
Pascal Fongarland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6338797/publications.pdf Version: 2024-02-01

PASCAL FONCAPIAND

#	Article	IF	CITATIONS
1	Advances in the Development of Novel Cobalt Fischerâ^'Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chemical Reviews, 2007, 107, 1692-1744.	47.7	2,045
2	Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chemistry, 2011, 13, 1960.	9.0	468
3	Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts. Journal of Catalysis, 2007, 252, 215-230.	6.2	262
4	Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer–Tropsch synthesis. Journal of Catalysis, 2011, 277, 14-26.	6.2	211
5	In situXRD investigation of the evolution of alumina-supported cobaltcatalysts under realistic conditions of Fischer-Tropsch synthesis. Chemical Communications, 2010, 46, 788-790.	4.1	110
6	Power-to-Liquid catalytic CO2 valorization into fuels and chemicals: focus on the Fischer-Tropsch route. Journal of CO2 Utilization, 2020, 38, 314-347.	6.8	106
7	Identification of the active species in the working alumina-supported cobalt catalyst under various conditions of Fischer–Tropsch synthesis. Catalysis Today, 2011, 164, 62-67.	4.4	87
8	Dimethyl Ether Synthesis with in situ H ₂ O Removal in Fixed-Bed Membrane Reactor: Model and Simulations. Industrial & Engineering Chemistry Research, 2010, 49, 6870-6877.	3.7	80
9	Mechanistic Modeling of Cobalt Based Catalyst Sintering in a Fixed Bed Reactor under Different Conditions of Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2012, 51, 11955-11964.	3.7	69
10	Reconstructed La-, Y-, Ce-modified MgAl-hydrotalcite as a solid base catalyst for aldol condensation: Investigation of water tolerance. Journal of Catalysis, 2014, 318, 108-118.	6.2	67
11	FTIR as a simple tool to quantify unconverted lignin from chars in biomass liquefaction process: Application to SC ethanol liquefaction of pine wood. Fuel Processing Technology, 2015, 134, 378-386.	7.2	67
12	Direct Evidence of Surface Oxidation of Cobalt Nanoparticles in Alumina-Supported Catalysts for Fischer–Tropsch Synthesis. ACS Catalysis, 2014, 4, 4510-4515.	11.2	62
13	Corrosion Behavior of Carbon Steel in Alkanolamine/Room-Temperature Ionic Liquid Based CO ₂ Capture Systems. Industrial & Engineering Chemistry Research, 2012, 51, 8711-8718.	3.7	61
14	Hydrogen solubility in straight run gasoil. Chemical Engineering Science, 2002, 57, 547-553.	3.8	53
15	Fischer–Tropsch synthesis in milli-fixed bed reactor: Comparison with centimetric fixed bed and slurry stirred tank reactors. Catalysis Today, 2011, 171, 201-206.	4.4	53
16	Deactivation of a Co/Al2O3 Fischer–Tropsch catalyst by water-induced sintering in slurry reactor: Modeling and experimental investigations. Catalysis Today, 2013, 215, 52-59.	4.4	49
17	Acceptorless dehydrogenative coupling of alcohols catalysed by ruthenium PNP complexes: Influence of catalyst structure and of hydrogen mass transfer. Journal of Catalysis, 2016, 340, 331-343.	6.2	46
18	Gas/Liquid Mass Transfer in Small Laboratory Batch Reactors:Â Comparison of Methods. Industrial & Engineering Chemistry Research, 2004, 43, 924-927.	3.7	43

#	Article	IF	CITATIONS
19	Effect of Different Reaction Conditions on the Deactivation of Alumina-Supported Cobalt Fischer–Tropsch Catalysts in a Milli-Fixed-Bed Reactor: Experiments and Modeling. Industrial & Engineering Chemistry Research, 2014, 53, 6913-6922.	3.7	42
20	Reinvestigation of the Organocatalyzed Aerobic Oxidation of Aldehydes to Acids. Organic Letters, 2019, 21, 10134-10138.	4.6	38
21	Direct conversion of methanol into 1,1-dimethoxymethane: remarkably high productivity over an FeMo catalyst placed under unusual conditions. Green Chemistry, 2010, 12, 1722.	9.0	37
22	Esterification of aqueous lactic acid solutions with ethanol using carbon solid acid catalysts: Amberlyst 15, sulfonated pyrolyzed wood and graphene oxide. Applied Catalysis A: General, 2018, 552, 184-191.	4.3	37
23	Modeling of fixed bed methanation reactor for syngas production: Operating window and performance characteristics. Fuel, 2013, 107, 254-260.	6.4	34
24	Measurement of overall solids mass flux in a gas–solid Circulating Fluidized Bed. Powder Technology, 2004, 148, 158-171.	4.2	31
25	Influence of syngas composition on the transient behavior of a Fischer–Tropsch continuous slurry reactor. Catalysis Today, 2005, 106, 137-142.	4.4	31
26	Oxidative depolymerization of lignins for producing aromatics: variation of botanical origin and extraction methods. Biomass Conversion and Biorefinery, 2022, 12, 3795-3808.	4.6	29
27	Simple and selective conversion of fructose into HMF using extractive-reaction process in microreactor. Journal of Flow Chemistry, 2018, 8, 3-9.	1.9	28
28	Hydrophilic zeolite sorbents for Inâ€situ water removal in high temperature processes. Canadian Journal of Chemical Engineering, 2017, 95, 1842-1849.	1.7	27
29	Glycerol to Glyceraldehyde Oxidation Reaction Over Pt-Based Catalysts Under Base-Free Conditions. Frontiers in Chemistry, 2019, 7, 156.	3.6	24
30	Supported-Metal Catalysts in Upgrading Lignin to Aromatics by Oxidative Depolymerization. Catalysts, 2021, 11, 467.	3.5	24
31	Kinetic study and modeling of Fischer–Tropsch reaction over aCo/Al2O3catalyst in a slurry reactor. Chemical Engineering Science, 2007, 62, 5353-5356.	3.8	23
32	Choice of laboratory scale reactors for HDT kinetic studies or catalyst tests. Catalysis Today, 2004, 98, 31-42.	4.4	22
33	Epoxidation of methyl oleate with molecular oxygen: Implementation of Mukaiyama reaction in flow. European Journal of Lipid Science and Technology, 2017, 119, 1600281.	1.5	21
34	Gas–liquid and liquid–solid mass transfers in two types of stationary catalytic basket laboratory reactor. Chemical Engineering Science, 2005, 60, 6240-6253.	3.8	20
35	Integrated aqueous-phase glycerol reforming to dimethyl ether synthesis—A novel allothermal dual bed membrane reactor concept. Chemical Engineering Journal, 2012, 187, 311-327.	12.7	19
36	Direct Solid Lewis Acid Catalyzed Wood Liquefaction into Lactic Acid: Kinetic Evidences that Wood Pretreatment Might Not be a Prerequisite. ChemCatChem, 2017, 9, 2377-2382.	3.7	17

PASCAL FONGARLAND

#	Article	IF	CITATIONS
37	CFD simulations of two stirred tank reactors with stationary catalytic basket. Chemical Engineering Science, 2006, 61, 1217-1236.	3.8	16
38	Improved Reactor Productivity for the Safe Photoâ€Oxidation of Citronellol Under Visible Light LED Irradiation. ChemPhotoChem, 2019, 3, 122-128.	3.0	16
39	Comparative study of solvolysis of technical lignins in flow reactor. Biomass Conversion and Biorefinery, 2020, 10, 351-366.	4.6	16
40	Kinetic modeling of transient Fischer–Tropsch experiments over Co/Al 2 O 3 catalysts with different microstructures. Catalysis Today, 2016, 275, 20-26.	4.4	15
41	Hydrolysis of Cellobiose and Xylan over TiO ₂ -Based Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 5555-5565.	6.7	15
42	Kinetic modeling of the quasiâ€homogeneous oxidation of glycerol over unsupported gold particles in the liquid phase. European Journal of Lipid Science and Technology, 2016, 118, 72-79.	1.5	14
43	Development of a water-selective zeolite composite membrane by a new pore-plugging technique. Microporous and Mesoporous Materials, 2017, 237, 49-59.	4.4	14
44	Catalytic and Kinetic Study of the CO ₂ Hydrogenation Reaction over a Fe–K/Al ₂ O ₃ Catalyst toward Liquid and Gaseous Hydrocarbon Production. Industrial & Engineering Chemistry Research, 2021, 60, 16635-16652.	3.7	13
45	Synthèse directe du 1,1-diméthoxyméthane à partir de méthanol moyennant une modification mineure du procédé de production de formaldéhyde sur catalyseurs FeMo. Oil and Gas Science and Technology, 2010, 65, 751-762.	1.4	12
46	Metal-free, visible light-promoted aerobic aldehydes oxidation. Journal of Flow Chemistry, 2016, 6, 206-210.	1.9	12
47	Bacterial Competition for the Anode Colonization under Different External Resistances in Microbial Fuel Cells. Catalysts, 2022, 12, 176.	3.5	12
48	Continuous flow oxidation of benzylic and aliphatic alcohols using bleach: process improvement by precise pH adjustment in flow with CO2. Reaction Chemistry and Engineering, 2018, 3, 188-194.	3.7	10
49	Direct Synthesis of Nitriles from Carboxylic Acids Using Indium-Catalyzed Transnitrilation: Mechanistic and Kinetic Study. ACS Catalysis, 2019, 9, 9705-9714.	11.2	10
50	Continuous flow aerobic alcohol oxidation using a heterogeneous Ru ⁰ catalyst. Reaction Chemistry and Engineering, 2019, 4, 550-558.	3.7	10
51	Catalytic Liquefaction of Kraft Lignin with Solvothermal Approach. Catalysts, 2021, 11, 875.	3.5	10
52	Kinetic modelling of the glycerol oxidation in the liquid phase: comparison of Pt, Au and Ag <scp>AS</scp> active phases. Journal of Chemical Technology and Biotechnology, 2017, 92, 2267-2275.	3.2	9
53	Noncatalyzed Liquefaction of Celluloses in Hydrothermal Conditions: Influence of Reactant Physicochemical Characteristics and Modeling Studies. Industrial & Engineering Chemistry Research, 2017, 56, 126-134.	3.7	9
54	Glycerol Oxidation in the Liquid Phase over a Gold-Supported Catalyst: Kinetic Analysis and Modelling. ChemEngineering, 2017, 1, 7.	2.4	9

#	Article	IF	CITATIONS
55	Al-modified mesoporous silica for efficient conversion of methanol to dimethyl ether. RSC Advances, 2013, 3, 5895.	3.6	8
56	Measurement of the Influence of the Microstructure of Alumina‣upported Cobalt Catalysts on their Activity and Selectivity in Fischer–Tropsch Synthesis by using Steady‣tate and Transient Kinetics. ChemCatChem, 2017, 9, 2344-2351.	3.7	8
57	Kinetic of ZrW catalyzed cellulose hydrothermal conversion: Deeper understanding of reaction pathway via analytic tools improvement. Molecular Catalysis, 2018, 458, 171-179.	2.0	7
58	ZrW catalyzed cellulose conversion in hydrothermal conditions: Influence of the calcination temperature and insights on the nature of the active phase. Molecular Catalysis, 2019, 476, 110518.	2.0	7
59	Controlled pinewood fractionation with supercritical ethanol: A prerequisite toward pinewood conversion into chemicals and biofuels. Comptes Rendus Chimie, 2018, 21, 555-562.	0.5	6
60	Platelet Millireactor Filled with Open Cell Foam-Supported Pt Nanoparticles for a Three-Phase Catalytic System. Industrial & Engineering Chemistry Research, 2019, 58, 9352-9361.	3.7	6
61	Online monitoring by infrared spectroscopy using multivariate analysis – background theory and application to catalytic dehydrogenative coupling of butanol to butyl butyrate. Reaction Chemistry and Engineering, 2019, 4, 909-918.	3.7	6
62	Experimental and CFD study of a new one-pot reactor for hybrid catalysis. Chemical Engineering Journal, 2020, 383, 122958.	12.7	6
63	Transient Isotopic Studies and Microkinetic Modeling of CO Methanation over Nickel Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 6698-6705.	3.7	6
64	Investigating (Pseudo)-Heterogeneous Pd-Catalysts for Kraft Lignin Depolymerization under Mild Aqueous Basic Conditions. Catalysts, 2021, 11, 1311.	3.5	6
65	Unexpected reactivity related to support effects during xylose hydrogenation over ruthenium catalysts. RSC Advances, 2021, 11, 39387-39398.	3.6	6
66	Production of Phenolic Compounds from Catalytic Oxidation of Kraft Black Liquor in a Continuous Reactor. Industrial & Engineering Chemistry Research, 2022, 61, 7430-7437.	3.7	6
67	Intergranular and intragranular cobalt repartitions in alumina supported Fischer–Tropsch catalysts promoted with platinum. Comptes Rendus Chimie, 2009, 12, 668-676.	0.5	5
68	Effect of hydration on the surface basicity and catalytic activity of Mg-rare earth mixed oxides for aldol condensation. Journal of Rare Earths, 2018, 36, 359-366.	4.8	5
69	An efficient bioâ€inspired catalytic tool for hydrogen release at room temperature from a stable borohydride solution. International Journal of Energy Research, 2020, 44, 10612-10627.	4.5	5
70	Evaluation of the Heat Produced by the Hydrothermal Liquefaction of Wet Food Processing Residues and Model Compounds. ChemEngineering, 2022, 6, 2.	2.4	4
71	Development and Validation of a Detailed Microkinetic Model for the CO ₂ Hydrogenation Reaction toward Hydrocarbons over an Fe–K/Al ₂ O ₃ Catalyst. Industrial & Engineering Chemistry Research, 2022, 61, 4514-4533.	3.7	4
72	The Pivotal Role of Catalysis in France: Selected Examples of Recent Advances and Future Prospects ChemCatChem, 2017, 9, 2029-2064.	3.7	2

#	Article	IF	CITATIONS
73	Hybrid catalysis: Study of a model reaction for one-pot reactor combining an enzyme and a heterogeneous catalyst. Catalysis Today, 2020, 346, 93-97.	4.4	2
74	GECat 2015. Comptes Rendus Chimie, 2017, 20, 5-6.	0.5	1
75	Autocatalyzed and heterogeneously catalyzed esterification kinetics of glycolic acid with ethanol. Reaction Chemistry and Engineering, 2022, 7, 460-474.	3.7	1
76	Reactive Distillation of Glycolic Acid Using Heterogeneous Catalysts: Experimental Studies and Process Simulation. Frontiers in Chemistry, 0, 10, .	3.6	1