
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6341601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initial sequencing and analysis of the human genome. Nature, 2001, 409, 860-921.	27.8	21,074
2	A global reference for human genetic variation. Nature, 2015, 526, 68-74.	27.8	13,998
3	Finding the missing heritability of complex diseases. Nature, 2009, 461, 747-753.	27.8	7,490
4	Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods, 2013, 10, 563-569.	19.0	4,029
5	A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 2011, 72, 257-268.	8.1	3,833
6	A Draft Sequence of the Neandertal Genome. Science, 2010, 328, 710-722.	12.6	3,588
7	Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. American Journal of Human Genetics, 2010, 86, 749-764.	6.2	2,325
8	The contribution of de novo coding mutations to autism spectrum disorder. Nature, 2014, 515, 216-221.	27.8	2,188
9	An integrated map of structural variation in 2,504 human genomes. Nature, 2015, 526, 75-81.	27.8	1,994
10	Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 2012, 485, 246-250.	27.8	1,960
11	Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 2004, 428, 493-521.	27.8	1,943
12	The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 2014, 505, 43-49.	27.8	1,830
13	Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 2009, 461, 272-276.	27.8	1,801
14	A High-Coverage Genome Sequence from an Archaic Denisovan Individual. Science, 2012, 338, 222-226.	12.6	1,695
15	Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia. Science, 2008, 320, 539-543.	12.6	1,654
16	Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 2010, 468, 1053-1060.	27.8	1,537
17	Missing heritability and strategies for finding the underlying causes of complex disease. Nature Reviews Genetics, 2010, 11, 446-450.	16.3	1,511
18	A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515, 355-364.	27.8	1,444

#	Article	IF	CITATIONS
19	De novo mutations in epileptic encephalopathies. Nature, 2013, 501, 217-221.	27.8	1,351
20	Evolutionary and Biomedical Insights from the Rhesus Macaque Genome. Science, 2007, 316, 222-234.	12.6	1,283
21	Genome structural variation discovery and genotyping. Nature Reviews Genetics, 2011, 12, 363-376.	16.3	1,240
22	Recent Segmental Duplications in the Human Genome. Science, 2002, 297, 1003-1007.	12.6	1,238
23	The complete sequence of a human genome. Science, 2022, 376, 44-53.	12.6	1,222
24	Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 2014, 513, 409-413.	27.8	1,179
25	A copy number variation morbidity map of developmental delay. Nature Genetics, 2011, 43, 838-846.	21.4	1,141
26	Multiplex Targeted Sequencing Identifies Recurrently Mutated Genes in Autism Spectrum Disorders. Science, 2012, 338, 1619-1622.	12.6	1,133
27	Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 2011, 43, 585-589.	21.4	1,080
28	The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution. Science, 2009, 324, 522-528.	12.6	1,038
29	Mapping copy number variation by population-scale genome sequencing. Nature, 2011, 470, 59-65.	27.8	991
30	Mapping and sequencing of structural variation from eight human genomes. Nature, 2008, 453, 56-64.	27.8	983
31	Fine-scale structural variation of the human genome. Nature Genetics, 2005, 37, 727-732.	21.4	897
32	Segmental Duplications and Copy-Number Variation in the Human Genome. American Journal of Human Genetics, 2005, 77, 78-88.	6.2	872
33	The genome of a songbird. Nature, 2010, 464, 757-762.	27.8	770
34	Great ape genetic diversity and population history. Nature, 2013, 499, 471-475.	27.8	768
35	Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Research, 2017, 27, 849-864.	5.5	728
36	Resolving the complexity of the human genome using single-molecule sequencing. Nature, 2015, 517, 608-611.	27.8	714

#	Article	IF	CITATIONS
37	Limitations of next-generation genome sequence assembly. Nature Methods, 2011, 8, 61-65.	19.0	685
38	Recurrent Rearrangements of Chromosome 1q21.1 and Variable Pediatric Phenotypes. New England Journal of Medicine, 2008, 359, 1685-1699.	27.0	663
39	Insights into hominid evolution from the gorilla genome sequence. Nature, 2012, 483, 169-175.	27.8	663
40	Genome analysis of the platypus reveals unique signatures of evolution. Nature, 2008, 453, 175-183.	27.8	657
41	Personalized copy number and segmental duplication maps using next-generation sequencing. Nature Genetics, 2009, 41, 1061-1067.	21.4	656
42	Disruptive CHD8 Mutations Define a Subtype of Autism Early in Development. Cell, 2014, 158, 263-276.	28.9	637
43	Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nature Communications, 2019, 10, 1784.	12.8	636
44	Diversity of Human Copy Number Variation and Multicopy Genes. Science, 2010, 330, 641-646.	12.6	609
45	Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nature Genetics, 2014, 46, 1063-1071.	21.4	583
46	The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. Molecular Plant, 2017, 10, 866-877.	8.3	563
47	Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nature Genetics, 2006, 38, 1038-1042.	21.4	557
48	Copy number variation detection and genotyping from exome sequence data. Genome Research, 2012, 22, 1525-1532.	5.5	550
49	Telomere-to-telomere assembly of a complete human X chromosome. Nature, 2020, 585, 79-84.	27.8	549
50	Long-read human genome sequencing and its applications. Nature Reviews Genetics, 2020, 21, 597-614.	16.3	542
51	Comparative and demographic analysis of orang-utan genomes. Nature, 2011, 469, 529-533.	27.8	541
52	A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nature Genetics, 2010, 42, 203-209.	21.4	539
53	LINE-1 Retrotransposition Activity in Human Genomes. Cell, 2010, 141, 1159-1170.	28.9	531
54	Excess of rare, inherited truncating mutations in autism. Nature Genetics, 2015, 47, 582-588.	21.4	531

#	Article	IF	CITATIONS
55	Population Analysis of Large Copy Number Variants and Hotspots of Human Genetic Disease. American Journal of Human Genetics, 2009, 84, 148-161.	6.2	530
56	Phenotypic Heterogeneity of Genomic Disorders and Rare Copy-Number Variants. New England Journal of Medicine, 2012, 367, 1321-1331.	27.0	519
57	15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nature Genetics, 2009, 41, 160-162.	21.4	511
58	A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nature Genetics, 2008, 40, 322-328.	21.4	509
59	A high-coverage Neandertal genome from Vindija Cave in Croatia. Science, 2017, 358, 655-658.	12.6	501
60	Primate segmental duplications: crucibles of evolution, diversity and disease. Nature Reviews Genetics, 2006, 7, 552-564.	16.3	498
61	Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nature Genetics, 2009, 41, 211-215.	21.4	482
62	A Comprehensive Analysis of Common Copy-Number Variations in the Human Genome. American Journal of Human Genetics, 2007, 80, 91-104.	6.2	471
63	Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nature Genetics, 1994, 8, 88-94.	21.4	468
64	Modernizing Reference Genome Assemblies. PLoS Biology, 2011, 9, e1001091.	5.6	458
65	A Higher Mutational Burden in Females Supports a "Female Protective Model―in Neurodevelopmental Disorders. American Journal of Human Genetics, 2014, 94, 415-425.	6.2	457
66	Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Research, 2009, 19, 1527-1541.	5.5	448
67	The bonobo genome compared with the chimpanzee and human genomes. Nature, 2012, 486, 527-531.	27.8	445
68	Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nature Genetics, 2017, 49, 515-526.	21.4	443
69	HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Research, 2020, 30, 1291-1305.	5.5	440
70	Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell, 2019, 176, 743-756.e17.	28.9	423
71	Segmental Duplications: Organization and Impact Within the Current Human Genome Project Assembly. Genome Research, 2001, 11, 1005-1017.	5.5	423
72	Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse. PLoS Biology, 2009, 7, e1000112.	5.6	419

#	Article	IF	CITATIONS
73	Genome-Wide Copy Number Variation in Epilepsy: Novel Susceptibility Loci in Idiopathic Generalized and Focal Epilepsies. PLoS Genetics, 2010, 6, e1000962.	3.5	414
74	A de novo convergence of autism genetics and molecular neuroscience. Trends in Neurosciences, 2014, 37, 95-105.	8.6	410
75	Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain, 2010, 133, 23-32.	7.6	406
76	Complete Khoisan and Bantu genomes from southern Africa. Nature, 2010, 463, 943-947.	27.8	400
77	An Alu Transposition Model for the Origin and Expansion of Human Segmental Duplications. American Journal of Human Genetics, 2003, 73, 823-834.	6.2	387
78	Segmental duplications and the evolution of the primate genome. Nature Reviews Genetics, 2002, 3, 65-72.	16.3	374
79	Long-read sequence assembly of the gorilla genome. Science, 2016, 352, aae0344.	12.6	368
80	Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis. Cell, 2018, 173, 1356-1369.e22.	28.9	366
81	De Novo Pathogenic SCN8A Mutation Identified by Whole-Genome Sequencing of a Family Quartet Affected by Infantile Epileptic Encephalopathy and SUDEP. American Journal of Human Genetics, 2012, 90, 502-510.	6.2	365
82	Characterizing the Major Structural Variant Alleles of the Human Genome. Cell, 2019, 176, 663-675.e19.	28.9	364
83	Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science, 2021, 372, .	12.6	358
84	Structural Dynamics of Eukaryotic Chromosome Evolution. Science, 2003, 301, 793-797.	12.6	357
85	A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature, 2005, 437, 88-93.	27.8	353
86	Noninvasive Whole-Genome Sequencing of a Human Fetus. Science Translational Medicine, 2012, 4, 137ra76.	12.4	348
87	Human Copy Number Variation and Complex Genetic Disease. Annual Review of Genetics, 2011, 45, 203-226.	7.6	344
88	Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nature Biotechnology, 2020, 38, 1044-1053.	17.5	344
89	Evolution of Human-Specific Neural SRGAP2 Genes by Incomplete Segmental Duplication. Cell, 2012, 149, 912-922.	28.9	341
90	Challenges and standards in integrating surveys of structural variation. Nature Genetics, 2007, 39, S7-S15.	21.4	331

#	Article	IF	CITATIONS
91	Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science, 2015, 348, 242-245.	12.6	326
92	Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Research, 2017, 27, 677-685.	5.5	323
93	Gibbon genome and the fast karyotype evolution of small apes. Nature, 2014, 513, 195-201.	27.8	320
94	Regional Patterns of Gene Expression in Human and Chimpanzee Brains. Genome Research, 2004, 14, 1462-1473.	5.5	311
95	Genetic variation and the de novo assembly of human genomes. Nature Reviews Genetics, 2015, 16, 627-640.	16.3	310
96	Genomic Patterns of De Novo Mutation in Simplex Autism. Cell, 2017, 171, 710-722.e12.	28.9	308
97	High-resolution comparative analysis of great ape genomes. Science, 2018, 360, .	12.6	304
98	The DNA sequence and biology of human chromosome 19. Nature, 2004, 428, 529-535.	27.8	298
99	Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends in Genetics, 2001, 17, 661-669.	6.7	297
100	Relative Burden of Large CNVs on a Range of Neurodevelopmental Phenotypes. PLoS Genetics, 2011, 7, e1002334.	3.5	293
101	A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nature Genetics, 2014, 46, 380-384.	21.4	293
102	Global diversity, population stratification, and selection of human copy-number variation. Science, 2015, 349, aab3761.	12.6	293
103	De novo genic mutations among a Chinese autism spectrum disorder cohort. Nature Communications, 2016, 7, 13316.	12.8	293
104	Positive selection of a gene family during the emergence of humans and African apes. Nature, 2001, 413, 514-519.	27.8	284
105	Linkage Disequilibrium and Heritability of Copy-Number Polymorphisms within Duplicated Regions of the Human Genome. American Journal of Human Genetics, 2006, 79, 275-290.	6.2	283
106	Analysis of copy number variations among diverse cattle breeds. Genome Research, 2010, 20, 693-703.	5.5	280
107	Refinement and Discovery of New Hotspots of Copy-Number Variation Associated with Autism Spectrum Disorder. American Journal of Human Genetics, 2013, 92, 221-237.	6.2	279
108	Estimates of penetrance for recurrent pathogenic copy-number variations. Genetics in Medicine, 2013, 15, 478-481.	2.4	277

#	Article	IF	CITATIONS
109	Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Research, 2009, 19, 1270-1278.	5.5	266
110	De novo rates and selection of large copy number variation. Genome Research, 2010, 20, 1469-1481.	5.5	264
111	The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nature Genetics, 2018, 50, 270-277.	21.4	262
112	Copy number variation of individual cattle genomes using next-generation sequencing. Genome Research, 2012, 22, 778-790.	5.5	259
113	The discovery of integrated gene networks for autism and related disorders. Genome Research, 2015, 25, 142-154.	5.5	259
114	High-Throughput Variation Detection and Genotyping Using Microarrays. Genome Research, 2001, 11, 1913-1925.	5.5	258
115	A Human Genome Structural Variation Sequencing Resource Reveals Insights into Mutational Mechanisms. Cell, 2010, 143, 837-847.	28.9	249
116	mrsFAST: a cache-oblivious algorithm for short-read mapping. Nature Methods, 2010, 7, 576-577.	19.0	248
117	Genome Sequencing of Autism-Affected Families Reveals Disruption of Putative Noncoding Regulatory DNA. American Journal of Human Genetics, 2016, 98, 58-74.	6.2	248
118	Human and murine FMR-1: alternative splicing and translational initiation downstream of the CGG–repeat. Nature Genetics, 1993, 4, 244-251.	21.4	247
119	Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science, 2014, 346, 1007-1012.	12.6	244
120	Long-read sequencing and de novo assembly of a Chinese genome. Nature Communications, 2016, 7, 12065.	12.8	242
121	Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends in Genetics, 2005, 21, 673-682.	6.7	238
122	The DNA sequence of human chromosome 7. Nature, 2003, 424, 157-164.	27.8	236
123	Phenotypic variability and genetic susceptibility to genomic disorders. Human Molecular Genetics, 2010, 19, R176-R187.	2.9	234
124	Hotspots for copy number variation in chimpanzees and humans. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8006-8011.	7.1	231
125	Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nature Genetics, 2019, 51, 106-116.	21.4	231
126	Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling. American Journal of Human Genetics, 2015, 97, 343-352.	6.2	230

#	Article	IF	CITATIONS
127	Structure of Chromosomal Duplicons and their Role in Mediating Human Genomic Disorders. Genome Research, 2000, 10, 597-610.	5.5	228
128	Shotgun sequence assembly and recent segmental duplications within the human genome. Nature, 2004, 431, 927-930.	27.8	228
129	Complete Haplotype Sequence of the Human Immunoglobulin Heavy-Chain Variable, Diversity, and Joining Genes and Characterization of Allelic and Copy-Number Variation. American Journal of Human Genetics, 2013, 92, 530-546.	6.2	223
130	Recurrent Reciprocal Genomic Rearrangements of 17q12 Are Associated with Renal Disease, Diabetes, and Epilepsy. American Journal of Human Genetics, 2007, 81, 1057-1069.	6.2	222
131	A burst of segmental duplications in the genome of the African great ape ancestor. Nature, 2009, 457, 877-881.	27.8	222
132	Rare copy number variants are an important cause of epileptic encephalopathies. Annals of Neurology, 2011, 70, 974-985.	5.3	222
133	Reconstructing complex regions of genomes using long-read sequencing technology. Genome Research, 2014, 24, 688-696.	5.5	222
134	Mutational and selective effects on copy-number variants in the human genome. Nature Genetics, 2007, 39, S22-S29.	21.4	221
135	Properties and rates of germline mutations in humans. Trends in Genetics, 2013, 29, 575-584.	6.7	221
136	The structure, function and evolution of a complete human chromosome 8. Nature, 2021, 593, 101-107.	27.8	221
137	Complex SNP-related sequence variation in segmental genome duplications. Nature Genetics, 2004, 36, 861-866.	21.4	220
138	Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nature Biotechnology, 2011, 29, 59-63.	17.5	216
139	Copy number variation and evolution in humans and chimpanzees. Genome Research, 2008, 18, 1698-1710.	5.5	215
140	Population Stratification of a Common APOBEC Gene Deletion Polymorphism. PLoS Genetics, 2007, 3, e63.	3.5	214
141	Low copy number of the salivary amylase gene predisposes to obesity. Nature Genetics, 2014, 46, 492-497.	21.4	214
142	Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Human Molecular Genetics, 2009, 18, 3626-3631.	2.9	211
143	Mouse segmental duplication and copy number variation. Nature Genetics, 2008, 40, 909-914.	21.4	209
144	Complete genomic and epigenetic maps of human centromeres. Science, 2022, 376, eabl4178.	12.6	204

#	Article	IF	CITATIONS
145	Estimating the human mutation rate using autozygosity in a founder population. Nature Genetics, 2012, 44, 1277-1281.	21.4	202
146	Systematic assessment of copy number variant detection via genome-wide SNP genotyping. Nature Genetics, 2008, 40, 1199-1203.	21.4	198
147	A Genotype-First Approach to Defining the Subtypes of a Complex Disease. Cell, 2014, 156, 872-877.	28.9	195
148	Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nature Genetics, 2007, 39, 1361-1368.	21.4	192
149	The Human Pangenome Project: a global resource to map genomic diversity. Nature, 2022, 604, 437-446.	27.8	192
150	Duplication hotspots, rare genomic disorders, and common disease. Current Opinion in Genetics and Development, 2009, 19, 196-204.	3.3	191
151	Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics, 2010, 26, i350-i357.	4.1	190
152	The structure and evolution of centromeric transition regions within the human genome. Nature, 2004, 430, 857-864.	27.8	179
153	Completing the map of human genetic variation. Nature, 2007, 447, 161-165.	27.8	178
154	Recurrent 200-kb deletions of 16p11.2 that include the SH2B1 gene are associated with developmental delay and obesity. Genetics in Medicine, 2010, 12, 641-647.	2.4	178
155	Evolutionary toggling of the MAPT 17q21.31 inversion region. Nature Genetics, 2008, 40, 1076-1083.	21.4	176
156	Characterization of a recurrent 15q24 microdeletion syndrome. Human Molecular Genetics, 2007, 16, 567-572.	2.9	173
157	denovo-db: a compendium of human <i>de novo</i> variants. Nucleic Acids Research, 2017, 45, D804-D811.	14.5	173
158	Fine structure of the human FMR1 gene. Human Molecular Genetics, 1993, 2, 1147-1153.	2.9	171
159	Human-Specific Duplication and Mosaic Transcripts: The Recent Paralogous Structure of Chromosome 22. American Journal of Human Genetics, 2002, 70, 83-100.	6.2	168
160	An assessment of the sequence gaps: Unfinished business in a finished human genome. Nature Reviews Genetics, 2004, 5, 345-354.	16.3	165
161	Whole-genome shotgun assembly and comparison of human genome assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1916-1921.	7.1	164
162	<i>ADCY5</i> -related dyskinesia. Neurology, 2015, 85, 2026-2035.	1.1	163

#	Article	IF	CITATIONS
163	Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell, 2018, 172, 897-909.e21.	28.9	163
164	Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes. Npj Genomic Medicine, 2019, 4, 19.	3.8	163
165	High-resolution human genome structure by single-molecule analysis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10848-10853.	7.1	161
166	Evolution and diversity of copy number variation in the great ape lineage. Genome Research, 2013, 23, 1373-1382.	5.5	161
167	Human adaptation and evolution by segmental duplication. Current Opinion in Genetics and Development, 2016, 41, 44-52.	3.3	157
168	The sequence and analysis of duplication-rich human chromosome 16. Nature, 2004, 432, 988-994.	27.8	156
169	Single-cell epigenomics reveals mechanisms of human cortical development. Nature, 2021, 598, 205-213.	27.8	154
170	A genome-wide survey of structural variation between human and chimpanzee. Genome Research, 2005, 15, 1344-1356.	5.5	153
171	Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nature Neuroscience, 2017, 20, 1043-1051.	14.8	152
172	Programmed loss of millions of base pairs from a vertebrate genome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11212-11217.	7.1	151
173	AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nature Communications, 2019, 10, 3094.	12.8	150
174	Large-Scale Variation Among Human and Great Ape Genomes Determined by Array Comparative Genomic Hybridization. Genome Research, 2003, 13, 347-357.	5.5	149
175	Human uniqueness: genome interactions with environment, behaviour and culture. Nature Reviews Genetics, 2008, 9, 749-763.	16.3	149
176	Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nature Neuroscience, 2014, 17, 764-772.	14.8	148
177	Speech delays and behavioral problems are the predominant features in individuals with developmental delays and 16p11.2 microdeletions and microduplications. Journal of Neurodevelopmental Disorders, 2010, 2, 26-38.	3.1	147
178	Human Hydroxysteroid Sulfotransferase SULT2B1: Two Enzymes Encoded by a Single Chromosome 19 Gene. Genomics, 1998, 53, 284-295.	2.9	146
179	From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science, 2022, 376, eabk3112.	12.6	146
180	The genomic architecture of segmental duplications and associated copy number variants in dogs. Genome Research, 2009, 19, 491-499.	5.5	144

#	Article	IF	CITATIONS
181	Masquerading Repeats: Paralogous Pitfalls of the Human Genome. Genome Research, 1998, 8, 758-762.	5.5	140
182	Genome Duplications and Other Features in 12 Mb of DNA Sequence from Human Chromosome 16p and 16q. Genomics, 1999, 60, 295-308.	2.9	140
183	Interruptions in the Triplet Repeats of SCA1 and FRAXA Reduce the Propensity and Complexity of Slipped Strand DNA (S-DNA) Formationâ€. Biochemistry, 1998, 37, 2701-2708.	2.5	139
184	Long-read sequence and assembly of segmental duplications. Nature Methods, 2019, 16, 88-94.	19.0	139
185	Characterization of missing human genome sequences and copy-number polymorphic insertions. Nature Methods, 2010, 7, 365-371.	19.0	138
186	The origins and impact of primate segmental duplications. Trends in Genetics, 2009, 25, 443-454.	6.7	137
187	Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Human Molecular Genetics, 1996, 5, 899-912.	2.9	136
188	Evolutionary Formation of New Centromeres in Macaque. Science, 2007, 316, 243-246.	12.6	136
189	De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability. American Journal of Human Genetics, 2017, 101, 768-788.	6.2	136
190	Recurrent Sites for New Centromere Seeding. Genome Research, 2004, 14, 1696-1703.	5.5	135
191	Exonic Deletions in AUTS2 Cause a Syndromic Form of Intellectual Disability and Suggest a Critical Role for the C Terminus. American Journal of Human Genetics, 2013, 92, 210-220.	6.2	135
192	Single haplotype assembly of the human genome from a hydatidiform mole. Genome Research, 2014, 24, 2066-2076.	5.5	133
193	Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. American Journal of Human Genetics, 2016, 98, 541-552.	6.2	132
194	Molecular Genetic Anatomy and Risk Profile of Hirschsprung's Disease. New England Journal of Medicine, 2019, 380, 1421-1432.	27.0	131
195	Segmental duplications and their variation in a complete human genome. Science, 2022, 376, eabj6965.	12.6	130
196	Structural diversity and African origin of the 17q21.31 inversion polymorphism. Nature Genetics, 2012, 44, 872-880.	21.4	129
197	Analysis of Primate Genomic Variation Reveals a Repeat-Driven Expansion of the Human Genome. Genome Research, 2003, 13, 358-368.	5.5	127
198	Genetic Variation, Comparative Genomics, and the Diagnosis of Disease. New England Journal of Medicine, 2019, 381, 64-74.	27.0	127

#	Article	IF	CITATIONS
199	Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads. Nature Biotechnology, 2021, 39, 302-308.	17.5	127
200	The evolution and population diversity of human-specific segmental duplications. Nature Ecology and Evolution, 2017, 1, 69.	7.8	123
201	Support for the N -Methyl-D-Aspartate Receptor Hypofunction Hypothesis of Schizophrenia From Exome Sequencing in Multiplex Families. JAMA Psychiatry, 2013, 70, 582.	11.0	119
202	Characterization of six human disease-associated inversion polymorphisms. Human Molecular Genetics, 2009, 18, 2555-2566.	2.9	118
203	A method for rapid, targeted CNV genotyping identifies rare variants associated with neurocognitive disease. Genome Research, 2009, 19, 1579-1585.	5.5	118
204	Copy-Number Variation and False Positive Prenatal Aneuploidy Screening Results. New England Journal of Medicine, 2015, 372, 1639-1645.	27.0	118
205	Epigenetic patterns in a complete human genome. Science, 2022, 376, eabj5089.	12.6	118
206	Alternative splicing in the fragile X gene FMR1. Human Molecular Genetics, 1993, 2, 399-404.	2.9	116
207	Characteristics of de novo structural changes in the human genome. Genome Research, 2015, 25, 792-801.	5.5	115
208	The comparative genomics and complex population history of <i>Papio</i> baboons. Science Advances, 2019, 5, eaau6947.	10.3	115
209	Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Molecular Autism, 2018, 9, 64.	4.9	114
210	Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Human Molecular Genetics, 2013, 22, 3259-3268.	2.9	113
211	Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications. Genome Medicine, 2017, 9, 101.	8.2	112
212	Insufficient Evidence for "Autism-Specific―Genes. American Journal of Human Genetics, 2020, 106, 587-595.	6.2	110
213	A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo. Nature Genetics, 2020, 52, 146-159.	21.4	110
214	Detection of structural variants and indels within exome data. Nature Methods, 2012, 9, 176-178.	19.0	109
215	Autosomal Dominant Familial Dyskinesia and Facial Myokymia. Archives of Neurology, 2012, 69, 630.	4.5	109
216	De novo TBR1 mutations in sporadic autism disrupt protein functions. Nature Communications, 2014, 5, 4954.	12.8	109

#	Article	IF	CITATIONS
217	The Koolen-de Vries syndrome: a phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSL1 sequence variant. European Journal of Human Genetics, 2016, 24, 652-659.	2.8	108
218	Clinical Presentation of a Complex Neurodevelopmental Disorder Caused by Mutations in ADNP. Biological Psychiatry, 2019, 85, 287-297.	1.3	108
219	Analysis of Segmental Duplications and Genome Assembly in the Mouse. Genome Research, 2004, 14, 789-801.	5.5	106
220	The Mosaic Structure of Human Pericentromeric DNA: A Strategy for Characterizing Complex Regions of the Human Genome. Genome Research, 2000, 10, 839-852.	5.5	105
221	Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. Science, 2020, 370, .	12.6	105
222	Targeted long-read sequencing identifies missing disease-causing variation. American Journal of Human Genetics, 2021, 108, 1436-1449.	6.2	105
223	Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nature Communications, 2020, 11, 4932.	12.8	105
224	The DNA sequence and comparative analysis of human chromosome 5. Nature, 2004, 431, 268-274.	27.8	102
225	Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility. Nature, 2016, 536, 205-209.	27.8	102
226	Genetic Consequences of Programmed Genome Rearrangement. Current Biology, 2012, 22, 1524-1529.	3.9	101
227	Improved assembly and variant detection of a haploid human genome using singleâ€molecule, highâ€fidelity long reads. Annals of Human Genetics, 2020, 84, 125-140.	0.8	100
228	A high-quality human reference panel reveals the complexity and distribution of genomic structural variants. Nature Communications, 2016, 7, 12989.	12.8	99
229	Detection and characterization of novel sequence insertions using paired-end next-generation sequencing. Bioinformatics, 2010, 26, 1277-1283.	4.1	98
230	Widening the spectrum of human genetic variation. Nature Genetics, 2006, 38, 9-11.	21.4	96
231	Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability. Nature Genetics, 2014, 46, 1293-1302.	21.4	96
232	<i>Alu</i> repeat discovery and characterization within human genomes. Genome Research, 2011, 21, 840-849.	5.5	94
233	<i>TRIO</i> loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function. Human Molecular Genetics, 2016, 25, 892-902.	2.9	94
234	Death and Resurrection of the Human IRGM Gene. PLoS Genetics, 2009, 5, e1000403.	3.5	93

#	Article	IF	CITATIONS
235	De Novo and Rare Variants at Multiple Loci Support the Oligogenic Origins of Atrioventricular Septal Heart Defects. PLoS Genetics, 2016, 12, e1005963.	3.5	92
236	Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant classes. Nature Genetics, 2022, 54, 518-525.	21.4	92
237	Recurrent duplication-driven transposition of DNA during hominoid evolution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17626-17631.	7.1	91
238	B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability. Journal of Clinical Investigation, 2015, 125, 3051-3062.	8.2	91
239	A large and complex structural polymorphism at 16p12.1 underlies microdeletion disease risk. Nature Genetics, 2010, 42, 745-750.	21.4	89
240	Population-Genetic Properties of Differentiated Human Copy-Number Polymorphisms. American Journal of Human Genetics, 2011, 88, 317-332.	6.2	89
241	Genome sequencing identifies multiple deleterious variants in autism patients with more severe phenotypes. Genetics in Medicine, 2019, 21, 1611-1620.	2.4	88
242	Transmission Disequilibrium of Small CNVs in Simplex Autism. American Journal of Human Genetics, 2013, 93, 595-606.	6.2	87
243	De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. American Journal of Human Genetics, 2017, 100, 352-363.	6.2	86
244	Comparative Annotation Toolkit (CAT)—simultaneous clade and personal genome annotation. Genome Research, 2018, 28, 1029-1038.	5.5	86
245	Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature, 2005, 434, 724-731.	27.8	85
246	Haploinsufficiency of <i>SOX5</i> at 12p12.1 is associated with developmental delays with prominent language delay, behavior problems, and mild dysmorphic features. Human Mutation, 2012, 33, 728-740.	2.5	85
247	Lineage-Specific Expansions of Retroviral Insertions within the Genomes of African Great Apes but Not Humans and Orangutans. PLoS Biology, 2005, 3, e110.	5.6	84
248	Sex-Based Analysis of De Novo Variants in Neurodevelopmental Disorders. American Journal of Human Genetics, 2019, 105, 1274-1285.	6.2	84
249	Epigenetics of Autism-related Impairment. Journal of Developmental and Behavioral Pediatrics, 2015, 36, 61-67.	1.1	83
250	A preliminary comparative analysis of primate segmental duplications shows elevated substitution rates and a great-ape expansion of intrachromosomal duplications. Genome Research, 2006, 16, 576-583.	5.5	82
251	Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23243-23253.	7.1	82
252	Organization and Evolution of Primate Centromeric DNA from Whole-Genome Shotgun Sequence Data. PLoS Computational Biology, 2007, 3, e181.	3.2	80

#	Article	IF	CITATIONS
253	The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin–Siris syndrome. Genetics in Medicine, 2019, 21, 1295-1307.	2.4	80
254	The Chromosome-Level Reference Genome of Tea Tree Unveils Recent Bursts of Non-autonomous LTR Retrotransposons in Driving Genome Size Evolution. Molecular Plant, 2020, 13, 935-938.	8.3	80
255	Recent Segmental Duplications in the Working Draft Assembly of the Brown Norway Rat. Genome Research, 2004, 14, 493-506.	5.5	79
256	Genome-wide characterization of centromeric satellites from multiple mammalian genomes. Genome Research, 2011, 21, 137-145.	5.5	78
257	An Incomplete Understanding of Human Genetic Variation. Genetics, 2016, 202, 1251-1254.	2.9	78
258	Population survey of the human FMR1 CGG repeat substructure suggests biased polarity for the loss of AGG interruptions. Human Molecular Genetics, 1995, 4, 2199-2208.	2.9	75
259	Extreme selective sweeps independently targeted the X chromosomes of the great apes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6413-6418.	7.1	75
260	Human chromosome 11 DNA sequence and analysis including novel gene identification. Nature, 2006, 440, 497-500.	27.8	74
261	The Chromosome-Based Rubber Tree Genome Provides New Insights into Spurge Genome Evolution and Rubber Biosynthesis. Molecular Plant, 2020, 13, 336-350.	8.3	73
262	Robust amplification and ethidium-visible detection of the fragile X syndrome CGG repeat usingPfu polymerase. American Journal of Medical Genetics Part A, 1994, 51, 522-526.	2.4	72
263	Expectations and blind spots for structural variation detection from long-read assemblies and short-read genome sequencing technologies. American Journal of Human Genetics, 2021, 108, 919-928.	6.2	72
264	Comparative analysis of <i>Alu</i> repeats in primate genomes. Genome Research, 2009, 19, 876-885.	5.5	71
265	Rare-Variant Extensions of the Transmission Disequilibrium Test: Application to Autism Exome Sequence Data. American Journal of Human Genetics, 2014, 94, 33-46.	6.2	69
266	Recent ultra-rare inherited variants implicate new autism candidate risk genes. Nature Genetics, 2021, 53, 1125-1134.	21.4	68
267	Analysis of the DNA sequence and duplication history of human chromosome 15. Nature, 2006, 440, 671-675.	27.8	67
268	Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders. Cell, 2022, 185, 1986-2005.e26.	28.9	67
269	Copy number variation analysis in the great apes reveals species-specific patterns of structural variation. Genome Research, 2011, 21, 1626-1639.	5.5	66
270	Brain white matter structure and <i>COMT</i> gene are linked to second-language learning in adults. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7249-7254.	7.1	66

#	Article	IF	CITATIONS
271	Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee. Genome Research, 2011, 21, 1640-1649.	5.5	65
272	Rare copy number variation in cerebral palsy. European Journal of Human Genetics, 2014, 22, 40-45.	2.8	65
273	Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes. Science, 2019, 366, .	12.6	65
274	Subtelomeric CTCF and cohesin binding site organization using improved subtelomere assemblies and a novel annotation pipeline. Genome Research, 2014, 24, 1039-1050.	5.5	64
275	Extended haplotype-phasing of long-read de novo genome assemblies using Hi-C. Nature Communications, 2021, 12, 1935.	12.8	64
276	Genomic Pathology of SLE-Associated Copy-Number Variation at the FCGR2C/FCGR3B/FCGR2B Locus. American Journal of Human Genetics, 2013, 92, 28-40.	6.2	63
277	Complex β-Satellite Repeat Structures and the Expansion of the Zinc Finger Gene Cluster in 19p12. Genome Research, 1998, 8, 791-808.	5.5	62
278	Evolution of Oryza chloroplast genomes promoted adaptation to diverse ecological habitats. Communications Biology, 2019, 2, 278.	4.4	62
279	Copy Number Variation of CCL3-like Genes Affects Rate of Progression to Simian-AIDS in Rhesus Macaques (Macaca mulatta). PLoS Genetics, 2009, 5, e1000346.	3.5	61
280	Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biology, 2006, 7, R91.	9.6	60
281	Simultaneous structural variation discovery among multiple paired-end sequenced genomes. Genome Research, 2011, 21, 2203-2212.	5.5	60
282	Mutations Affecting the SAND Domain of DEAF1 Cause Intellectual Disability with Severe Speech Impairment and Behavioral Problems. American Journal of Human Genetics, 2014, 94, 649-661.	6.2	59
283	Copy number variant analysis from exome data in 349 patients with epileptic encephalopathy. Annals of Neurology, 2015, 78, 323-328.	5.3	59
284	Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. American Journal of Human Genetics, 2018, 102, 985-994.	6.2	59
285	The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders. ELife, 2019, 8, .	6.0	59
286	Rates and patterns of great ape retrotransposition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13457-13462.	7.1	57
287	Global increases in both common and rare copy number load associated with autism. Human Molecular Genetics, 2013, 22, 2870-2880.	2.9	56
288	Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia. Science, 2018, 361, 511-516.	12.6	56

#	Article	IF	CITATIONS
289	The Role of De Novo Noncoding Regulatory Mutations in Neurodevelopmental Disorders. Trends in Neurosciences, 2019, 42, 115-127.	8.6	56
290	Molecular refinement of gibbon genome rearrangements. Genome Research, 2007, 17, 249-257.	5.5	55
291	Maternal Modifiers and Parent-of-Origin Bias of the Autism-Associated 16p11.2 CNV. American Journal of Human Genetics, 2016, 98, 45-57.	6.2	55
292	Sequencing Primate Genomes: What Have We Learned?. Annual Review of Genomics and Human Genetics, 2009, 10, 355-386.	6.2	54
293	mrsFAST-Ultra: a compact, SNP-aware mapper for high performance sequencing applications. Nucleic Acids Research, 2014, 42, W494-W500.	14.5	54
294	Bovine <i>NK-lysin</i> : Copy number variation and functional diversification. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7223-9.	7.1	54
295	Transcriptional fates of human-specific segmental duplications in brain. Genome Research, 2018, 28, 1566-1576.	5.5	54
296	Long-read assembly of the Chinese rhesus macaque genome and identification of ape-specific structural variants. Nature Communications, 2019, 10, 4233.	12.8	54
297	A Novel Framework for Characterizing Genomic Haplotype Diversity in the Human Immunoglobulin Heavy Chain Locus. Frontiers in Immunology, 2020, 11, 2136.	4.8	54
298	Genomic Sequence and Transcriptional Profile of the Boundary Between Pericentromeric Satellites and Genes on Human Chromosome Arm 10p. Genome Research, 2003, 13, 159-172.	5.5	53
299	Evolution of the cryptic FMR1 CGG repeat. Nature Genetics, 1995, 11, 301-308.	21.4	52
300	Genome-wide association study and admixture mapping reveal new loci associated with total IgE levels in Latinos. Journal of Allergy and Clinical Immunology, 2015, 135, 1502-1510.	2.9	52
301	Closing gaps in the human genome with fosmid resources generated from multiple individuals. Nature Genetics, 2008, 40, 96-101.	21.4	50
302	Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders. Genome Medicine, 2021, 13, 63.	8.2	50
303	The caterpillar fungus, Ophiocordyceps sinensis, genome provides insights into highland adaptation of fungal pathogenicity. Scientific Reports, 2017, 7, 1806.	3.3	49
304	The autism spectrum phenotype in ADNP syndrome. Autism Research, 2018, 11, 1300-1310.	3.8	49
305	Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations. Nature Communications, 2020, 11, 255.	12.8	48
306	SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in females. American Journal of Human Genetics, 2021, 108, 502-516.	6.2	48

#	Article	IF	CITATIONS
307	A genetic model for neurodevelopmental disease. Current Opinion in Neurobiology, 2012, 22, 829-836.	4.2	47
308	Evolutionary dynamics of segmental duplications from human Y-chromosomal euchromatin/heterochromatin transition regions. Genome Research, 2008, 18, 1030-1042.	5.5	46
309	A 32 kb Critical Region Excluding Y402H in CFH Mediates Risk for Age-Related Macular Degeneration. PLoS ONE, 2011, 6, e25598.	2.5	46
310	Refinement of the critical 2p25.3 deletion region: the role of MYT1L in intellectual disability and obesity. Genetics in Medicine, 2015, 17, 460-466.	2.4	45
311	Linkage Disequilibrium between Two High-Frequency Deletion Polymorphisms: Implications for Association Studies Involving the glutathione-S transferase (GST) Genes. PLoS Genetics, 2009, 5, e1000472.	3.5	44
312	Sequencing of sporadic Attentionâ€Deficit Hyperactivity Disorder (ADHD) identifies novel and potentially pathogenic de novo variants and excludes overlap with genes associated with autism spectrum disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 381-389.	1.7	44
313	Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome. Nature Genetics, 2021, 53, 1006-1021.	21.4	44
314	Sequencing of the human IG light chain loci from a hydatidiform mole BAC library reveals locus-specific signatures of genetic diversity. Genes and Immunity, 2015, 16, 24-34.	4.1	43
315	Recurrent structural variation, clustered sites of selection, and disease risk for the complement factor H (<i>CFH</i>) gene family. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4433-E4442.	7.1	43
316	Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nature Communications, 2019, 10, 4679.	12.8	43
317	Detection of deletions in de novo "balanced―chromosome rearrangements: Further evidence for their role in phenotypic abnormalities. Genetics in Medicine, 2004, 6, 81-89.	2.4	42
318	Whole-Genome Sequencing of Individuals from a Founder Population Identifies Candidate Genes for Asthma. PLoS ONE, 2014, 9, e104396.	2.5	42
319	StainedGlass: interactive visualization of massive tandem repeat structures with identity heatmaps. Bioinformatics, 2022, 38, 2049-2051.	4.1	42
320	Further clinical and molecular delineation of the 15q24 microdeletion syndrome. Journal of Medical Genetics, 2012, 49, 110-118.	3.2	40
321	Recurrent inversion toggling and great ape genome evolution. Nature Genetics, 2020, 52, 849-858.	21.4	40
322	<i>DupMasker</i> : A tool for annotating primate segmental duplications. Genome Research, 2008, 18, 1362-1368.	5.5	39
323	The birth of a human-specific neural gene by incomplete duplication and gene fusion. Genome Biology, 2017, 18, 49.	8.8	39
324	Habituation Learning Is a Widely Affected Mechanism in Drosophila Models of Intellectual Disability and Autism Spectrum Disorders. Biological Psychiatry, 2019, 86, 294-305.	1.3	39

#	Article	IF	CITATIONS
325	Evolution of a Human-Specific Tandem Repeat Associated with ALS. American Journal of Human Genetics, 2020, 107, 445-460.	6.2	39
326	A high-quality bonobo genome refines the analysis of hominid evolution. Nature, 2021, 594, 77-81.	27.8	39
327	An inherited duplication at the gene p21 Protein-Activated Kinase 7 (PAK7) is a risk factor for psychosis. Human Molecular Genetics, 2014, 23, 3316-3326.	2.9	37
328	MIPSTR: a method for multiplex genotyping of germline and somatic STR variation across many individuals. Genome Research, 2015, 25, 750-761.	5.5	37
329	Interchromosomal core duplicons drive both evolutionary instability and disease susceptibility of the Chromosome 8p23.1 region. Genome Research, 2016, 26, 1453-1467.	5.5	37
330	A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development. Cell Stem Cell, 2022, 29, 52-69.e8.	11.1	37
331	Disruptive variants of <i>CSDE1</i> associate with autism and interfere with neuronal development and synaptic transmission. Science Advances, 2019, 5, eaax2166.	10.3	35
332	De novo loss-of-function mutations in WAC cause a recognizable intellectual disability syndrome and learning deficits in Drosophila. European Journal of Human Genetics, 2016, 24, 1145-1153.	2.8	34
333	Inversion variants in human and primate genomes. Genome Research, 2018, 28, 910-920.	5.5	34
334	Gain-of-function variants in <i>GABRD</i> reveal a novel pathway for neurodevelopmental disorders and epilepsy. Brain, 2022, 145, 1299-1309.	7.6	34
335	Genetic variation and evolutionary stability of the FMR1 CGG repeat in six closed human populations. , 1996, 64, 220-225.		32
336	Interchromosomal segmental duplications of the pericentromeric region on the human Y chromosome. Genome Research, 2005, 15, 195-204.	5.5	32
337	Punctuated duplication seeding events during the evolution of human chromosome 2p11. Genome Research, 2005, 15, 914-927.	5.5	32
338	A genotype-first approach identifies an intellectual disability-overweight syndrome caused by PHIP haploinsufficiency. European Journal of Human Genetics, 2018, 26, 54-63.	2.8	32
339	Familial long-read sequencing increases yield of de novo mutations. American Journal of Human Genetics, 2022, 109, 631-646.	6.2	32
340	A Hot Spot of Genetic Instability in Autism. New England Journal of Medicine, 2008, 358, 737-739.	27.0	31
341	Rapid and accurate large-scale genotyping of duplicated genes and discovery of interlocus gene conversions. Nature Methods, 2013, 10, 903-909.	19.0	31
342	De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis distinct from Nicolaides–Baraitser syndrome. Genetics in Medicine, 2020, 22, 1838-1850.	2.4	31

#	Article	IF	CITATIONS
343	Epigenetic origin of evolutionary novel centromeres. Scientific Reports, 2017, 7, 41980.	3.3	30
344	The Human-Specific BOLA2 Duplication Modifies Iron Homeostasis and Anemia Predisposition in Chromosome 16p11.2 Autism Individuals. American Journal of Human Genetics, 2019, 105, 947-958.	6.2	30
345	Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability. American Journal of Human Genetics, 2019, 104, 530-541.	6.2	30
346	Sequencing human–gibbon breakpoints of synteny reveals mosaic new insertions at rearrangement sites. Genome Research, 2009, 19, 178-190.	5.5	29
347	Absence seizures with intellectual disability as a phenotype of the 15q13.3 microdeletion syndrome. Epilepsia, 2011, 52, e194-8.	5.1	29
348	Evolutionary dynamism of the primate <i>LRRC37</i> gene family. Genome Research, 2013, 23, 46-59.	5.5	29
349	Large Deletions at the SHOX Locus in the Pseudoautosomal Region Are Associated with Skeletal Atavism in Shetland Ponies. G3: Genes, Genomes, Genetics, 2016, 6, 2213-2223.	1.8	29
350	Phenotypeâ€toâ€genotype approach reveals headâ€circumferenceâ€associated genes in an autism spectrum disorder cohort. Clinical Genetics, 2020, 97, 338-346.	2.0	29
351	Genes To Mental Health (G2MH): A Framework to Map the Combined Effects of Rare and Common Variants on Dimensions of Cognition and Psychopathology. American Journal of Psychiatry, 2022, 179, 189-203.	7.2	29
352	High-throughput genotyping of intermediate-size structural variation. Human Molecular Genetics, 2006, 15, 1159-1167.	2.9	28
353	The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2. Genome Research, 2012, 22, 1036-1049.	5.5	28
354	A Cascade of Complex Subtelomeric Duplications during the Evolution of the Hominoid and Old World Monkey Genomes. American Journal of Human Genetics, 2002, 70, 269-278.	6.2	27
355	Duplication within the SEPT9 gene associated with a founder effect in North American families with hereditary neuralgic amyotrophy. Human Molecular Genetics, 2009, 18, 1200-1208.	2.9	27
356	Profiling variable-number tandem repeat variation across populations using repeat-pangenome graphs. Nature Communications, 2021, 12, 4250.	12.8	27
357	Islands of euchromatin-like sequence and expressed polymorphic sequences within the short arm of human chromosome 21. Genome Research, 2007, 17, 1690-1696.	5.5	25
358	Optimal design of oligonucleotide microarrays for measurement of DNA copy-number. Human Molecular Genetics, 2007, 16, 2770-2779.	2.9	25
359	Hominoid chromosomal rearrangements on 17q map to complex regions of segmental duplication. Genome Biology, 2008, 9, R28.	9.6	25
360	Haplotype sorting using human fosmid clone end-sequence pairs. Genome Research, 2008, 18, 2016-2023.	5.5	25

#	Article	IF	CITATIONS
361	Biomedical Applications and Studies of Molecular Evolution: A Proposal for a Primate Genomic Library Resource: Figure 1 Genome Research, 2002, 12, 673-678.	5.5	24
362	Kohlschütter-Tönz Syndrome: Mutations in <i>ROGDI</i> and Evidence of Genetic Heterogeneity. Human Mutation, 2013, 34, 296-300.	2.5	24
363	Genomic studies in fragile X premutation carriers. Journal of Neurodevelopmental Disorders, 2014, 6, 27.	3.1	24
364	Strand-seq enables reliable separation of long reads by chromosome via expectation maximization. Bioinformatics, 2018, 34, i115-i123.	4.1	24
365	De novo and inherited variants in ZNF292 underlie a neurodevelopmental disorder with features of autism spectrum disorder. Genetics in Medicine, 2020, 22, 538-546.	2.4	24
366	The CHD8/CHD7/Kismet family links blood-brain barrier glia and serotonin to ASD-associated sleep defects. Science Advances, 2021, 7, .	10.3	24
367	Evaluating heterogeneity in <scp>ASD</scp> symptomatology, cognitive ability, and adaptive functioning among 16p11.2 <scp>CNV</scp> carriers. Autism Research, 2020, 13, 1300-1310.	3.8	23
368	Resolving the Breakpoints of the 17q21.31 Microdeletion Syndrome with Next-Generation Sequencing. American Journal of Human Genetics, 2012, 90, 599-613.	6.2	22
369	Recurrent duplications of 17q12 associated with variable phenotypes. American Journal of Medical Genetics, Part A, 2015, 167, 3038-3045.	1.2	22
370	Resolving Multicopy Duplications de novo Using Polyploid Phasing. Lecture Notes in Computer Science, 2017, 10229, 117-133.	1.3	22
371	Clinical Phenotypes of Carriers of Mutations in CHD8 or Its Conserved Target Genes. Biological Psychiatry, 2020, 87, 123-131.	1.3	22
372	The Role of Unequal Crossover in Alpha-Satellite DNA Evolution: A Computational Analysis. Journal of Computational Biology, 2004, 11, 933-944.	1.6	20
373	Primate segmental duplication creates novel promoters for the <i>LRRC37</i> gene family within the 17q21.31 inversion polymorphism region. Genome Research, 2012, 22, 1050-1058.	5.5	20
374	Signals of Historical Interlocus Gene Conversion in Human Segmental Duplications. PLoS ONE, 2013, 8, e75949.	2.5	20
375	Exploring the heterogeneity of neural social indices for genetically distinct etiologies of autism. Journal of Neurodevelopmental Disorders, 2017, 9, 24.	3.1	19
376	An evolutionary driver of interspersed segmental duplications in primates. Genome Biology, 2020, 21, 202.	8.8	19
377	Human disease genes website series: An international, open and dynamic library for upâ€toâ€date clinical information. American Journal of Medical Genetics, Part A, 2021, 185, 1039-1046.	1.2	19
378	Discovery of large genomic inversions using long range information. BMC Genomics, 2017, 18, 65.	2.8	18

#	Article	IF	CITATIONS
379	NCKAP1 Disruptive Variants Lead to a Neurodevelopmental Disorder with Core Features of Autism. American Journal of Human Genetics, 2020, 107, 963-976.	6.2	18
380	Quantitative assessment reveals the dominance of duplicated sequences in germline-derived extrachromosomal circular DNA. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
381	Segmental Duplications Flank the Multiple Sclerosis Locus on Chromosome 17q. Genome Research, 2004, 14, 1483-1492.	5.5	17
382	Molecular subtyping and improved treatment of neurodevelopmental disease. Genome Medicine, 2016, 8, 22.	8.2	17
383	A 3-way hybrid approach to generate a new high-quality chimpanzee reference genome (Pan_tro_3.0). GigaScience, 2017, 6, 1-6.	6.4	17
384	Genomic inversions and GOLGA core duplicons underlie disease instability at the 15q25 locus. PLoS Genetics, 2019, 15, e1008075.	3.5	17
385	Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs). Methods in Molecular Biology, 2017, 1492, 95-106.	0.9	17
386	viewGene: A Graphical Tool for Polymorphism Visualization and Characterization. Genome Research, 2002, 12, 333-338.	5.5	16
387	Single-cell strand sequencing of a macaque genome reveals multiple nested inversions and breakpoint reuse during primate evolution. Genome Research, 2020, 30, 1680-1693.	5.5	16
388	Cloning, Sequencing, Gene Organization, and Localization of the Human Ribosomal Protein RPL23A Gene. Genomics, 1997, 46, 234-239.	2.9	15
389	Resolving genomic disorder–associated breakpoints within segmental DNA duplications using massively parallel sequencing. Nature Protocols, 2014, 9, 1496-1513.	12.0	15
390	Genotype-First Analysis of the 16p11.2 Deletion Defines a New Type of "Autism― Biological Psychiatry, 2015, 77, 769-771.	1.3	15
391	Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region. Molecular Biology and Evolution, 2017, 34, 1669-1681.	8.9	15
392	Characterizing nucleotide variation and expansion dynamics in human-specific variable number tandem repeats. Genome Research, 2021, 31, 1313-1324.	5.5	15
393	Hominoid fission of chromosome 14/15 and the role of segmental duplications. Genome Research, 2013, 23, 1763-1773.	5.5	14
394	Enabling Global Clinical Collaborations on Identifiable Patient Data: The Minerva Initiative. Frontiers in Genetics, 2019, 10, 611.	2.3	14
395	Evidence for opposing selective forces operating on human-specific duplicated TCAF genes in Neanderthals and humans. Nature Communications, 2021, 12, 5118.	12.8	14
396	Rare variants and the oligogenic architecture of autism. Trends in Genetics, 2022, 38, 895-903.	6.7	14

#	Article	IF	CITATIONS
397	Targeted long-read sequencing identifies missing pathogenic variants in unsolved Werner syndrome cases. Journal of Medical Genetics, 2022, 59, 1087-1094.	3.2	14
398	Developmental Predictors of Cognitive and Adaptive Outcomes in Genetic Subtypes of Autism Spectrum Disorder. Autism Research, 2020, 13, 1659-1669.	3.8	13
399	De Novo CNVs in Bipolar Disorder: Recurrent Themes or New Directions?. Neuron, 2011, 72, 885-887.	8.1	12
400	Beliefs in vaccine as causes of autism among SPARK cohort caregivers. Vaccine, 2020, 38, 1794-1803.	3.8	12
401	Diverse genetic causes of polymicrogyria with epilepsy. Epilepsia, 2021, 62, 973-983.	5.1	12
402	Reflections on the genetics-first approach to advancements in molecular genetic and neurobiological research on neurodevelopmental disorders. Journal of Neurodevelopmental Disorders, 2021, 13, 24.	3.1	12
403	Sequence Variation Within the Fragile X Locus. Genome Research, 2001, 11, 1382-1391.	5.5	12
404	<i>BAZ2B</i> haploinsufficiency as a cause of developmental delay, intellectual disability, and autism spectrum disorder. Human Mutation, 2020, 41, 921-925.	2.5	11
405	Potocki–Lupski syndrome mimicking a connective tissue disorder. Clinical Dysmorphology, 2008, 17, 211-213.	0.3	9
406	Comorbid symptoms of inattention, autism, and executive cognition in youth with putative genetic risk. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2018, 59, 268-276.	5.2	8
407	Evolutionary Dynamics of the POTE Gene Family in Human and Nonhuman Primates. Genes, 2020, 11, 213.	2.4	7
408	Mako: A Graph-based Pattern Growth Approach to Detect Complex Structural Variants. Genomics, Proteomics and Bioinformatics, 2022, 20, 205-218.	6.9	6
409	Differences in the number of de novo mutations between individuals are due to small family-specific effects and stochasticity. Genome Research, 2021, 31, 1513-1518.	5.5	6
410	Discovering a new part of the phenotypic spectrum of Coffin-Siris syndrome in a fetal cohort. Genetics in Medicine, 2022, 24, 1753-1760.	2.4	6
411	Longitudinal report of child with de novo 16p11.2 triplication. Clinical Case Reports (discontinued), 2018, 6, 147-154.	0.5	5
412	Brief Report: Associations Between Self-injurious Behaviors and Abdominal Pain Among Individuals with ASD-Associated Disruptive Mutations. Journal of Autism and Developmental Disorders, 2021, 51, 3365-3373.	2.7	5
413	Delineation of a novel neurodevelopmental syndrome associated with <i>PAX5</i> haploinsufficiency. Human Mutation, 2022, 43, 461-470.	2.5	5
414	Alpha Satellite Insertion Close to an Ancestral Centromeric Region. Molecular Biology and Evolution, 2021, 38, 5576-5587.	8.9	4

#	Article	IF	CITATIONS
415	An algorithmic analysis of the role of unequal crossover in alpha-satellite DNA evolution. Genome Informatics, 2002, 13, 93-102.	0.4	4
416	Co-occurring medical conditions among individuals with ASD-associated disruptive mutations. Children's Health Care, 2020, 49, 361-384.	0.9	3
417	Sleep Problems in Children with ASD and Gene Disrupting Mutations. Journal of Genetic Psychology, 2021, 182, 317-334.	1.2	3
418	Mining the gaps of chromosome 8. Nature, 2021, , .	27.8	3
419	A family study implicates <i>GBE1</i> in the etiology of autism spectrum disorder. Human Mutation, 2022, 43, 16-29.	2.5	2
420	Genomes and evolution. Current Opinion in Genetics and Development, 2003, 13, 559-561.	3.3	1
421	Segmental duplications and the human genome. , 2005, , .		1
422	2012 Introduction to the Curt Stern Award: Jay Shendure1. American Journal of Human Genetics, 2013, 92, 338-339.	6.2	1
423	C. Thomas Caskey (1938–2022). Genome Research, 2022, 32, vii-viii.	5.5	1
424	Novel biallelic variants affecting the OTU domain of the gene OTUD6B associate with severe intellectual disability syndrome and molecular dynamics simulations. European Journal of Medical Genetics, 2022, 65, 104497.	1.3	1
425	IDENTIFYING UNIFORMLY MUTATED SEGMENTS WITHIN REPEATS. Journal of Bioinformatics and Computational Biology, 2004, 02, 657-668.	0.8	0
426	Introductory Speech for Patrick O. Brown**â€,Previously presented at the annual meeting of The American Society of Human Genetics, in Salt Lake City, on October 29, 2005 American Journal of Human Genetics, 2006, 79, 427-428.	6.2	0
427	Stable in a Genome of Instability: An Interview with Evan Eichler. PLoS Genetics, 2008, 4, e1000124.	3.5	0
428	Response to Benn. Genetics in Medicine, 2013, 15, 317-318.	2.4	0
429	2020 William Allan Award introduction: Mary-Claire King. American Journal of Human Genetics, 2021, 108, 383-385.	6.2	Ο