Uwe Rix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6339635/publications.pdf

Version: 2024-02-01

236925 3,635 48 25 h-index citations papers

47 g-index 48 48 48 5954 all docs docs citations times ranked citing authors

214800

#	Article	IF	CITATIONS
1	Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood, 2007, 110, 4055-4063.	1.4	600
2	Target profiling of small molecules by chemical proteomics. Nature Chemical Biology, 2009, 5, 616-624.	8.0	505
3	The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13283-13288.	7.1	274
4	Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia, 2009, 23, 477-485.	7.2	254
5	A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nature Chemical Biology, 2010, 6, 291-299.	8.0	254
6	Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leukemia and Lymphoma, 2008, 49, 615-619.	1.3	233
7	Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia, 2017, 31, 2388-2397.	7.2	110
8	An immunoproteomic approach to characterize the CAR interactome and signalosome. Science Signaling, 2019, 12, .	3.6	109
9	Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML. Nature Chemical Biology, 2012, 8, 905-912.	8.0	96
10	Immunosuppression and atypical infections in CML patients treated with dasatinib at 140â€∫mg daily. European Journal of Clinical Investigation, 2009, 39, 1098-1109.	3.4	92
11	Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12414-12419.	7.1	88
12	Proteome-wide Profiling of Clinical PARP Inhibitors Reveals Compound-Specific Secondary Targets. Cell Chemical Biology, 2016, 23, 1490-1503.	5.2	80
13	GSK3 Alpha and Beta Are New Functionally Relevant Targets of Tivantinib in Lung Cancer Cells. ACS Chemical Biology, 2014, 9, 353-358.	3.4	76
14	Chemoproteomics Reveals Novel Protein and Lipid Kinase Targets of Clinical CDK4/6 Inhibitors in Lung Cancer. ACS Chemical Biology, 2015, 10, 2680-2686.	3.4	68
15	EGFR Mediates Responses to Small-Molecule Drugs Targeting Oncogenic Fusion Kinases. Cancer Research, 2017, 77, 3551-3563.	0.9	65
16	Polypharmacology-based ceritinib repurposing using integrated functional proteomics. Nature Chemical Biology, 2017, 13, 1222-1231.	8.0	60
17	Dual Targeting of WEE1 and PLK1 by AZD1775 Elicits Single Agent Cellular Anticancer Activity. ACS Chemical Biology, 2017, 12, 1883-1892.	3.4	57
18	Cell Type–specific Adaptive Signaling Responses to KRASG12C Inhibition. Clinical Cancer Research, 2021, 27, 2533-2548.	7.0	46

#	Article	IF	CITATIONS
19	Adaptive Responses to Dasatinib-Treated Lung Squamous Cell Cancer Cells Harboring DDR2 Mutations. Cancer Research, 2014, 74, 7217-7228.	0.9	43
20	Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms. Molecular Systems Biology, 2013, 9, 705.	7.2	42
21	Turning liabilities into opportunities: Off-target based drug repurposing in cancer. Seminars in Cancer Biology, 2021, 68, 209-229.	9.6	39
22	An Integrated Chemical Biology Approach Identifies Specific Vulnerability of Ewing's Sarcoma to Combined Inhibition of Aurora Kinases A and B. Molecular Cancer Therapeutics, 2011, 10, 1846-1856.	4.1	37
23	TRK xDFG Mutations Trigger a Sensitivity Switch from Type I to II Kinase Inhibitors. Cancer Discovery, 2021, 11, 126-141.	9.4	34
24	Dabrafenib inhibits the growth of <i>BRAFâ€WT</i> cancers through CDK16 and NEK9 inhibition. Molecular Oncology, 2018, 12, 74-88.	4.6	30
25	A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF. Oncogene, 2014, 33, 2531-2539.	5.9	29
26	Acid Elution and One-Dimensional Shotgun Analysis on an Orbitrap Mass Spectrometer: An Application to Drug Affinity Chromatography. Journal of Proteome Research, 2009, 8, 4753-4765.	3.7	27
27	PAXIP1 Potentiates the Combination of WEE1 Inhibitor AZD1775 and Platinum Agents in Lung Cancer. Molecular Cancer Therapeutics, 2016, 15, 1669-1681.	4.1	23
28	Identification of Kinase Inhibitor Targets in the Lung Cancer Microenvironment by Chemical and Phosphoproteomics. Molecular Cancer Therapeutics, 2014, 13, 2751-2762.	4.1	21
29	Targeting a cell state common to tripleâ€negative breast cancers. Molecular Systems Biology, 2015, 11, 789.	7.2	21
30	Off-target based drug repurposing opportunities for tivantinib in acute myeloid leukemia. Scientific Reports, 2019, 9, 606.	3.3	21
31	Target Identification in Small Cell Lung Cancer via Integrated Phenotypic Screening and Activity-Based Protein Profiling. Molecular Cancer Therapeutics, 2016, 15, 334-342.	4.1	19
32	The non-canonical target PARP16 contributes to polypharmacology of the PARP inhibitor talazoparib and its synergy with WEE1 inhibitors. Cell Chemical Biology, 2022, 29, 202-214.e7.	5.2	19
33	Comparison of Quantitative Mass Spectrometry Platforms for Monitoring Kinase ATP Probe Uptake in Lung Cancer. Journal of Proteome Research, 2018, 17, 63-75.	3.7	18
34	Ceritinib Enhances the Efficacy of Trametinib in <i>BRAF/NRAS</i> -Wild-Type Melanoma Cell Lines. Molecular Cancer Therapeutics, 2018, 17, 73-83.	4.1	18
35	Functional Proteomics and Deep Network Interrogation Reveal a Complex Mechanism of Action of Midostaurin in Lung Cancer Cells. Molecular and Cellular Proteomics, 2018, 17, 2434-2447.	3.8	17
36	APOSTL: An Interactive Galaxy Pipeline for Reproducible Analysis of Affinity Proteomics Data. Journal of Proteome Research, 2016, 15, 4747-4754.	3.7	16

#	Article	IF	CITATIONS
37	A Target-Disease Network Model of Second-Generation BCR-ABL Inhibitor Action in Ph+ ALL. PLoS ONE, 2013, 8, e77155.	2.5	15
38	Divergent Polypharmacology-Driven Cellular Activity of Structurally Similar Multi-Kinase Inhibitors through Cumulative Effects on Individual Targets. Cell Chemical Biology, 2019, 26, 1240-1252.e11.	5.2	15
39	Targeted Therapy Given after Anti–PD-1 Leads to Prolonged Responses in Mouse Melanoma Models through Sustained Antitumor Immunity. Cancer Immunology Research, 2021, 9, 554-567.	3.4	15
40	Lowering Sample Requirements to Study Tyrosine Kinase Signaling Using Phosphoproteomics with the TMT Calibrator Approach. Proteomics, 2020, 20, e2000116.	2.2	12
41	Evaluating kinase ATP uptake and tyrosine phosphorylation using multiplexed quantification of chemically labeled and post-translationally modified peptides. Methods, 2015, 81, 41-49.	3.8	11
42	Deploying Ibrutinib to Lung Cancer: Another Step in the Quest Towards Drug Repurposing. Journal of the National Cancer Institute, 2014, 106, dju250-dju250.	6.3	8
43	Charting Immune Signaling Proteomes En Route to New Therapeutic Strategies. Cancer Immunology Research, 2015, 3, 714-720.	3.4	7
44	Characterization of epidermal growth factor receptor (EGFR) P848L, an unusual EGFR variant present in lung cancer patients, in a murine Ba/F3 model. FEBS Open Bio, 2019, 9, 1689-1704.	2.3	6
45	Enhancing cognate target elution efficiency in gel-free chemical proteomics. EuPA Open Proteomics, 2015, 9, 43-53.	2.5	2
46	Unraveling the rewired network. Nature Chemical Biology, 2018, 14, 746-747.	8.0	2
47	Bidirectional Adaptive Signaling between cancer and stromal cells: mechanisms and therapeutics. Expert Review of Proteomics, 2018, 15, 697-699.	3.0	1
48	TRK xDFG Mutations Trigger a Sensitivity Switch from Type I to II Kinase Inhibitors. SSRN Electronic Journal, 0, , .	0.4	0