Yves Lajoie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/633837/publications.pdf

Version: 2024-02-01

	471509	477307
923	17	29
citations	h-index	g-index
49	49	895
docs citations	times ranked	citing authors
	citations 49	923 17 citations h-index 49 49

#	Article	IF	CITATIONS
1	Effect of Center of Mass Immobilization on Center of Pressure Displacement in Single and Dual-Task. Journal of Motor Behavior, 2023, 55, 539-549.	0.9	4
2	Effect of Dual Task on Step Variability during Stepping in Place without Vision. Journal of Motor Behavior, 2022, 54, 337-343.	0.9	1
3	Hemodynamic responses of quiet standing simultaneously performed with different cognitive loads in older adults. Human Movement Science, 2022, 82, 102931.	1.4	3
4	Number of Trials Needed to Assess Postural Control of Young Adults in Single and Dual-Task. Journal of Motor Behavior, 2021, 53, 30-39.	0.9	6
5	Hemodynamic and behavioral changes in older adults during cognitively demanding dual tasks. Brain and Behavior, 2021, 11, e02021.	2.2	13
6	The Fukuda Stepping Test Is Influenced by a Concurrent Cognitive Task and Step Height in Healthy Young Adults: A Descriptive Study. Physiotherapy Canada Physiotherapie Canada, 2021, 73, 322-328.	0.6	1
7	The effects of Kinesiology Tape on static postural control in individuals with functional ankle instability. Physical Therapy in Sport, 2021, 48, 146-153.	1.9	3
8	An fNIRS Investigation of Discrete and Continuous Cognitive Demands During Dual-Task Walking in Young Adults. Frontiers in Human Neuroscience, 2021, 15, 711054.	2.0	4
9	Effect of Bilateral and Unilateral Plantarflexor Muscle Fatigue on Blind Navigation Precision and Gait Parameters. Journal of Motor Behavior, 2020, 52, 41-49.	0.9	0
10	Absence of Ankle Stiffening While Standing in Focus and Cognitive Task Conditions in Older Adults. Journal of Motor Behavior, 2020, 52, 167-174.	0.9	6
11	Automaticity of Postural Control while Dual-tasking Revealed in Young and Older Adults. Experimental Aging Research, 2020, 46, 1-21.	1.2	44
12	A functional near-infrared spectroscopy (fNIRS) examination of how self-initiated sequential movements become automatic. Experimental Brain Research, 2020, 238, 657-666.	1.5	8
13	Unveilling the cerebral and sensory contributions to automatic postural control during dual-task standing. Human Movement Science, 2020, 70, 102587.	1.4	22
14	The influence of carrying an anterior load on attention demand and obstacle clearance before, during, and after obstacle crossing. Experimental Brain Research, 2019, 237, 3313-3319.	1.5	3
15	Older and young adults adopt different postural strategies during quiet bipedal stance after ankle plantarflexor fatigue. Neuroscience Letters, 2019, 701, 208-212.	2.1	5
16	Reaction Time of Healthy Older Adults Is Reduced While Walking Fast. Journal of Motor Behavior, 2019, 51, 600-602.	0.9	3
17	Cognitive task modality influences postural control during quiet standing in healthy older adults. Aging Clinical and Experimental Research, 2019, 31, 1265-1270.	2.9	8
18	Effect of Transient Perturbations of Short-Term Memory on Target-Directed Blind Locomotion. Journal of Motor Behavior, 2018, 50, 2-7.	0.9	1

#	Article	IF	CITATIONS
19	Improvements in Obstacle Clearance Parameters and Reaction Time Over a Series of Obstacles Revealed After Five Repeated Testing Sessions in Older Adults. Motor Control, 2018, 22, 245-262.	0.6	2
20	Balance and Mobility Training With or Without Simultaneous Cognitive Training Reduces Attention Demand But Does Not Improve Obstacle Clearance in Older Adults. Motor Control, 2018, 22, 275-294.	0.6	6
21	Age-related differences in Fukuda stepping and Babinski-Weil tests, within-day variability and test–retest reliability. Aging Clinical and Experimental Research, 2017, 29, 223-230.	2.9	10
22	Continuous Cognitive Task Promotes Greater Postural Stability than an Internal or External Focus of Attention in Older Adults. Experimental Aging Research, 2017, 43, 21-33.	1.2	30
23	The effects of attentional focus and cognitive tasks on postural sway may be the result of automaticity. Gait and Posture, 2017, 54, 45-49.	1.4	72
24	Continuous and difficult discrete cognitive tasks promote improved stability in older adults. Gait and Posture, 2017, 55, 43-48.	1.4	12
25	Cognitive tasks promote automatization of postural control in young and older adults. Gait and Posture, 2017, 57, 40-45.	1.4	52
26	Balance and mobility training with or without concurrent cognitive training does not improve posture, but improves reaction time in healthy older adults. Gait and Posture, 2017, 52, 227-232.	1.4	21
27	Balance and mobility training with or without concurrent cognitive training improves the timed up and go (TUG), TUG cognitive, and TUG manual in healthy older adults: an exploratory study. Aging Clinical and Experimental Research, 2017, 29, 711-720.	2.9	16
28	Interstimulus Intervals and Sensory Modality Modulate the Impact of a Cognitive Task on Postural Control. Journal of Motor Behavior, 2016, 48, 482-488.	0.9	4
29	Examining the stability of dual-task posture and reaction time measures in older adults over five sessions: a pilot study. Aging Clinical and Experimental Research, 2016, 28, 1211-1218.	2.9	4
30	Reducing postural sway by concurrently performing challenging cognitive tasks. Human Movement Science, 2016, 46, 177-183.	1.4	37
31	Continuous Cognitive Tasks Improve Postural Control Compared to Discrete Cognitive Tasks. Journal of Motor Behavior, 2016, 48, 264-269.	0.9	21
32	Magnifying the Scale of Visual Biofeedback Improves Posture. Applied Psychophysiology Biofeedback, 2016, 41, 151-155.	1.7	10
33	Reaction Time Is Slower When Walking at a Slow Pace in Young Adults. Journal of Motor Behavior, 2016, 48, 153-154.	0.9	15
34	Effect of Ankle Weight on Blind Navigation. Perceptual and Motor Skills, 2015, 120, 502-518.	1.3	3
35	Continuous cognitive task promotes greater postural stability than an internal or external focus of attention. Gait and Posture, 2015, 41, 454-458.	1.4	69
36	Prioritizing attention on a reaction time task improves postural control and reaction time. International Journal of Neuroscience, 2015, 125, 100-106.	1.6	36

#	Article	IF	Citations
37	Impact of age and obstacles on navigation precision and reaction time during blind navigation in dual-task conditions. Gait and Posture, 2014, 39, 835-840.	1.4	6
38	Attentional focus influences postural control and reaction time performances only during challenging dual-task conditions in healthy young adults. Experimental Brain Research, 2013, 231, 219-229.	1.5	32
39	Attentional Demand Varies During a Blind Navigation Pathway In Young And Older Adults. The Open Behavioral Science Journal, 2013, 7, 1-6.	0.8	4
40	Effects of fatiguing isometric and isokinetic ankle exercises on postural control while standing on firm and compliant surfaces. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 39.	4.6	29
41	Effects of ankle and hip muscle fatigue on postural sway and attentional demands during unipedal stance. Gait and Posture, 2011, 33, 83-87.	1.4	83
42	Games-based biofeedback training and the attentional demands of balance in older adults. Aging Clinical and Experimental Research, 2010, 22, 367-373.	2.9	45
43	Games-based biofeedback training applications in rehabilitation and fall prevention. , 2009, , .		1
44	Effect of navigation direction on the dual-task of counting backward during blind navigation. Neuroscience Letters, 2008, 442, 148-151.	2.1	10
45	Reproducibility of Distance and Direction Errors Associated with Forward, Backward, and Sideway Walking in the Context of Blind Navigation. Perception, 2007, 36, 525-536.	1.2	8
46	Mental Imagery. Effects on static balance and attentional demands of the elderly. Aging Clinical and Experimental Research, 2005, 17, 223-228.	2.9	59
47	Effect of computerized feedback postural training on posture and attentional demands in older adults. Aging Clinical and Experimental Research, 2004, 16, 363-368.	2.9	61
48	Walking with Visual Restrictions in Healthy Elderly and Young Adults. Canadian Journal on Aging, 2002, 21, 295-301.	1.1	3
49	Attentional Demands for Walking: Age-Related Changes. Advances in Psychology, 1996, 114, 235-256.	0.1	27