Angel M Garcia-Lora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6342760/publications.pdf

Version: 2024-02-01

48 papers

2,419 citations

236833 25 h-index 289141 40 g-index

50 all docs 50 docs citations

50 times ranked

3254 citing authors

#	Article	IF	CITATIONS
1	MHC class I antigens, immune surveillance, and tumor immune escape. Journal of Cellular Physiology, 2003, 195, 346-355.	2.0	422
2	The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunology, Immunotherapy, 2004, 53, 904-10.	2.0	239
3	MHC Class I Antigens and Immune Surveillance in Transformed Cells. International Review of Cytology, 2007, 256, 139-189.	6.2	128
4	Role of Altered Expression of HLA Class I Molecules in Cancer Progression. Advances in Experimental Medicine and Biology, 2007, 601, 123-131.	0.8	117
5	A new extract of the plant calendula officinalis produces a dual in vitroeffect: cytotoxic anti-tumor activity and lymphocyte activation. BMC Cancer, 2006, 6, 119.	1.1	110
6	Chromosome loss is the most frequent mechanism contributing to HLA haplotype loss in human tumors., 1999, 83, 91-97.		104
7	The escape of cancer from T lymphocytes: immunoselection of MHC class I loss variants harboring structural-irreversible "hard―lesions. Cancer Immunology, Immunotherapy, 2010, 59, 1601-1606.	2.0	82
8	MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components. International Journal of Cancer, 2003, 106, 521-527.	2.3	79
9	Immunoselection by T lymphocytes generates repeated MHC class I-deficient metastatic tumor variants. International Journal of Cancer, 2001, 91, 109-119.	2.3	78
10	The immunomodulator PSK induces in vitro cytotoxic activity in tumour cell lines via arrest of cell cycle and induction of apoptosis. BMC Cancer, 2008, 8, 78.	1.1	75
11	MHC class I molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells. Carcinogenesis, 2012, 33, 687-693.	1.3	69
12	Metastases in Immune-Mediated Dormancy: A New Opportunity for Targeting Cancer. Cancer Research, 2014, 74, 6750-6757.	0.4	66
13	Expression of HLA G in human tumors is not a frequent event. , 1999, 81, 512-518.		65
14	Unresponsiveness to interferon associated with STAT1 protein deficiency in a gastric adenocarcinoma cell line. Cancer Immunology, Immunotherapy, 1998, 47, 113-120.	2.0	62
15	Regressing and progressing metastatic lesions: resistance to immunotherapy is predetermined by irreversible HLA class I antigen alterations. Cancer Immunology, Immunotherapy, 2008, 57, 1727-1733.	2.0	56
16	HLA and melanoma: multiple alterations in HLA class I and II expression in human melanoma cell lines from ESTDAB cell bank. Cancer Immunology, Immunotherapy, 2009, 58, 1507-1515.	2.0	53
17	T Lymphocytes Restrain Spontaneous Metastases in Permanent Dormancy. Cancer Research, 2014, 74, 1958-1968.	0.4	53
18	Tumour immunology, vaccination and escape strategies. International Journal of Immunogenetics, 2003, 30, 177-183.	1.2	47

#	Article	IF	Citations
19	Multiple mechanisms of immune evasion can coexist in melanoma tumor cell lines derived from the same patient. Cancer Immunology, Immunotherapy, 2001, 49, 621-628.	2.0	45
20	Differential effect on U937 cell differentiation by targeting transcriptional factors implicated in tissue- or stage-specific induced integrin expression. Experimental Hematology, 1999, 27, 353-364.	0.2	37
21	Different regulation of PKC isoenzymes and MAPK by PSK and IL-2 in the proliferative and cytotoxic activities of the NKL human natural killer cell line. Cancer Immunology, Immunotherapy, 2003, 52, 59-64.	2.0	36
22	The tumour suppressor <i>Fhit</i> positively regulates MHC class I expression on cancer cells. Journal of Pathology, 2012, 227, 367-379.	2.1	36
23	Generation of MHC class I diversity in primary tumors and selection of the malignant phenotype. International Journal of Cancer, 2016, 138, 271-280.	2.3	35
24	Immunotherapy eradicates metastases with reversible defects in MHC class I expression. Cancer Immunology, Immunotherapy, 2011, 60, 1257-1268.	2.0	32
25	Preclinical modeling of EGFR-specific antibody resistance: oncogenic and immune-associated escape mechanisms. Oncogene, 2014, 33, 3129-3139.	2.6	31
26	Inhibition of growth and induction of apoptosis in human breast cancer by transfection of gef gene. British Journal of Cancer, 2003, 89, 192-198.	2.9	28
27	Upregulation of HLA Class I Expression on Tumor Cells by the Anti-EGFR Antibody Nimotuzumab. Frontiers in Pharmacology, 2017, 8, 595.	1.6	27
28	Characterization of SPf(66)n: a chimeric molecule used as a malaria vaccine. Vaccine, 1994, 12, 585-591.	1.7	26
29	Alterations of HLA class I expression in human melanoma xenografts in immunodeficient mice occur frequently and are associated with higher tumorigenicity. Cancer Immunology, Immunotherapy, 2010, 59, 13-26.	2.0	25
30	MHC Intratumoral Heterogeneity May Predict Cancer Progression and Response to Immunotherapy. Frontiers in Immunology, 2018, 9, 102.	2.2	25
31	Protein-bound polysaccharide K and interleukin-2 regulate different nuclear transcription factors in the NKL human natural killer cell line. Cancer Immunology, Immunotherapy, 2001, 50, 191-198.	2.0	23
32	Microsatellite instability analysis in tumors with different mechanisms for total loss of HLA expression. Cancer Immunology, Immunotherapy, 2000, 48, 684-690.	2.0	21
33	Class II Transactivator-Induced MHC Class II Expression in Pancreatic Cancer Cells Leads to Tumor Rejection and a Specific Antitumor Memory Response. Pancreas, 2014, 43, 1066-1072.	0.5	14
34	Total loss of HLA class I expression on a melanoma cell line after growth in nude mice in absence of autologous antitumor immune response. International Journal of Cancer, 2007, 121, 2023-2030.	2.3	12
35	Restoration of MHC-I on Tumor Cells by Fhit Transfection Promotes Immune Rejection and Acts as an Individualized Immunotherapeutic Vaccine. Cancers, 2020, 12, 1563.	1.7	12
36	MHC heterogeneity and response of metastases to immunotherapy. Cancer and Metastasis Reviews, 2021, 40, 501-517.	2.7	12

#	Article	IF	CITATIONS
37	Identification of the protein components of protein-bound polysaccharide (PSK) that interact with NKL cells. Cancer Immunology, Immunotherapy, 2005, 54, 395-399.	2.0	9
38	Effect of thyroid hormone–nitric oxide interaction on tumor growth, angiogenesis, and aminopeptidase activity in mice. Tumor Biology, 2014, 35, 5519-5526.	0.8	8
39	MHC Class I Antigens In Malignant Cells. , 2013, , .		3
40	A novel preclinical murine model of immune-mediated metastatic dormancy. Oncolmmunology, 2014, 3, e29258.	2.1	2
41	The pro-oxidant buthionine sulfoximine (BSO) reduces tumor growth of implanted Lewis lung carcinoma in mice associated with increased protein carbonyl, tubulin abundance, and aminopeptidase activity. Tumor Biology, 2014, 35, 7799-7805.	0.8	2
42	MHC Class I Molecules and Cancer Progression: Lessons Learned from Preclinical Mouse Models. , 2020, , 189-204.		1
43	â€~Hard' and â€~soft' loss of MHC class I expression in cancer cells. , 2014, , 63-78.		1
44	HLA Class I Expression in Human Cancer. , 2013, , 13-30.		0
45	MHC Class I Expression in Experimental Mouse Models of Cancer: Immunotherapy of Tumors with Different MHC-I Expression Patterns. , 2013, , 31-45.		O
46	MHC Class I Antigens and the Tumor Microenvironment. , 2013, , 253-286.		0
47	Overview of MHC Class I Antigens. , 2013, , 1-11.		0
48	MHC Class I Molecules and Cancer Progression: Lessons Learned from Preclinical Mouse Models. , 2015, , 161-175.		0