Nidia C Gallego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6344297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of microstructure and temperature on nuclear graphite oxidation using the 3D Random Pore Model. Carbon, 2022, 191, 132-145.	10.3	11
2	Using porous random fields to predict the elastic modulus of unoxidized and oxidized superfine graphite. Materials and Design, 2022, 220, 110840.	7.0	5
3	Multiscale characterization and comparison of historical and modern nuclear graphite grades. Materials Characterization, 2022, 190, 112047.	4.4	20
4	Chemical and Morphological Structure of Transgenic Switchgrass Organosolv Lignin Extracted by Ethanol, Tetrahydrofuran, and γ-Valerolactone Pretreatments. ACS Sustainable Chemistry and Engineering, 2022, 10, 9041-9052.	6.7	10
5	Electron tomography of unirradiated and irradiated nuclear graphite. Journal of Nuclear Materials, 2021, 545, 152649.	2.7	9
6	Fine grinding of thermoplastics by high speed friction grinding assisted by guar gum. Journal of Applied Polymer Science, 2021, 138, 50797.	2.6	2
7	Probing basal planes and edge sites in polygranular nuclear graphite by gas adsorption: Estimation of active surface area. Carbon, 2021, 179, 633-645.	10.3	8
8	Tensile properties of 3D-printed wood-filled PLA materials using poplar trees. Applied Materials Today, 2020, 21, 100832.	4.3	43
9	Laser Ultrasonic Sensing of Oxidation-Induced Microstructural Changes in Nuclear Graphites. , 2019, ,		0
10	Modeling the effects of oxidation-induced porosity on the elastic moduli of nuclear graphites. Carbon, 2019, 141, 304-315.	10.3	22
11	Development of mesopores in superfine grain graphite neutron-irradiated at high fluence. Carbon, 2019, 141, 663-675.	10.3	31
12	Beyond the classical kinetic model for chronic graphite oxidation by moisture in high temperature gas-cooled reactors. Carbon, 2018, 127, 158-169.	10.3	20
13	Nitrogen adsorption data, FIB-SEM tomography and TEM micrographs of neutron-irradiated superfine grain graphite. Data in Brief, 2018, 21, 2643-2650.	1.0	6
14	Lignin-Derived Carbon Fibers as Efficient Heterogeneous Solid Acid Catalysts for Esterification of Oleic Acid. MRS Advances, 2018, 3, 2865-2873.	0.9	7
15	Theory and application of laser ultrasonic shear wave birefringence measurements to the determination of microstructure orientation in transversely isotropic, polycrystalline graphite materials. Carbon, 2017, 115, 460-470.	10.3	5
16	Properties of immobile hydrogen confined in microporous carbon. Carbon, 2017, 117, 383-392.	10.3	21
17	Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering. Carbon, 2017, 111, 681-688.	10.3	39
18	Hydration level dependence of the microscopic dynamics of water adsorbed in ultramicroporous carbon. Carbon, 2017, 111, 705-712.	10.3	16

NIDIA C GALLEGO

#	Article	IF	CITATIONS
19	Laser ultrasonic assessment of the effects of oxidation and microcracking on the elastic moduli of nuclear graphites. , 2017, , .		0
20	Sustainable Energy‧torage Materials from Lignin–Graphene Nanocompositeâ€Derived Porous Carbon Film. Energy Technology, 2017, 5, 1927-1935.	3.8	29
21	A Novel MK-based Geopolymer Composite Activated with Rice Husk Ash and KOH: Performance at High Temperature. Materiales De Construccion, 2017, 67, 117.	0.7	33
22	Synthesis of Zeolites from a Low-quality Colombian Kaolin. Clays and Clay Minerals, 2016, 64, 75-85.	1.3	8
23	A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors. Green Chemistry, 2016, 18, 5015-5024.	9.0	85
24	Laser ultrasonic assessment of the effects of porosity and microcracking on the elastic moduli of nuclear graphites. Journal of Nuclear Materials, 2016, 471, 80-91.	2.7	20
25	Generation of Graphite Particles by Sliding Abrasion and Their Characterization. Nuclear Technology, 2015, 189, 241-257.	1.2	25
26	Preparation and characterization of a hybrid alkaline binder based on a fly ash with no commercial value. Journal of Cleaner Production, 2015, 104, 346-352.	9.3	44
27	SANS investigations of CO2 adsorption in microporous carbon. Carbon, 2015, 95, 535-544.	10.3	33
28	Characterization of nuclear graphite elastic properties using laser ultrasonic methods. Proceedings of SPIE, 2015, , .	0.8	0
29	Film Breakdown and Nano-Porous Mg(OH) ₂ Formation from Corrosion of Magnesium Alloys in Salt Solutions. Journal of the Electrochemical Society, 2015, 162, C140-C149.	2.9	128
30	Effects of graphite porosity and anisotropy on measurements of elastic modulus using laser ultrasonics. , 2014, , .		1
31	Crown ethers in graphene. Nature Communications, 2014, 5, 5389.	12.8	142
32	Investigation of morphology and hydrogen adsorption capacity of disordered carbons. Carbon, 2014, 80, 82-90.	10.3	32
33	Lab-in-a-Shell: Encapsulating Metal Clusters for Size Sieving Catalysis. Journal of the American Chemical Society, 2014, 136, 11260-11263.	13.7	152
34	Microstructure-Dependent Gas Adsorption: Accurate Predictions of Methane Uptake in Nanoporous Carbons. Journal of Chemical Theory and Computation, 2014, 10, 1-4.	5.3	22
35	Advanced surface and microstructural characterization of natural graphite anodes for lithium ion batteries. Carbon, 2014, 72, 393-401.	10.3	50
36	Modern approaches to studying gas adsorption in nanoporous carbons. Journal of Materials Chemistry A, 2013, 1, 9341.	10.3	47

NIDIA C GALLEGO

#	ARTICLE	IF	CITATIONS
37	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:msub> < mml:mi mathvariant="bold">H < mml:mn> 2 < /mml:mn> < /mml:msub> < /mml:math> and < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:msub> < mml:mi mathvariant="bold">D < /mml:mi> < mml:mn> 2 < /mml:mn> < /mml:msub> < /mml:math> in Nanoporous	7.8	35
38	Carbon. Physical Review Letters, 2013, 110, 236102. Monitoring phase behavior of hydrogen confined in carbon nanopores by in-situ Small Angle Neutron Scattering technique. Materials Research Society Symposia Proceedings, 2012, 1440, 49.	0.1	0
39	Atomic-scale imaging of graphene-based nanoporous carbon. Microscopy and Microanalysis, 2012, 18, 1528-1529.	0.4	2
40	Effect of potassium-doping on the microstructure development in polyfurfuryl alcohol – derived activated carbon. Carbon, 2012, 50, 5278-5285.	10.3	6
41	Nanoporous Carbon: Topological Defects: Origin of Nanopores and Enhanced Adsorption Performance in Nanoporous Carbon (Small 21/2012). Small, 2012, 8, 3282-3282.	10.0	3
42	Local Atomic Density of Microporous Carbons. Journal of Physical Chemistry C, 2012, 116, 2946-2951.	3.1	20
43	Tetrahydrofuran-Induced K and Li Doping onto Poly(furfuryl alcohol)-Derived Activated Carbon (PFAC): Influence on Microstructure and H ₂ Sorption Properties. Langmuir, 2012, 28, 5669-5677.	3.5	6
44	Topological Defects: Origin of Nanopores and Enhanced Adsorption Performance in Nanoporous Carbon. Small, 2012, 8, 3283-3288.	10.0	139
45	Thermal Treatment Effects on Charge Storage Performance of Graphene-Based Materials for Supercapacitors. ACS Applied Materials & Interfaces, 2012, 4, 3239-3246.	8.0	51
46	Restricted dynamics of molecular hydrogen confined in activated carbon nanopores. Carbon, 2012, 50, 1071-1082.	10.3	29
47	Bimodal mesoporous carbon synthesized from large organic precursor and amphiphilic tri-block copolymer by self-assembly. Microporous and Mesoporous Materials, 2012, 155, 71-74.	4.4	13
48	On the characterization and spinning of an organicâ€purified lignin toward the manufacture of lowâ€cost carbon fiber. Journal of Applied Polymer Science, 2012, 124, 227-234.	2.6	209
49	Hydrogen Confinement in Carbon Nanopores: Extreme Densification at Ambient Temperature. Journal of the American Chemical Society, 2011, 133, 13794-13797.	13.7	69
50	STEM imaging of single Pd atoms in activated carbon fibers considered for hydrogen storage. Carbon, 2011, 49, 4059-4063.	10.3	28
51	Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage. Carbon, 2011, 49, 4050-4058.	10.3	74
52	Experimental Evidence of Super Densification of Adsorbed Hydrogen by in-situ Small Angle Neutron Scattering (SANS). Materials Research Society Symposia Proceedings, 2011, 1334, 31301.	0.1	1
53	Atypical hydrogen uptake on chemically-activated, ultramicroporous carbon. Carbon, 2010, 48, 1331-1340.	10.3	70
54	Kinetic effect of Pd additions on the hydrogen uptake of chemically-activated ultramicroporous carbon. Carbon, 2010, 48, 2361-2364.	10.3	64

NIDIA C GALLEGO

#	Article	IF	CITATIONS
55	The role of destabilization of palladium hydride in the hydrogen uptake of Pd-containing activated carbons. Nanotechnology, 2009, 20, 204011.	2.6	35
56	Thermal characterization of porous graphitic foam – Convection in impinging flow. International Journal of Heat and Mass Transfer, 2009, 52, 4296-4301.	4.8	17
57	Detection of Hydrogen Spillover in Palladium-Modified Activated Carbon Fibers during Hydrogen Adsorption. Journal of Physical Chemistry C, 2009, 113, 5886-5890.	3.1	151
58	Atomic Resolution Investigation of Metal-Assisted Hydrogen Storage Mechanisms in Activated Carbon Fibers. Microscopy and Microanalysis, 2009, 15, 1426-1427.	0.4	0
59	The effect of processing conditions on microstructure of Pd-containing activated carbon fibers. Carbon, 2008, 46, 54-61.	10.3	19
60	Carbon-Based Nanostructures. , 2008, , 535-552.		0
61	Characterization of Porous Carbon Foam as a Material for Compact Recuperators. Journal of Engineering for Gas Turbines and Power, 2007, 129, 326-330.	1.1	32
62	Forced Convection Heat Transfer and Hydraulic Losses in Graphitic Foam. Journal of Heat Transfer, 2007, 129, 1237-1245.	2.1	40
63	In situ high pressure XRD study on hydrogen uptake behavior of Pd-carbon systems. Materials Research Society Symposia Proceedings, 2007, 1042, 1.	0.1	0
64	Irradiation effects on graphite foam. Carbon, 2006, 44, 618-628.	10.3	15
65	Thermal characterization of porous carbon foam—convection in parallel flow. International Journal of Heat and Mass Transfer, 2006, 49, 1991-1998.	4.8	61
66	Use of Carbon Fibre Composite Molecular Sieves for Air Separation. Adsorption Science and Technology, 2005, 23, 175-194.	3.2	6
67	Effects of heat treatment conditions on the thermal properties of mesophase pitch-derived graphitic foams. Carbon, 2004, 42, 1849-1852.	10.3	67
68	Carbon foams for thermal management. Carbon, 2003, 41, 1461-1466.	10.3	359
69	Structure–property relationships for high thermal conductivity carbon fibers. Composites Part A: Applied Science and Manufacturing, 2001, 32, 1031-1038.	7.6	47
70	The thermal conductivity of ribbon-shaped carbon fibers. Carbon, 2000, 38, 1003-1010.	10.3	48
71	Physical properties of silver-containing pitch-based activated carbon fibers. Carbon, 1999, 37, 1619-1625.	10.3	28