Philip Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6345711/publications.pdf

Version: 2024-02-01

		1046	443
291	100,860	113	274
papers	citations	h-index	g-index
200	200	200	(0246
299	299	299	60246
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electronic thermal transport measurement in low-dimensional materials with graphene non-local noise thermometry. Nature Nanotechnology, 2022, 17, 166-173.	31.5	13
2	Crossover between strongly coupled and weakly coupled exciton superfluids. Science, 2022, 375, 205-209.	12.6	33
3	Chloroaluminate Anion Intercalation in Graphene and Graphite: From Two-Dimensional Devices to Aluminum-Ion Batteries. Nano Letters, 2022, 22, 1726-1733.	9.1	13
4	Evidence for 4e charge of Cooper quartets in a biased multi-terminal graphene-based Josephson junction. Nature Communications, 2022, 13, .	12.8	19
5	Beam steering at the nanosecond time scale with an atomically thin reflector. Nature Communications, 2022, 13, .	12.8	6
6	Andreev Reflection in the Fractional Quantum Hall State. Physical Review X, 2022, 12, .	8.9	22
7	Large Single Crystals of Two-Dimensional π-Conjugated Metal–Organic Frameworks via Biphasic Solution-Solid Growth. ACS Central Science, 2021, 7, 104-109.	11.3	40
8	Excitons in a reconstructed moir \tilde{A} potential in twisted WSe2/WSe2 homobilayers. Nature Materials, 2021, 20, 480-487.	27.5	109
9	Probing giant Zeeman shift in vanadium-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">W</mml:mi><mml:mi><mml:msub><mml:mi>Se</mml:mi><mml:mn>2</mml:mn></mml:msub><td>nml:mrow</td><td>> रॉmml:matl</td></mml:mi></mml:mrow></mml:math>	nml:mrow	> रॉmml:matl
10	Dual-Gated Graphene Devices for Near-Field Nano-imaging. Nano Letters, 2021, 21, 1688-1693.	9.1	13
11	Aharonov–Bohm effect in graphene-based Fabry–Pérot quantum Hall interferometers. Nature Nanotechnology, 2021, 16, 563-569.	31.5	48
12	Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 2021, 371, 1133-1138.	12.6	261
13	Josephson junction infrared single-photon detector. Science, 2021, 372, 409-412.	12.6	45
14	Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Physical Review B, $2021, 103, \ldots$	3.2	26
15	Fast and accurate robotic optical detection of exfoliated graphene and hexagonal boron nitride by deep neural networks. 2D Materials, 2021, 8, 035017.	4.4	7
16	Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature, 2021, 595, 48-52.	27.8	98
17	Unconventional supercurrent phase in Ising superconductor Josephson junction with atomically thin magnetic insulator. Nature Communications, 2021, 12, 5332.	12.8	27
18	High-bandwidth, variable-resistance differential noise thermometry. Review of Scientific Instruments, 2021, 92, 014904.	1.3	3

#	Article	IF	Citations
19	Coulomb Drag between a Carbon Nanotube and Monolayer Graphene. Physical Review Letters, 2021, 127, 257701.	7.8	5
20	Graphene-based Josephson junction microwave bolometer. Nature, 2020, 586, 42-46.	27.8	88
21	Imaging viscous flow of the Dirac fluid in graphene. Nature, 2020, 583, 537-541.	27.8	213
22	Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nature Nanotechnology, 2020, 15, 750-754.	31.5	106
23	40 years of the quantum Hall effect. Nature Reviews Physics, 2020, 2, 397-401.	26.6	84
24	Torsional Periodic Lattice Distortion in Twisted Bilayer Graphene. Microscopy and Microanalysis, 2020, 26, 864-866.	0.4	1
25	In situ nanoscale imaging of moir \tilde{A} © superlattices in twisted van der Waals heterostructures. Nature Communications, 2020, 11 , 4209.	12.8	43
26	Imaging of 2-Dimensional Dislocation Networks in Twisted Bilayer Graphene and Beyond. Microscopy and Microanalysis, 2020, 26, 854-855.	0.4	1
27	Tuning Electrical Conductance of MoS ₂ Monolayers through Substitutional Doping. Nano Letters, 2020, 20, 4095-4101.	9.1	100
28	Imaging Andreev Reflection in Graphene. Nano Letters, 2020, 20, 4890-4894.	9.1	14
29	Thermoelectric power of Sachdev-Ye-Kitaev islands: Probing Bekenstein-Hawking entropy in quantum matter experiments. Physical Review B, 2020, 101, .	3.2	23
30	Electrically Tunable Valley Dynamics in Twisted <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>WSe</mml:mi></mml:mrow><mml:mrow><mbilayers. 124,="" 2020,="" 217403.<="" letters,="" physical="" review="" th=""><th>ıml:::mn>2<</th><th>:/mml:mn><!--</th--></th></mbilayers.></mml:mrow></mml:msub></mml:mrow></mml:math>	ım l::: mn>2<	:/mml:mn> </th
31	Bosonic topological insulator intermediate state in the superconductor-insulator transition. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126570.	2.1	23
32	Zhao etÂal. Reply:. Physical Review Letters, 2020, 124, 249702.	7.8	4
33	Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature, 2020, 583, 221-225.	27.8	385
34	Controlling Excitons in an Atomically Thin Membrane with a Mirror. Physical Review Letters, 2020, 124, 027401.	7.8	55
35	Nano-photocurrent Mapping of Local Electronic Structure in Twisted Bilayer Graphene. Nano Letters, 2020, 20, 2958-2964.	9.1	34
36	30°-Twisted Bilayer Graphene Quasicrystals from Chemical Vapor Deposition. Nano Letters, 2020, 20, 3313-3319.	9.1	60

#	Article	IF	Citations
37	Strongly adhesive dry transfer technique for van der Waals heterostructure. 2D Materials, 2020, 7, 041005.	4.4	38
38	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Se</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>films heteroepitaxially grown on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>î+</mml:mi><mml:mi><mml:mi><mml:mi><mml:mi>ingn-temperature</mml:mi></mml:mi></mml:mi></mml:mi></mml:mrow></mml:math></pre> Physically correlated in column (all y unit nign-temperature) This is a fairness of the column (all y unit nign-temperature)	2.4 nl:mtext><	2 mml:msub><
39	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mrow>+<. Physical Review</mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow>	ıro %. ≯ <mm< td=""><td>nl:mm:>2.1</td></mm<>	nl:mm:>2.1
40	Fractional Quantum Hall Effects in Graphene. , 2020, , 317-375.		7
41	Asymmetric photoelectric effect: Auger-assisted hot hole photocurrents in transition metal dichalcogenides. Nanophotonics, 2020, 10, 105-113.	6.0	2
42	Imaging the flow of holes from a collimating contact in graphene. Semiconductor Science and Technology, 2020, 35, 09LT02.	2.0	1
43	Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science, 2019, 366, 870-875.	12.6	255
44	Microstructure Effect on LaPtBi Superconductivity. Microscopy and Microanalysis, 2019, 25, 948-949.	0.4	0
45	Liquid Salt Transport Growth of Single Crystals of the Layered Dichalcogenides MoS ₂ and WS ₂ . Crystal Growth and Design, 2019, 19, 5762-5767.	3.0	16
46	Polariton nanophotonics using phase-change materials. Nature Communications, 2019, 10, 4487.	12.8	106
47	Electrically Tunable Exciton–Plasmon Coupling in a WSe ₂ Monolayer Embedded in a Plasmonic Crystal Cavity. Nano Letters, 2019, 19, 3543-3547.	9.1	32
48	Sign-Reversing Hall Effect in Atomically Thin High-Temperature <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>Bi</mml:mi></mml:mrow><mm 122,="" 2019,="" 247001.<="" letters,="" physical="" review="" td=""><td>:mrow><n< td=""><td>nmi:mn>2.1<</td></n<></td></mm></mml:msub></mml:mrow></mml:mrow></mml:math>	:mrow> <n< td=""><td>nmi:mn>2.1<</td></n<>	nmi:mn>2.1<
49	Interlayer fractional quantum Hall effect in a coupled graphene double layer. Nature Physics, 2019, 15, 893-897.	16.7	53
50	Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nature Materials, 2019, 18, 448-453.	27.5	454
51	Graphene transistor based on tunable Dirac fermion optics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6575-6579.	7.1	34
52	Tunneling Spectroscopy of Quantum Hall States in Bilayer Graphene pâ"n Junctions. Physical Review Letters, 2019, 122, 146801.	7.8	7
53	Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Science Advances, 2019, 5, eaau7171.	10.3	71
54	Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene. Nature Communications, 2019, 10, 5333.	12.8	171

#	Article	IF	Citations
55	Guiding Dirac Fermions in Graphene with a Carbon Nanotube. Physical Review Letters, 2019, 123, 216804.	7.8	27
56	Single Crystals of Electrically Conductive Two-Dimensional Metal–Organic Frameworks: Structural and Electrical Transport Properties. ACS Central Science, 2019, 5, 1959-1964.	11.3	211
57	Impact of geometry and non-idealities on electron "optics―based graphene p-n junction devices. Applied Physics Letters, 2019, 114, .	3.3	17
58	Electron-phonon instability in graphene revealed by global and local noise probes. Science, 2019, 364, 154-157.	12.6	47
59	Polariton Meta-Optics with Phase-Change Materials. , 2019, , .		0
60	Reconfigurable mid-infrared optical elements using phase change materials. , 2019, , .		1
61	Logarithmic singularities and quantum oscillations in magnetically doped topological insulators. Physical Review B, 2018, 97, .	3.2	4
62	Guided Modes of Anisotropic van der Waals Materials Investigated by near-Field Scanning Optical Microscopy. ACS Photonics, 2018, 5, 1196-1201.	6.6	15
63	Large Excitonic Reflectivity of Monolayer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoSe</mml:mi></mml:mrow><mml:mrow><i 037402.<="" 120,="" 2018.="" boron="" hexagonal="" in="" letters.="" nitride.="" physical="" review="" td=""><td>mml:mn>2</td><td>2<!--<mark-->1651:mn></td></i></mml:mrow></mml:msub></mml:mrow></mml:math>	mml:mn>2	2 <mark 1651:mn>
64	Controlled Electrochemical Intercalation of Graphene/ <i>h-</i> BN van der Waals Heterostructures. Nano Letters, 2018, 18, 460-466.	9.1	49
65	Electrical control of charged carriers and excitons in atomically thin materials. Nature Nanotechnology, 2018, 13, 128-132.	31.5	142
66	Imaging electron flow from collimating contacts in graphene. 2D Materials, 2018, 5, 021003.	4.4	13
67	Signatures of long-range-correlated disorder in the magnetotransport of ultrathin topological insulators. Physical Review B, 2018, 98, .	3.2	16
68	Photonic crystals for nano-light in moiré graphene superlattices. Science, 2018, 362, 1153-1156.	12.6	273
69	Imaging quantum dot formation in MoS ₂ nanostructures. Nanotechnology, 2018, 29, 42LT03.	2.6	6
70	Dirac electrons in a dodecagonal graphene quasicrystal. Science, 2018, 361, 782-786.	12.6	223
71	Selective excitation and imaging of ultraslow phonon polaritons in thin hexagonal boron nitride crystals. Light: Science and Applications, 2018, 7, 27.	16.6	75
72	Band structure engineering of 2D materials using patterned dielectric superlattices. Nature Nanotechnology, 2018, 13, 566-571.	31.5	157

#	Article	IF	CITATIONS
73	Measuring the Local Twist Angle and Layer Arrangement in Van der Waals Heterostructures. Physica Status Solidi (B): Basic Research, 2018, 255, 1800191.	1.5	11
74	Valleytronics: Opportunities, Challenges, and Paths Forward. Small, 2018, 14, e1801483.	10.0	221
75	Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures. Science Advances, 2018, 4, eaat7189.	10.3	100
76	Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature, 2018, 558, 425-429.	27.8	184
77	Imaging of Ultra-Confined Phonon Polaritons in Hexagonal Boron Nitride on Gold. , 2018, , .		1
78	New nano-photonics based on vdW materials. , 2018, , .		0
79	Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit. Science, 2017, 355, 503-507.	12.6	110
80	Frank–van der Merwe Growth versus Volmer–Weber Growth in Successive Stacking of a Fewâ€Layer Bi ₂ Te ₃ Te ₃ by van der Waals Heteroepitaxy: The Critical Roles of Finite Latticeâ€Mismatch with Seed Substrates. Advanced Electronic Materials, 2017, 3, 1600375.	5.1	25
81	Unbalanced Hole and Electron Diffusion in Lead Bromide Perovskites. Nano Letters, 2017, 17, 1727-1732.	9.1	100
82	Holography of the Dirac Fluid in Graphene with Two Currents. Physical Review Letters, 2017, 118, 036601.	7.8	39
83	Analysis of Scanned Probe Images for Magnetic Focusing in Graphene. Journal of Electronic Materials, 2017, 46, 3837-3841.	2.2	6
84	Epitaxially Selfâ€Assembled Alkane Layers for Graphene Electronics. Advanced Materials, 2017, 29, 1603925.	21.0	24
85	Quantum Hall drag of exciton condensate inÂgraphene. Nature Physics, 2017, 13, 746-750.	16.7	173
86	Inducing superconducting correlation in quantum Hall edge states. Nature Physics, 2017, 13, 693-698.	16.7	132
87	Plasmon Reflections by Topological Electronic Boundaries in Bilayer Graphene. Nano Letters, 2017, 17, 7080-7085.	9.1	48
88	Graphene-Based Josephson-Junction Single-Photon Detector. Physical Review Applied, 2017, 8, .	3.8	74
89	Imaging Electron Motion in a Few Layer MoS2 Device. Journal of Physics: Conference Series, 2017, 864, 012031.	0.4	4
90	Mechanical Detection and Imaging of Hyperbolic Phonon Polaritons in Hexagonal Boron Nitride. ACS Nano, 2017, 11, 8741-8746.	14.6	48

#	Article	IF	CITATIONS
91	Frictional Magneto-Coulomb Drag in Graphene Double-Layer Heterostructures. Physical Review Letters, 2017, 119, 056802.	7.8	20
92	Single Electron Transistor with Single Aromatic Ring Molecule Covalently Connected to Graphene Nanogaps. Nano Letters, 2017, 17, 5335-5341.	9.1	50
93	Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites. Nano Letters, 2017, 17, 5734-5739.	9.1	94
94	Curved paths of electron–hole pairs. Nature Materials, 2017, 16, 1169-1170.	27.5	2
95	Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nature Nanotechnology, 2017, 12, 856-860.	31.5	270
96	Low-Temperature Ohmic Contact to Monolayer MoS ₂ by van der Waals Bonded Co/ <i>h</i> h>BN Electrodes. Nano Letters, 2017, 17, 4781-4786.	9.1	233
97	Thermal Transport Signatures of Broken-Symmetry Phases in Graphene. Physical Review Letters, 2017, 119, 027601.	7.8	11
98	Graphene and Relativistic Quantum Physics. Progress in Mathematical Physics, 2017, , 1-23.	0.4	4
99	Mapping Periodic Lattice Distortions in Exfoliated Dichalchogenides with Atomic Resolution cryo-STEM. Microscopy and Microanalysis, 2016, 22, 1550-1551.	0.4	O
100	Thickness and Stacking Sequence Determination of Exfoliated Dichalchogenides Using Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 1456-1457.	0.4	0
101	Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires. Journal of Applied Physics, 2016, 119, .	2.5	23
102	Two-dimensional van der Waals materials. Physics Today, 2016, 69, 38-44.	0.3	381
103	Li Intercalation into Graphite: Direct Optical Imaging and Cahn–Hilliard Reaction Dynamics. Journal of Physical Chemistry Letters, 2016, 7, 2151-2156.	4.6	92
104	Patterning Superatom Dopants on Transition Metal Dichalcogenides. Nano Letters, 2016, 16, 3385-3389.	9.1	47
105	Atomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS) Tj ETQq1 1 0.784314	ł rgBT /Ov 7.1	erlock 10 T 86
106	Molecular beam epitaxial growth and electronic transport properties of high quality topological insulator Bi ₂ Se ₃ thin films on hexagonal boron nitride. 2D Materials, 2016, 3, 035029.	4.4	24
107	Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene. Physical Review B, 2016, 93, .	3.2	149
108	Enhanced Thermoelectric Power in Graphene: Violation of the Mott Relation by Inelastic Scattering. Physical Review Letters, 2016, 116, 136802.	7.8	142

#	Article	IF	Citations
109	Ambipolar transport and magneto-resistance crossover in a Mott insulator, Sr ₂ IrO ₄ . Journal of Physics Condensed Matter, 2016, 28, 505304.	1.8	14
110	Study of Graphene-based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Device Fabricated by All-Dry Transfer Process. ACS Applied Materials & Device Fabricated by All-Dry Transfer Process.	8.0	48
111	Modulation of mechanical resonance by chemical potential oscillation in graphene. Nature Physics, 2016, 12, 240-244.	16.7	47
112	Nature of the quantum metal in a two-dimensional crystalline superconductor. Nature Physics, 2016, 12, 208-212.	16.7	228
113	Specular interband Andreev reflections at van der Waals interfaces between graphene and NbSe2. Nature Physics, 2016, 12, 328-332.	16.7	159
114	Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. Science, 2016, 351, 1058-1061.	12.6	491
115	Imaging Cyclotron Orbits of Electrons in Graphene. Nano Letters, 2016, 16, 1690-1694.	9.1	68
116	van der Waals Solids from Self-Assembled Nanoscale Building Blocks. Nano Letters, 2016, 16, 1445-1449.	9.1	56
117	Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nature Nanotechnology, 2016, 11, 426-431.	31.5	287
118	Optical characterization of van der Waals materials via near-field microscopy. , 2016, , .		0
119	Tunable electronic correlation effects in nanotube-light interactions. Physical Review B, 2015, 92, .	3.2	13
120	Development of high frequency and wide bandwidth Johnson noise thermometry. Applied Physics Letters, 2015, 106, .	3.3	31
121	Photocurrent gain in graphene-silicon p-i-n junction. , 2015, , .		0
122	Dopant Segregation in Polycrystalline Monolayer Graphene. Nano Letters, 2015, 15, 1428-1436.	9.1	19
123	Diameter-dependent thermoelectric figure of merit in single-crystalline Bi nanowires. Nanoscale, 2015, 7, 5053-5059.	5.6	55
124	Landau Level Spectroscopy of Electron-Electron Interactions in Graphene. Physical Review Letters, 2015, 114, 126804.	7.8	52
125	Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS ₂ Heterostructure Devices. Nano Letters, 2015, 15, 5017-5024.	9.1	150
126	Electric field effects in graphene/LaAlO ₃ /SrTiO ₃ heterostructures and nanostructures. APL Materials, 2015, 3, 062502.	5.1	17

#	Article	IF	Citations
127	Highly Stable, Dual-Gated MoS ₂ Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage. ACS Nano, 2015, 9, 7019-7026.	14.6	331
128	A Material Framework for Beyond-CMOS Devices. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2015, 1, 19-27.	1.5	3
129	Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotechnology, 2015, 10, 534-540.	31.5	1,099
130	Ultraclean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films. Nano Letters, 2015, 15, 3236-3240.	9.1	101
131	Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio. ACS Nano, 2015, 9, 9034-9042.	14.6	56
132	Structure and control of charge density waves in two-dimensional 1T-TaS ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15054-15059.	7.1	205
133	Flexible Electronics: Flexible and Transparent Gas Molecule Sensor Integrated with Sensing and Heating Graphene Layers (Small 18/2014). Small, 2014, 10, 3812-3812.	10.0	7
134	Weak antilocalization and conductance fluctuation in a single crystalline Bi nanowire. Applied Physics Letters, 2014, 104, .	3.3	27
135	Experimental Manifestation of Berry Phase in Graphene. Nanoscience and Technology, 2014, , 3-27.	1.5	2
136	Epitaxial Growth of Molecular Crystals on van der Waals Substrates for Highâ€Performance Organic Electronics. Advanced Materials, 2014, 26, 2812-2817.	21.0	120
137	Flexible and Transparent Gas Molecule Sensor Integrated with Sensing and Heating Graphene Layers. Small, 2014, 10, 3685-3691.	10.0	142
138	Ferromagnetic Ordering in Superatomic Solids. Journal of the American Chemical Society, 2014, 136, 16926-16931.	13.7	58
139	Heterostructures based on inorganic and organic van der Waals systems. APL Materials, 2014, 2, .	5.1	57
140	Electronic transport in nanoparticle monolayers sandwiched between graphene electrodes. Nanoscale, 2014, 6, 14158-14162.	5.6	8
141	Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotechnology, 2014, 9, 676-681.	31.5	1,953
142	Graphene nanoribbon devices at high bias. Nano Convergence, 2014, 1, 1.	12.1	84
143	Organic Field Effect Transistors Based on Graphene and Hexagonal Boron Nitride Heterostructures. Advanced Functional Materials, 2014, 24, 5157-5163.	14.9	64
144	Tunable fractional quantum Hall phases in bilayer graphene. Science, 2014, 345, 61-64.	12.6	137

#	Article	IF	CITATIONS
145	Measurement of collective dynamical mass of Dirac fermions in graphene. Nature Nanotechnology, 2014, 9, 594-599.	31.5	53
146	Plasmonics with two-dimensional conductors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130104.	3.4	19
147	Direct Imaging of Charged Impurity Density in Common Graphene Substrates. Nano Letters, 2013, 13, 3576-3580.	9.1	70
148	Flexible and Transparent MoS ₂ Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano, 2013, 7, 7931-7936.	14.6	947
149	One-Dimensional Electrical Contact to a Two-Dimensional Material. Science, 2013, 342, 614-617.	12.6	2,236
150	The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science, 2013, 342, 720-723.	12.6	977
151	Shape-dependent two-photon absorption in two-dimensionally extended benzoporphyrin arrays. Physical Chemistry Chemical Physics, 2013, 15, 10612.	2.8	16
152	Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nature Physics, 2013, 9, 154-158.	16.7	138
153	Electrically integrated SU-8 clamped graphene drum resonators for strain engineering. Applied Physics Letters, 2013, 102, 153101.	3.3	67
154	Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nature Communications, 2013, 4, 1624.	12.8	595
155	Graphene Field-Effect Transistors Based on Boron–Nitride Dielectrics. Proceedings of the IEEE, 2013, 101, 1609-1619.	21.3	137
156	Nanoscale Atoms in Solid-State Chemistry. Science, 2013, 341, 157-160.	12.6	199
157	Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature, 2013, 497, 598-602.	27.8	1,404
158	Magnetoresistance Measurements of Graphene at the Charge Neutrality Point. Physical Review Letters, 2012, 108, 106804.	7.8	87
159	Allâ€optical structure assignment of individual singleâ€walled carbon nanotubes from Rayleigh and Raman scattering measurements. Physica Status Solidi (B): Basic Research, 2012, 249, 2436-2441.	1.5	10
160	Graphene based heterostructures. Solid State Communications, 2012, 152, 1275-1282.	1.9	184
161	Renormalization of the Graphene Dispersion Velocity Determined from Scanning Tunneling Spectroscopy. Physical Review Letters, 2012, 109, 116802.	7.8	86
162	Electronic compressibility of layer-polarized bilayer graphene. Physical Review B, 2012, 85, .	3.2	121

#	Article	IF	CITATIONS
163	Water-Gated Charge Doping of Graphene Induced by Mica Substrates. Nano Letters, 2012, 12, 648-654.	9.1	166
164	Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science, 2012, 336, 1140-1143.	12.6	862
165	Spin and valley quantum Hall ferromagnetism inÂgraphene. Nature Physics, 2012, 8, 550-556.	16.7	307
166	Large Physisorption Strain in Chemical Vapor Deposition of Graphene on Copper Substrates. Nano Letters, 2012, 12, 2408-2413.	9.1	122
167	Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene. Nano Letters, 2012, 12, 4025-4031.	9.1	471
168	Tailoring Electrical Transport Across Grain Boundaries in Polycrystalline Graphene. Science, 2012, 336, 1143-1146.	12.6	535
169	Terahertz detection mechanism and contact capacitance of individual metallic single-walled carbon nanotubes. Applied Physics Letters, 2012, 100, 163503.	3.3	25
170	Singleâ€Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping. Advanced Materials, 2012, 24, 407-411.	21.0	228
171	Toward carbon based quantum electronics: Quantum transport in graphene heterojunctions. , 2011, , .		1
172	Nanocrystalline Graphite Growth on Sapphire by Carbon Molecular Beam Epitaxy. Journal of Physical Chemistry C, 2011, 115, 4491-4494.	3.1	113
173	Synthesis and Electrical Characterization of Magnetic Bilayer Graphene Intercalate. Nano Letters, 2011, 11, 860-865.	9.1	92
174	Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method. Nanotechnology, 2011, 22, 295707.	2.6	27
175	High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon. Applied Physics Letters, 2011, 99, .	3.3	62
176	Measurement of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ν</mml:mi><mml:mo><</mml:mo><<mml:mn>1</mml:mn><mml:mo>/</mml:mo><< Quantum Hall Energy Gap in Suspended Graphene. Physical Review Letters, 2011, 106, 046801.</mml:math>	mm .la mn>	3 <i>< ท</i> ิพิml:mn> <
177	Visualizing Individual Nitrogen Dopants in Monolayer Graphene. Science, 2011, 333, 999-1003.	12.6	774
178	Single-layer graphene cathodes for organic photovoltaics. Applied Physics Letters, 2011, 98, .	3.3	60
179	Channel Length Scaling in Graphene Field-Effect Transistors Studied with Pulsed Currentâ [°] Voltage Measurements. Nano Letters, 2011, 11, 1093-1097.	9.1	135
180	Multiband transport in bilayer graphene at high carrier densities. Physical Review B, 2011, 84, .	3.2	30

#	Article	IF	CITATIONS
181	Raman Spectroscopy of Lithographically Patterned Graphene Nanoribbons. ACS Nano, 2011, 5, 4123-4130.	14.6	148
182	Making angle-resolved photoemission measurements on corrugated monolayer crystals: Suspended exfoliated single-crystal graphene. Physical Review B, 2011, 84, .	3.2	47
183	Collapse of Landau Levels in Gated Graphene Structures. Physical Review Letters, 2011, 106, 066601.	7.8	48
184	Spatially Resolved Electric and Thermal Properties Study of Graphene Field Effect Devices. , 2011, , .		0
185	Cyclotron Resonance near the Charge Neutrality Point of Graphene. , 2011, , .		3
186	Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nature Nanotechnology, 2011, 6, 126-132.	31.5	360
187	Multicomponent fractional quantum Hall effect inÂgraphene. Nature Physics, 2011, 7, 693-696.	16.7	405
188	Low Bias Electron Scattering in Structure-Identified Single Wall Carbon Nanotubes: Role of Substrate Polar Phonons. Physical Review Letters, 2011, 107, 146601.	7.8	16
189	Electronic Transport in Graphene Heterostructures. Annual Review of Condensed Matter Physics, 2011, 2, 101-120.	14.5	92
190	Inking Elastomeric Stamps with Microâ€Patterned, Single Layer Graphene to Create Highâ€Performance OFETs. Advanced Materials, 2011, 23, 3531-3535.	21.0	100
191	Multilayer graphene grown by precipitation upon cooling of nickel on diamond. Carbon, 2011, 49, 1006-1012.	10.3	56
192	Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Applied Physics Letters, 2011, 99, .	3.3	425
193	Bolometric and nonbolometric radio frequency detection in a metallic single-walled carbon nanotube. Applied Physics Letters, 2011, 98, .	3.3	18
194	Electron Transport in Disordered Graphene Nanoribbons. Physical Review Letters, 2010, 104, 056801.	7.8	456
195	Multilayer graphene films grown by molecular beam deposition. Solid State Communications, 2010, 150, 809-811.	1.9	35
196	Across the border. Nature Materials, 2010, 9, 792-793.	27.5	57
197	Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010, 5, 722-726.	31.5	5,794
198	Radio frequency electrical transduction of graphene mechanical resonators. Applied Physics Letters, 2010, 97, .	3.3	112

#	Article	IF	Citations
199	Observation of Magnetophonon Resonance of Dirac Fermions in Graphite. Physical Review Letters, 2010, 105, 227401.	7.8	47
200	Quantum oscillations observed in graphene at microwave frequencies. Applied Physics Letters, 2010, 97, 062113.	3.3	9
201	Diameter Dependence of the Transport Properties of Antimony Telluride Nanowires. Nano Letters, 2010, 10, 3037-3040.	9.1	111
202	Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO ₂ Substrate. Nano Letters, 2010, 10, 4944-4951.	9.1	706
203	Energy Loss of the Electron System in Individual Single-Walled Carbon Nanotubes. Nano Letters, 2010, 10, 4538-4543.	9.1	22
204	Graphene field-effect transistors based on boron nitride gate dielectrics. , 2010, , .		67
205	Raman Enhancement on Graphene: Adsorbed and Intercalated Molecular Species. ACS Nano, 2010, 4, 7005-7013.	14.6	137
206	Electron and Optical Phonon Temperatures in Electrically Biased Graphene. Physical Review Letters, 2010, 104, 227401.	7.8	190
207	Symmetry Breaking in the Zero-Energy Landau Level in Bilayer Graphene. Physical Review Letters, 2010, 104, 066801.	7.8	153
208	Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities. Physical Review Letters, 2010, 105, 256805.	7.8	801
209	Corrugation in Exfoliated Graphene: An Electron Microscopy and Diffraction Study. ACS Nano, 2010, 4, 4879-4889.	14.6	78
210	Interaction-Induced Shift of the Cyclotron Resonance of Graphene Using Infrared Spectroscopy. Physical Review Letters, 2010, 104, 067404.	7.8	91
211	HenriksenetÂal.Reply:. Physical Review Letters, 2010, 105, .	7.8	1
212	Optical phonon mixing in bilayer graphene with a broken inversion symmetry. Physical Review B, 2009, 80, .	3.2	73
213	Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457, 706-710.	27.8	9,624
214	Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature, 2009, 460, 498-501.	27.8	338
215	Observation of the fractional quantum Hall effect in graphene. Nature, 2009, 462, 196-199.	27.8	877
216	Performance of monolayer graphene nanomechanical resonators with electrical readout. Nature Nanotechnology, 2009, 4, 861-867.	31.5	847

#	Article	IF	CITATIONS
217	Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Physics, 2009, 5, 222-226.	16.7	1,011
218	Observation of Graphene Bubbles and Effective Mass Transport under Graphene Films. Nano Letters, 2009, 9, 332-337.	9.1	198
219	Thermal probing of energy dissipation in current-carrying carbon nanotubes. Journal of Applied Physics, 2009, 105, .	2.5	97
220	Charge Transfer Chemical Doping of Few Layer Graphenes: Charge Distribution and Band Gap Formation. Nano Letters, 2009, 9, 4133-4137.	9.1	263
221	Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy. Physical Review Letters, 2009, 102, 037403.	7.8	223
222	Tuning the Graphene Work Function by Electric Field Effect. Nano Letters, 2009, 9, 3430-3434.	9.1	1,255
223	Thermoelectric power measurements of wide band gap semiconducting nanowires. Applied Physics Letters, 2009, 94, 022106.	3.3	82
224	Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene. Physical Review Letters, 2009, 102, 096807.	7.8	639
225	Molecular-Scale Quantum Dots from Carbon Nanotube Heterojunctions. Nano Letters, 2009, 9, 1544-1548.	9.1	31
226	Graphene nanoribbon devices and quantum heterojunction devices., 2009,,.		5
227	NEMS applications of graphene. , 2009, , .		4
228	Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146, 351-355.	1.9	6,963
229	Temperature-Dependent Transport in Suspended Graphene. Physical Review Letters, 2008, 101, 096802.	7.8	1,044
230	Carbon Wonderland. Scientific American, 2008, 298, 90-97.	1.0	260
231	Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotechnology, 2008, 3, 654-659.	31.5	1,426
232	Dirac charge dynamics in graphene by infrared spectroscopy. Nature Physics, 2008, 4, 532-535.	16.7	1,111
233	Reversible Basal Plane Hydrogenation of Graphene. Nano Letters, 2008, 8, 4597-4602.	9.1	513
234	Characterization and modeling of graphene field-effect devices. , 2008, , .		14

#	Article	IF	CITATIONS
235	Spectromicroscopy of single and multilayer graphene supported by a weakly interacting substrate. Physical Review B, 2008, 78, .	3.2	105
236	RF performance of top-gated, zero-bandgap graphene field-effect transistors. , 2008, , .		92
237	Cyclotron Resonance in Bilayer Graphene. Physical Review Letters, 2008, 100, 087403.	7.8	178
238	Observation of Anomalous Phonon Softening in Bilayer Graphene. Physical Review Letters, 2008, 101, 136804.	7.8	160
239	Scanning Tunneling Microscope Studies of Ultrathin Graphitic (Graphene) Films on an Insulating Substrate under Ambient Conditions. Journal of Physical Chemistry C, 2008, 112, 6681-6688.	3.1	12
240	GRAPHENE IN EXTREMELY HIGH MAGNETIC FIELDS. International Journal of Modern Physics B, 2007, 21, 1123-1130.	2.0	5
241	Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes. Physical Review Letters, 2007, 98, 186808.	7.8	285
242	Electronic transport in locally gated graphene nanoconstrictions. Applied Physics Letters, 2007, 91, .	3.3	171
243	Infrared Spectroscopy of Landau Levels of Graphene. Physical Review Letters, 2007, 98, 197403.	7.8	501
244	Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene. Physical Review Letters, 2007, 98, 166802.	7.8	996
245	Measurement of Scattering Rate and Minimum Conductivity in Graphene. Physical Review Letters, 2007, 99, 246803.	7.8	905
246	Electronic Transport and Quantum Hall Effect in Bipolar Graphene <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi><mml:mi><mml:mi><mml:mi><mml:mi>> mathvariant="normal">â°<mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:math> Junctions. Physical Review	7.8	434
247	Quantum Hall effect in graphene. Solid State Communications, 2007, 143, 14-19.	1.9	157
248	Raman scattering and tunable electron–phonon coupling in single layer graphene. Solid State Communications, 2007, 143, 39-43.	1.9	43
249	Electronic transport measurements in graphene nanoribbons. Physica Status Solidi (B): Basic Research, 2007, 244, 4134-4137.	1.5	32
250	Quantum Hall States near the Charge-Neutral Dirac Point in Graphene. Physical Review Letters, 2007, 99, 106802.	7.8	329
251	Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters, 2007, 98, 206805.	7.8	4,635
252	High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9209-9212.	7.1	553

#	Article	IF	Citations
253	Room-Temperature Quantum Hall Effect in Graphene. Science, 2007, 315, 1379-1379.	12.6	2,662
254	Temperature dependent electron transport in graphene. European Physical Journal: Special Topics, 2007, 148, 15-18.	2.6	170
255	Landau-Level Splitting in Graphene in High Magnetic Fields. Physical Review Letters, 2006, 96, 136806.	7.8	694
256	Unusually High Thermal Conductivity in Carbon Nanotubes. , 2006, , 227-265.		27
257	Chemoresponsive monolayer transistors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11452-11456.	7.1	141
258	Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules. Science, 2006, 311, 356-359.	12.6	438
259	Unusual transport properties in carbon based nanoscaled materials: nanotubes and graphene. Physica Status Solidi (B): Basic Research, 2006, 243, 3418-3422.	1.5	39
260	Electron Transport in a Multichannel One-Dimensional Conductor: Molybdenum Selenide Nanowires. Physical Review Letters, 2006, 96, 076601.	7.8	118
261	Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438, 201-204.	27.8	12,153
262	Extracting subnanometer single shells from ultralong multiwalled carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14155-14158.	7.1	64
263	Directing and Sensing Changes in Molecular Conformation on Individual Carbon Nanotube Field Effect Transistors. Journal of the American Chemical Society, 2005, 127, 15045-15047.	13.7	162
264	Quasi-Continuous Growth of Ultralong Carbon Nanotube Arrays. Journal of the American Chemical Society, 2005, 127, 15336-15337.	13.7	131
265	Electric Field Modulation of Galvanomagnetic Properties of Mesoscopic Graphite. Physical Review Letters, 2005, 94, 176803.	7.8	385
266	Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Applied Physics Letters, 2005, 86, 073104.	3.3	368
267	Growth of nanotubes and chemical sensor applications. , 2004, , .		2
268	THERMOPOWER MEASUREMENT OF INDIVIDUAL SINGLE WALLED CARBON NANOTUBES. Microscale Thermophysical Engineering, 2004, 8, 1-5.	1.2	18
269	Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Communications, 2003, 127, 181-186.	1.9	122
270	Thermal conductivity of individual silicon nanowires. Applied Physics Letters, 2003, 83, 2934-2936.	3.3	1,536

#	Article	IF	Citations
271	Alcohol Vapor Sensors Based on Single-Walled Carbon Nanotube Field Effect Transistors. Nano Letters, 2003, 3, 877-881.	9.1	308
272	Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device. Journal of Heat Transfer, 2003, 125, 881-888.	2.1	698
273	Modulation of Thermoelectric Power of Individual Carbon Nanotubes. Physical Review Letters, 2003, 91, 256801.	7.8	251
274	Conductance measurement of single-walled carbon nanotubes in aqueous environment. Applied Physics Letters, 2003, 82, 2338-2340.	3.3	32
275	Nanoscale Thermal and Thermoelectric Mapping of Semiconductor Devices and Interconnects. AIP Conference Proceedings, 2003, , .	0.4	0
276	Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physica B: Condensed Matter, 2002, 323, 67-70.	2.7	118
277	Charge density wave formation in nanocrystals. Solid State Physics, 2001, , 119-157.	0.5	3
278	Thermal Transport Measurements of Individual Multiwalled Nanotubes. Physical Review Letters, 2001, 87, 215502.	7.8	2,853
279	STM study of single-walled carbon nanotubes. Carbon, 2000, 38, 1741-1744.	10.3	39
280	Structure and Electronic Properties of Carbon Nanotubes. Journal of Physical Chemistry B, 2000, 104, 2794-2809.	2.6	646
281	Electronic structures and applications of carbon nanotubes., 1999,,.		0
282	Structure of flux line lattices with weak disorder at large length scales. Physical Review B, 1999, 60, R12589-R12592.	3.2	23
283	Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States. Physical Review Letters, 1999, 82, 1225-1228.	7.8	343
284	Nanotube Nanotweezers. Science, 1999, 286, 2148-2150.	12.6	1,119
285	Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391, 62-64.	27.8	2,355
286	Scanning Tunneling Microscopy and Spectroscopy Studies of Single Wall Carbon Nanotubes. Journal of Materials Research, 1998, 13, 2380-2388.	2.6	48
287	Single-walled carbon nanotube probes for high-resolution nanostructure imaging. Applied Physics Letters, 1998, 73, 3465-3467.	3.3	169
288	Creation of Nanocrystals Through a Solid-Solid Phase Transition Induced by an STM Tip. Science, 1996, 274, 757-760.	12.6	59

PHILIP KIM

#	Article	IF	CITATIONS
289	Creation of Nanocrystals Via a Tip-Induced Solid-Solid Transformation. Materials Research Society Symposia Proceedings, 1996, 466, 89.	0.1	2
290	Vortex Lattice Structure inBi2Sr2CaCu2O8+δat High Temperatures. Physical Review Letters, 1996, 77, 5118-5121.	7.8	22
291	Electric field effect transport in mesoscopic graphite and graphene. , 0, , .		0