Cecelia C Yates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6338943/publications.pdf

Version: 2024-02-01

CECELLA C YATES

#	Article	IF	CITATIONS
1	Novel combination therapy reduces subconjunctival fibrosis after glaucoma filtration surgery in the rabbit model. Clinical and Experimental Ophthalmology, 2021, 49, 60-69.	2.6	6
2	Chemokine-Based Therapeutics for the Treatment of Inflammatory and Fibrotic Convergent Pathways in COVID-19. Current Pathobiology Reports, 2021, 9, 93-105.	3.4	14
3	Beyond Growth Factors: Macrophage-Centric Strategies for Angiogenesis. Current Pathobiology Reports, 2020, 8, 111-120.	3.4	12
4	Injected Versus Sponge-Applied Mitomycin C (MMC) During Modified Trabeculectomy in New Zealand White Rabbit Model. Translational Vision Science and Technology, 2020, 9, 23.	2.2	4
5	Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index. PLoS ONE, 2020, 15, e0240986.	2.5	0
6	mTORC1-mediated polarization of M1 macrophages and their accumulation in the liver correlate with immunopathology in fatal ehrlichiosis. Scientific Reports, 2019, 9, 14050.	3.3	36
7	The Role of Chemokines in Fibrotic Dermal Remodeling and Wound Healing. Molecular and Translational Medicine, 2019, , 3-24.	0.4	7
8	Macrophage‧pecific Phenotypes Direct Fibroblast Expression of Matrix Metallopeptidases. FASEB Journal, 2019, 33, 802.83.	0.5	0
9	Increasing Cardiomyocyte Atrogin-1 Reduces Aging-Associated Fibrosis and Regulates Remodeling inÂVivo. American Journal of Pathology, 2018, 188, 1676-1692.	3.8	14
10	Novel classification for global gene signature model for predicting severity of systemic sclerosis. PLoS ONE, 2018, 13, e0199314.	2.5	1
11	Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations. Frontiers in Pharmacology, 2018, 9, 507.	3.5	31
12	Biâ€directional Macrophageâ€Fibroblast Crosstalk Directs Wound Resolution Factors. FASEB Journal, 2018, 32, 414.2.	0.5	1
13	Typeâ€l interferonâ€mediated Akt/mTORC2 signaling regulates autophagy and inflammasome activation in mouse liver injury/sepsis model. FASEB Journal, 2018, 32, 41.7.	0.5	0
14	FIBROKINEâ,"¢ Peptides: A Broad‧pectrum of Antiâ€Fibrotic Chemokine Peptides to Treat Organ Fibrosis. FASEB Journal, 2018, 32, 414.5.	0.5	1
15	Personalized Gene Expression Profile Information Predicts Severity of Systemic Sclerosis Despite Heterogeneity of Disease. FASEB Journal, 2018, 32, 414.10.	0.5	0
16	Improved Transplanted Stem Cell Survival in a Polymer Gel Supplemented with Tenascin C Accelerates Healing and Reduces Scarring of Murine Skin Wounds. Cell Transplantation, 2017, 26, 103-113.	2.5	31
17	Local Probiotic Therapy with <i>Lactobacillus plantarum</i> Mitigates Scar Formation in Rabbits after Burn Injury and Infection. Surgical Infections, 2017, 18, 119-127.	1.4	57
18	Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration. Biomaterials, 2017, 112, 95-107.	11.4	163

CECELIA C YATES

#	Article	IF	CITATIONS
19	Multipotent stromal cells/mesenchymal stem cells and fibroblasts combine to minimize skin hypertrophic scarring. Stem Cell Research and Therapy, 2017, 8, 193.	5.5	48
20	Epidermal Growth Factor Tethered to <i>β</i> -Tricalcium Phosphate Bone Scaffolds via a High-Affinity Binding Peptide Enhances Survival of Human Mesenchymal Stem Cells/Multipotent Stromal Cells in an Immune-Competent Parafascial Implantation Assay in Mice. Stem Cells Translational Medicine, 2016, 5, 1580-1586.	3.3	18
21	Cardiomyocyte-Specific Human Bcl2-Associated Anthanogene 3 P209L Expression Induces Mitochondrial Fragmentation, Bcl2-Associated Anthanogene 3 Haploinsufficiency, and Activates p38 Signaling. American Journal of Pathology, 2016, 186, 1989-2007.	3.8	36
22	Pericytes: A newly recognized player in wound healing. Wound Repair and Regeneration, 2016, 24, 204-214.	3.0	77
23	Skin tissue repair: Matrix microenvironmental influences. Matrix Biology, 2016, 49, 25-36.	3.6	105
24	MuRF2 regulates PPARÎ ³ 1 activity to protect against diabetic cardiomyopathy and enhance weight gain induced by a high fat diet. Cardiovascular Diabetology, 2015, 14, 97.	6.8	40
25	Muscle ring finger-3 protects against diabetic cardiomyopathy induced by a high fat diet. BMC Endocrine Disorders, 2015, 15, 36.	2.2	18
26	MMI-0100 inhibits cardiac fibrosis in myocardial infarction by direct actions on cardiomyocytes and fibroblasts via MK2 inhibition. Journal of Molecular and Cellular Cardiology, 2014, 77, 86-101.	1.9	41
27	The Matrikine Tenascin-C Protects Multipotential Stromal Cells/Mesenchymal Stem Cells from Death Cytokines Such as FasL. Tissue Engineering - Part A, 2013, 19, 1972-1983.	3.1	45
28	Transplanted Fibroblasts Prevents Dysfunctional Repair in a Murine CXCR3-Deficient Scarring Model. Cell Transplantation, 2012, 21, 919-931.	2.5	30
29	Skin Wound Healing and Scarring: Fetal Wounds and Regenerative Restitution. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 325-333.	3.6	122
30	An IP-10 (CXCL10)-Derived Peptide Inhibits Angiogenesis. PLoS ONE, 2012, 7, e40812.	2.5	71
31	Matrix control of scarring. Cellular and Molecular Life Sciences, 2011, 68, 1871-1881.	5.4	50
32	Lack of CXC Chemokine Receptor 3 Signaling Leads to Hypertrophic and Hypercellular Scarring. American Journal of Pathology, 2010, 176, 1743-1755.	3.8	67
33	IP-10 induces dissociation of newly formed blood vessels. Journal of Cell Science, 2009, 122, 2064-2077.	2.0	130
34	Delayed reepithelialization and basement membrane regeneration after wounding in mice lacking CXCR3. Wound Repair and Regeneration, 2009, 17, 34-41.	3.0	60
35	ELR-Negative CXC Chemokine CXCL11 (IP-9/I-TAC) Facilitates Dermal and Epidermal Maturation during Wound Repair. American Journal of Pathology, 2008, 173, 643-652.	3.8	46
36	Delayed and Deficient Dermal Maturation in Mice Lacking the CXCR3 ELR-Negative CXC Chemokine Receptor. American Journal of Pathology, 2007, 171, 484-495.	3.8	97

#	Article	IF	CITATIONS
37	The effect of multifunctional polymer-based gels on wound healing in full thickness bacteria-contaminated mouse skin wound models. Biomaterials, 2007, 28, 3977-3986.	11.4	98
38	IP-10 Blocks Vascular Endothelial Growth Factor-Induced Endothelial Cell Motility and Tube Formation via Inhibition of Calpain. Circulation Research, 2006, 98, 617-625.	4.5	192