Lahiru Handunnetthi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6339682/publications.pdf

Version: 2024-02-01

38 papers

3,228 citations

20 h-index 315739 38 g-index

45 all docs

45 docs citations

45 times ranked

4893 citing authors

#	Article	IF	CITATIONS
1	A ChIP-seq defined genome-wide map of vitamin D receptor binding: Associations with disease and evolution. Genome Research, 2010, 20, 1352-1360.	5.5	737
2	Expression of the Multiple Sclerosis-Associated MHC Class II Allele HLA-DRB1*1501 Is Regulated by Vitamin D. PLoS Genetics, 2009, 5, e1000369.	3.5	442
3	Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nature Medicine, 2022, 28, 410-422.	30.7	392
4	An Updated Meta-Analysis of Risk of Multiple Sclerosis following Infectious Mononucleosis. PLoS ONE, 2010, 5, e12496.	2.5	260
5	Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nature Medicine, 2021, 27, 2144-2153.	30.7	249
6	A genetics-led approach defines the drug target landscape of 30 immune-related traits. Nature Genetics, 2019, 51, 1082-1091.	21.4	157
7	Regulation of major histocompatibility complex class II gene expression, genetic variation and disease. Genes and Immunity, 2010, 11, 99-112.	4.1	122
8	Prodromal symptoms of multiple sclerosis in primary care. Annals of Neurology, 2018, 83, 1162-1173.	5.3	98
9	Perceptual Systems Controlling Speech Production. Journal of Neuroscience, 2008, 28, 9969-9975.	3.6	91
10	Multiple sclerosis, vitamin D, and <i>HLA-DRB1*15</i> Neurology, 2010, 74, 1905-1910.	1.1	85
11	Vitamin D metabolic pathway genes and risk of multiple sclerosis in Canadians. Journal of the Neurological Sciences, 2011, 305, 116-120.	0.6	61
12	Heterogeneity in Multiple Sclerosis: Scratching the Surface of a Complex Disease. Autoimmune Diseases, 2011, 2011, 1-12.	0.6	55
13	Genetic and environmental factors and the distribution of multiple sclerosis in Europe. European Journal of Neurology, 2010, 17, 1210-1214.	3.3	52
14	The emerging role of vitamin D binding protein in multiple sclerosis. Journal of Neurology, 2011, 258, 353-358.	3.6	43
15	Prevalence of primary outcome changes in clinical trials registered on ClinicalTrials.gov: a cross-sectional study. F1000Research, 2014, 3, 77.	1.6	40
16	Type 1 diabetes mellitus and multiple sclerosis: common etiological features. Nature Reviews Endocrinology, 2009, 5, 655-664.	9.6	34
17	The Effect of Single Nucleotide Polymorphisms from Genome Wide Association Studies in Multiple Sclerosis on Gene Expression. PLoS ONE, 2010, 5, e10142.	2.5	32
18	No evidence for an effect of DNA methylation on multiple sclerosis severity at HLA-DRB1*15 or HLA-DRB5. Journal of Neuroimmunology, 2010, 223, 120-123.	2.3	25

#	Article	IF	Citations
19	A genome-wide scan of male sexual orientation. Journal of Human Genetics, 2010, 55, 131-132.	2.3	25
20	DNase hypersensitive sites and association with multiple sclerosis. Human Molecular Genetics, 2014, 23, 942-948.	2.9	21
21	Parent-of-origin of HLA-DRB1*1501 and age of onset of multiple sclerosis. Journal of Human Genetics, 2009, 54, 547-549.	2.3	19
22	Methylation of class II transactivator gene promoter IV is not associated with susceptibility to Multiple Sclerosis. BMC Medical Genetics, 2008, 9, 63.	2.1	18
23	Season of birth and anorexia nervosa. British Journal of Psychiatry, 2011, 198, 404-405.	2.8	18
24	Funding source and primary outcome changes in clinical trials registered on ClinicalTrials.gov are associated with the reporting of a statistically significant primary outcome: a cross-sectional study. F1000Research, 2015, 4, 80.	1.6	17
25	Contribution of genetic, epigenetic and transcriptomic differences to twin discordance in multiple sclerosis. Expert Review of Neurotherapeutics, 2010, 10, 1379-1381.	2.8	15
26	Funding source and primary outcome changes in clinical trials registered on ClinicalTrials.gov are associated with the reporting of a statistically significant primary outcome: a cross-sectional study. F1000Research, 2015, 4, 80.	1.6	15
27	Global proteomic analysis of extracellular matrix in mouse and human brain highlights relevance to cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2423-2438.	4.3	14
28	Maternal infection in gestation increases the risk of non-affective psychosis in offspring: a meta-analysis. Journal of Psychiatric Research, 2021, 139, 125-131.	3.1	11
29	Maternal immune activation downregulates schizophrenia genes in the foetal mouse brain. Brain Communications, 2021, 3, fcab275.	3.3	10
30	Revisiting the T-cell receptor alpha/delta locus and possible associations with multiple sclerosis. Genes and Immunity, 2011, 12, 59-66.	4.1	9
31	Genomic Insights into Myasthenia Gravis Identify Distinct Immunological Mechanisms in Early and Late Onset Disease. Annals of Neurology, 2021, 90, 455-463.	5. 3	8
32	UV radiation, vitamin D, and multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E130; author reply E131.	7.1	7
33	Integrating multiple oestrogen receptor alpha ChIP studies: overlap with disease susceptibility regions, DNase I hypersensitivity peaks and gene expression. BMC Medical Genomics, 2013, 6, 45.	1.5	7
34	Regulatory genomic regions active in immune cell types explain a large proportion of the genetic risk of multiple sclerosis. Journal of Human Genetics, 2014, 59, 211-215.	2.3	6
35	Parental non-inherited HLA resistance alleles do not confer protection against multiple sclerosis. Journal of Neuroimmunology, 2008, 196, 170-172.	2.3	3
36	The role of latitude and infections in the month-of-birth effect linked to schizophrenia. Brain, Behavior, & Immunity - Health, 2022, 24, 100486.	2.5	2

#	Article	IF	CITATIONS
37	Variants in ST8SIA1 do not play a major role in susceptibility to multiple sclerosis in Canadian families. Journal of Neuroimmunology, 2009, 212, 142-144.	2.3	1
38	Association Between Maternal Height and Childhood Outcomes. JAMA - Journal of the American Medical Association, 2010, 304, 638.	7.4	0