-Associated Virus Vector DNA. Intervirology, 1999, 42, 213-220.	2.8	33
126	Safety and Biological Efficacy of an Adeno-Associated Virus Vector-Cystic Fibrosis Transmembrane Regulator (AAV-CFTR) in the Cystic Fibrosis Maxillary Sinus. Laryngoscope, 1999, 109, 266-274.	2.0	193

#	Article	IF	CITATIONS
127	Latent Adeno-Associated Virus Infection Elicits Humoral but Not Cell-Mediated Immune Responses in a Nonhuman Primate Model. Journal of Virology, 1999, 73, 8549-8558.	3.4	143
128	Repeated Delivery of Adeno-Associated Virus Vectors to the Rabbit Airway. Journal of Virology, 1999, 73, 9446-9455.	3.4	90
129	Efficient and persistent gene transfer of AAV-CFTR in maxillary sinus. Lancet, The, 1998, 351, 1702-1703.	13.7	220
130	A Phase I/II Study of tgAAV-CF for the Treatment of Chronic Sinusitis in Patients with Cystic Fibrosis. Stanford University, Stanford, California. Human Gene Therapy, 1998, 9, 889-909.	2.7	95
131	[53] Adeno-associated virus vectors for gene therapy of cystic fibrosis. Methods in Enzymology, 1998, 292, 717-732.	1.0	24
132	A Phase I Study of an Adeno-Associated Virus-CFTR Gene Vector in Adult CF Patients with Mild Lung Disease. Johns Hopkins Children's Center, Baltimore, Maryland. Human Gene Therapy, 1996, 7, 1145-1159.	2.7	273
133	Alternate Translation Initiation Codons Can Create Functional Forms of Cystic Fibrosis Transmembrane Conductance Regulator. Journal of Biological Chemistry, 1995, 270, 11941-11946.	3.4	58
134	Real time laryngoscopy with olfactory challenge for diagnosis of psychogenic stridor. Pediatric Pulmonology, 1993, 16, 259-262.	2.0	10
135	Gene Expression from Adeno-associated Virus Vectors in Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 1992, 7, 349-356.	2.9	167
136	Defective regulation of outwardly rectifying Clâ^ channels by protein kinase A corrected by insertion of CFTR. Nature, 1992, 358, 581-584.	27.8	433