Michelangelo Cordenonsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6345025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanosignaling in vertebrate development. Developmental Biology, 2022, 488, 54-67.	2.0	12
2	YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS–STING. Nature, 2022, 607, 790-798.	27.8	89
3	Single-cell analyses reveal YAP/TAZ as regulators of stemness and cell plasticity in glioblastoma. Nature Cancer, 2021, 2, 174-188.	13.2	83
4	Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ. Nature Communications, 2021, 12, 2340.	12.8	43
5	Broadly Applicable Hydrogel Fabrication Procedures Guided by Yap/Tazâ€Activity Reveal Stiffness, Adhesiveness and Nuclear Projected Area as Checkpoints for Mechanosensing. Advanced Healthcare Materials, 2021, , 2102276.	7.6	4
6	Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nature Materials, 2020, 19, 797-806.	27.5	140
7	Cell phenotypic plasticity requires autophagic flux driven by YAP/TAZ mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17848-17857.	7.1	98
8	YAP and TAZ: a signalling hub of the tumour microenvironment. Nature Reviews Cancer, 2019, 19, 454-464.	28.4	252
9	The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature, 2018, 563, 265-269.	27.8	224
10	Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nature Medicine, 2018, 24, 1599-1610.	30.7	228
11	De Novo Generation of Somatic Stem Cells by YAP/TAZ. Journal of Visualized Experiments, 2018, , .	0.3	2
12	YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nature Communications, 2017, 8, 15206.	12.8	225
13	Mechanobiology of YAP and TAZ in physiology and disease. Nature Reviews Molecular Cell Biology, 2017, 18, 758-770.	37.0	879
14	YAP/TAZ as therapeutic targets in cancer. Current Opinion in Pharmacology, 2016, 29, 26-33.	3.5	174
15	Induction of Expandable Tissue-Specific Stem/Progenitor Cells through Transient Expression of YAP/TAZ. Cell Stem Cell, 2016, 19, 725-737.	11.1	204
16	YAP/TAZ at the Roots of Cancer. Cancer Cell, 2016, 29, 783-803.	16.8	1,409
17	The apical ectodermal ridge of the mouse model of ectrodactylyDlx5;Dlx6â^'/â^'shows altered stratification and cell polarity, which are restored by exogenous Wnt5a ligand. Human Molecular Genetics, 2016, 25, 740-754.	2.9	13
18	ZO-oming on growth control by junctional proteins. Cell Cycle, 2015, 14, 472-472.	2.6	1

#	Article	IF	CITATIONS
19	Genome-wide association between YAP/TAZ/TEAD andÂAP-1 at enhancers drives oncogenic growth. Nature Cell Biology, 2015, 17, 1218-1227.	10.3	865
20	Metabolic control of YAP and TAZ by the mevalonate pathway. Nature Cell Biology, 2014, 16, 357-366.	10.3	630
21	YAP/TAZ Incorporation in the β-Catenin Destruction Complex Orchestrates the Wnt Response. Cell, 2014, 158, 157-170.	28.9	873
22	The Biology of YAP/TAZ: Hippo Signaling and Beyond. Physiological Reviews, 2014, 94, 1287-1312.	28.8	1,336
23	BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial–mesenchymal transition. Oncogene, 2013, 32, 1843-1853.	5.9	94
24	Molecular Pathways: YAP and TAZ Take Center Stage in Organ Growth and Tumorigenesis. Clinical Cancer Research, 2013, 19, 4925-4930.	7.0	135
25	Regulation of YAP and TAZ by Epithelial Plasticity. , 2013, , 89-113.		1
26	Signaling crosstalk between TGFβ and Dishevelled/Par1b. Cell Death and Differentiation, 2012, 19, 1689-1697.	11.2	11
27	Self-regulation of the head-inducing properties of the Spemann organizer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15354-15359.	7.1	24
28	Role of TAZ as Mediator of Wnt Signaling. Cell, 2012, 151, 1443-1456.	28.9	419
29	SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature, 2012, 487, 380-384.	27.8	213
30	USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nature Cell Biology, 2011, 13, 1368-1375.	10.3	182
31	The Hippo Transducer TAZ Confers Cancer Stem Cell-Related Traits on Breast Cancer Cells. Cell, 2011, 147, 759-772.	28.9	1,115
32	Role of YAP/TAZ in mechanotransduction. Nature, 2011, 474, 179-183.	27.8	4,288
33	A MicroRNA Targeting Dicer for Metastasis Control. Cell, 2010, 141, 1195-1207.	28.9	619
34	FAM/USP9x, a Deubiquitinating Enzyme Essential for TGFÎ ² Signaling, Controls Smad4 Monoubiquitination. Cell, 2009, 136, 123-135.	28.9	442
35	A Mutant-p53/Smad Complex Opposes p63 to Empower TGFβ-Induced Metastasis. Cell, 2009, 137, 87-98.	28.9	717
36	Integration of TGF-Â and Ras/MAPK Signaling Through p53 Phosphorylation. Science, 2007, 315, 840-843.	12.6	199

3

#	Article	IF	CITATIONS
37	MicroRNA control of Nodal signalling. Nature, 2007, 449, 183-188.	27.8	177
38	Emilin1 Links TGF-Î ² Maturation to Blood Pressure Homeostasis. Cell, 2006, 124, 929-942.	28.9	274
39	Germ-Layer Specification and Control of Cell Growth by Ectodermin, a Smad4 Ubiquitin Ligase. Cell, 2005, 121, 87-99.	28.9	316
40	The activity of the Nodal antagonist <i>Cerl-2</i> in the mouse node is required for correct L/R body axis. Genes and Development, 2004, 18, 2342-2347.	5.9	164
41	Convergence of p53 and TGF-beta signaling networks. Cancer Letters, 2004, 213, 129-138.	7.2	66
42	Links between Tumor Suppressors. Cell, 2003, 113, 301-314.	28.9	361
43	Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proceedings of the United States of America, 2003, 100, 3299-3304.	7.1	730
44	Interaction of Junctional Adhesion Molecule with the Tight Junction Components ZO-1, Cingulin, and Occludin. Journal of Biological Chemistry, 2000, 275, 20520-20526.	3.4	411
45	Cingulin Contains Globular and Coiled-Coil Domains and Interacts with Zo-1, Zo-2, Zo-3, and Myosin. Journal of Cell Biology, 1999, 147, 1569-1582.	5.2	267
46	Xenopus laevis occludin . Identification of in vitro phosphorylation sites by protein kinase CK2 and association with cingulin. FEBS Journal, 1999, 264, 374-384.	0.2	73
47	The Molecular Basis for the Structure, Function, and Regulation of Tight Junctions. Advances in Molecular and Cell Biology, 1999, 28, 203-233.	0.1	6
48	Tight junction proteins1This review is dedicated to the memory of Thomas Kreis.1. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1448, 1-11.	4.1	85