List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/63354/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	An Overview of Resonant Circuits for Wireless Power Transfer. Energies, 2017, 10, 894.	3.1	127
2	A Critical Review of Advanced Electric Machines and Control Strategies for Electric Vehicles. Proceedings of the IEEE, 2021, 109, 1004-1028.	21.3	124
3	CHALLENGES AND OPPORTUNITIES OF ELECTRIC MACHINES FOR RENEWABLE ENERGY. Progress in Electromagnetics Research B, 2012, 42, 45-74.	1.0	70
4	Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging. Energies, 2016, 9, 906.	3.1	63
5	Overview of Flux-Modulation Machines Based on Flux-Modulation Principle: Topology, Theory, and Development Prospects. IEEE Transactions on Transportation Electrification, 2020, 6, 612-624.	7.8	60
6	Multi-Frequency Multi-Power One-to-Many Wireless Power Transfer System. IEEE Transactions on Magnetics, 2019, 55, 1-9.	2.1	51
7	Linear Active Disturbance Rejection Controllers for PMSM Speed Regulation System Considering the Speed Filter. IEEE Transactions on Power Electronics, 2021, 36, 14579-14592.	7.9	49
8	A Critical Review of Emerging Technologies for Electric and Hybrid Vehicles. IEEE Open Journal of Vehicular Technology, 2021, 2, 471-485.	4.9	47
9	Modern electric machines and drives for wind power generation: A review of opportunities and challenges. IET Renewable Power Generation, 2021, 15, 1864-1887.	3.1	46
10	Design and Analysis of a Cost-Effective Magnetless Multiphase Flux-Reversal DC-Field Machine for Wind Power Generation. IEEE Transactions on Energy Conversion, 2015, 30, 1565-1573.	5.2	45
11	Comparative Analysis and Optimization of Dynamic Charging Coils for Roadway-Powered Electric Vehicles. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	43
12	A Wireless Servo Motor Drive With Bidirectional Motion Capability. IEEE Transactions on Power Electronics, 2019, 34, 12001-12010.	7.9	43
13	Fault-Tolerant Control for Multiple Open-Leg Faults in Open-End Winding Permanent Magnet Synchronous Motor System Based on Winding Reconnection. IEEE Transactions on Power Electronics, 2021, 36, 6068-6078.	7.9	43
14	Parametric Sensitivity Analysis and Design Optimization of an Interior Permanent Magnet Synchronous Motor. IEEE Access, 2019, 7, 159918-159929.	4.2	42
15	Full-Range Soft-Switching Pulse Frequency Modulated Wireless Power Transfer. IEEE Transactions on Power Electronics, 2020, 35, 6533-6547.	7.9	42
16	Model-Free Predictive Current Control of SPMSM Drives Using Extended State Observer. IEEE Transactions on Industrial Electronics, 2022, 69, 6540-6550.	7.9	41
17	Design and Analysis of Wireless Ballastless Fluorescent Lighting. IEEE Transactions on Industrial Electronics, 2019, 66, 4065-4074.	7.9	40
18	Design and Analysis of an Electronic-Geared Magnetless Machine for Electric Vehicles. IEEE Transactions on Industrial Electronics, 2016, 63, 6705-6714.	7.9	35

#	Article	IF	CITATIONS
19	Modeling and Optimizing Method for Axial Flux Induction Motor of Electric Vehicles. IEEE Transactions on Vehicular Technology, 2020, 69, 12822-12831.	6.3	35
20	Design, Analysis, and Implementation of Wireless Shaded-Pole Induction Motors. IEEE Transactions on Industrial Electronics, 2021, 68, 6493-6503.	7.9	34
21	Move-and-Charge System for Automatic Guided Vehicles. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	33
22	Quantitative Comparison and Analysis of Magnetless Machines With Reluctance Topologies. IEEE Transactions on Magnetics, 2013, 49, 3969-3972.	2.1	32
23	Design of Axial Flux Induction Motor With Reduced Back Iron for Electric Vehicles. IEEE Transactions on Vehicular Technology, 2020, 69, 293-301.	6.3	32
24	A Magnetless Axial-Flux Machine for Range-Extended Electric Vehicles. Energies, 2014, 7, 1483-1499.	3.1	31
25	A New Magnetless Flux-Reversal HTS Machine for Direct-Drive Application. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	31
26	Overview of magnetless brushless machines. IET Electric Power Applications, 2018, 12, 1117-1125.	1.8	31
27	Electric Drives and Power Chargers: Recent Solutions to Improve Performance and Energy Efficiency for Hybrid and Fully Electric Vehicles. IEEE Vehicular Technology Magazine, 2020, 15, 73-83.	3.4	31
28	A Partitioned-Stator Flux-Switching Permanent-Magnet Machine With Mechanical Flux Adjusters for Hybrid Electric Vehicles. IEEE Transactions on Magnetics, 2017, 53, 1-7.	2.1	30
29	STATE-OF-THE-ART ELECTROMAGNETICS RESEARCH IN ELECTRIC AND HYBRID VEHICLES (INVITED PAPER). Progress in Electromagnetics Research, 2017, 159, 139-157.	4.4	30
30	A Wireless Dimmable Lighting System Using Variable-Power Variable-Frequency Control. IEEE Transactions on Industrial Electronics, 2020, 67, 8392-8404.	7.9	30
31	A Double-Rotor Flux-Switching Permanent-Magnet Motor for Electric Vehicles With Magnetic Differential. IEEE Transactions on Industrial Electronics, 2021, 68, 1004-1015.	7.9	30
32	Wireless Power and Drive Transfer for Piping Network. IEEE Transactions on Industrial Electronics, 2022, 69, 2345-2356.	7.9	30
33	A New Electric Magnetic-Geared Machine for Electric Unmanned Aerial Vehicles. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	27
34	A High-Torque Magnetless Axial-Flux Doubly Salient Machine for In-Wheel Direct Drive Applications. IEEE Transactions on Magnetics, 2014, 50, 1-5.	2.1	26
35	Stochastic optimization of multi-energy system operation considering hydrogen-based vehicle applications. Advances in Applied Energy, 2021, 2, 100031.	13.2	26
36	A Simplified Deadbeat Based Predictive Torque Control for Three-Level Simplified Neutral Point Clamped Inverter Fed IPMSM Drives Using SVM. IEEE Transactions on Energy Conversion, 2019, 34, 1906-1916.	5.2	25

#	Article	IF	CITATIONS
37	Hybrid Frequency Pacing for High-Order Transformed Wireless Power Transfer. IEEE Transactions on Power Electronics, 2021, 36, 1157-1170.	7.9	23
38	Different Active Disturbance Rejection Controllers Based on the Same Order GPI Observer. IEEE Transactions on Industrial Electronics, 2022, 69, 10969-10983.	7.9	22
39	Wireless Energy-On-Demand Using Magnetic Quasi-Resonant Coupling. IEEE Transactions on Power Electronics, 2020, 35, 9057-9069.	7.9	21
40	Simultaneous Identification of Multiple Mechanical Parameters in a Servo Drive System Using Only One Speed. IEEE Transactions on Power Electronics, 2021, 36, 716-726.	7.9	21
41	Digital Implementation of Deadbeat-Direct Torque and Flux Control for Permanent Magnet Synchronous Machines in the <i>M</i> – <i>T</i> Reference Frame. IEEE Transactions on Power Electronics, 2021, 36, 4610-4621.	7.9	21
42	Investigation of a 3D-Magnetic Flux PMSM With High Torque Density for Electric Vehicles. IEEE Transactions on Energy Conversion, 2022, 37, 1442-1454.	5.2	21
43	Mechanical Offset for Torque Ripple Reduction for Magnetless Double-Stator Doubly Salient Machine. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	20
44	A Switched-Capacitorless Energy-Encrypted Transmitter for Roadway-Charging Electric Vehicles. IEEE Transactions on Magnetics, 2018, 54, 1-6.	2.1	20
45	Sleeve design of permanent-magnet machine for low rotor losses. Chinese Journal of Electrical Engineering, 2020, 6, 86-96.	3.4	20
46	Magnetic Vibration Analysis of a New DC-Excited Multitoothed Switched Reluctance Machine. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	19
47	A Superconducting Vernier Motor for Electric Ship Propulsion. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-6.	1.7	19
48	Vibration Optimization of FSCW-IPM Motor Based on Iron-Core Modification for Electric Vehicles. IEEE Transactions on Vehicular Technology, 2020, 69, 14834-14845.	6.3	19
49	Wireless Energy Trading in Traffic Internet. IEEE Transactions on Power Electronics, 2022, 37, 4831-4841.	7.9	19
50	Wireless Shaded-Pole Induction Motor With Half-Bridge Inverter and Dual-Frequency Resonant Network. IEEE Transactions on Power Electronics, 2021, 36, 13536-13545.	7.9	18
51	Design and Analysis of a New Parallel-Hybrid-Excited Machine With Harmonic-Shift Structure. IEEE Transactions on Industrial Electronics, 2020, 67, 1759-1770.	7.9	17
52	Electromagnetic Force and Vibration Study of Dual-Stator Consequent-Pole Hybrid Excitation Motor for Electric Vehicles. IEEE Transactions on Vehicular Technology, 2021, 70, 4377-4388.	6.3	17
53	Sensorless Control for SynRM Drives Using a Pseudo-Random High-Frequency Triangular-Wave Current Signal Injection Scheme. IEEE Transactions on Power Electronics, 2022, 37, 7122-7131.	7.9	17
54	Design and Analysis of a New Multitoothed Magnetless Doubly Salient Machine. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	16

#	Article	IF	CITATIONS
55	DESIGN AND ANALYSIS OF A NEW AXIAL-FIELD MAGNETIC VARIABLE GEAR USING POLE-CHANGING PERMANENT MAGNETS. Progress in Electromagnetics Research, 2015, 153, 23-32.	4.4	16
56	Design and Analysis of Double-Layer Electromagnetic Field Limiter for Wireless Rechargeable Medical Implants. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	16
57	Selective Wireless Power Transfer Using Magnetic Field Editing. IEEE Transactions on Power Electronics, 2021, 36, 2710-2719.	7.9	16
58	Deep-Investigated Analytical Modeling of a Surface Permanent Magnet Vernier Motor. IEEE Transactions on Industrial Electronics, 2022, 69, 12336-12347.	7.9	16
59	Diagnosis of Open-Phase Faults for a Five-Phase PMSM Fed by a Closed-Loop Vector-Controlled Drive Based on Magnetic Field Pendulous Oscillation Technique. IEEE Transactions on Industrial Electronics, 2021, 68, 5582-5593.	7.9	15
60	A new linear magnetic gear with adjustable gear ratios and its application for direct-drive wave energy extraction. Renewable Energy, 2017, 105, 199-208.	8.9	14
61	Maximum Power Tracking for Magnetic Field Editing-Based Omnidirectional Wireless Power Transfer. IEEE Transactions on Power Electronics, 2022, 37, 12901-12912.	7.9	14
62	Design and analysis of a dualâ€mode fluxâ€switching doubly salient DCâ€field magnetless machine for wind power harvesting. IET Renewable Power Generation, 2015, 9, 908-915.	3.1	13
63	A Consequent-Pole Magnetic-Geared Machine With Axially Embedded Permanent Magnets for Hybrid Electric Vehicle. IEEE Access, 2021, 9, 14905-14917.	4.2	13
64	Discrete-Time Current Regulator for AC Machine Drives. IEEE Transactions on Power Electronics, 2022, 37, 5847-5858.	7.9	13
65	Design and Analysis of Wireless Resolver for Wireless Switched Reluctance Motors. IEEE Transactions on Industrial Electronics, 2023, 70, 2221-2230.	7.9	13
66	A Hybrid Methodology for Analyzing the Performance of Induction Motors with Efficiency Improvement by Specific Commercial Measures. Energies, 2019, 12, 4497.	3.1	12
67	Evaluation of a Contra-Rotating Flux- Modulated Machine Featured With Dual Flux-Modulation for Wind Power Generation. IEEE Transactions on Industrial Electronics, 2022, 69, 8770-8781.	7.9	12
68	ELECTROMAGNETIC DESIGN AND ANALYSIS OF MAGNETLESS DOUBLE-ROTOR DUAL-MODE MACHINES. Progress in Electromagnetics Research, 2013, 142, 333-351.	4.4	11
69	A New Parallel-Hybrid-Excited Permanent-Magnet Machine With Harmonic-Differential Effect for Electric Vehicles. IEEE Transactions on Vehicular Technology, 2020, 69, 12734-12750.	6.3	11
70	Analysis of Multi-Coil Omnidirectional Energy Harvester. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	11
71	Comparison of outer-rotor permanent magnet machines for in-wheel drives. , 2013, , .		10
72	Controller-Based Periodic Disturbance Mitigation Techniques for Three-Phase Two-Level Voltage-Source Converters. IEEE Transactions on Industrial Informatics, 2021, 17, 6553-6568.	11.3	10

#	Article	IF	CITATIONS
73	Natural Speed Observer for Nonsalient AC Motors. IEEE Transactions on Power Electronics, 2022, 37, 14-20.	7.9	10
74	Novel Flux-Switching Machine With Star-Array Permanent-Magnet Arrangement. IEEE Transactions on Industrial Electronics, 2022, 69, 8851-8861.	7.9	10
75	Development of Reliable Gearless Motors for Electric Vehicles. IEEE Transactions on Magnetics, 2017, 53, 1-8.	2.1	9
76	Quantitative Comparison of Vernier Permanent-Magnet Motors with Interior Permanent-Magnet Motor for Hybrid Electric Vehicles. Energies, 2018, 11, 2546.	3.1	9
77	High-Resistance Connection Diagnosis in Five-Phase PMSMs Based on the Method of Magnetic Field Pendulous Oscillation and Symmetrical Components. IEEE Transactions on Industrial Electronics, 2022, 69, 2288-2299.	7.9	9
78	Fault-Tolerant Control of a Triple Redundant PMA-SynRM Driven Under Single-Phase Open-Circuit by Mono-Inverter. IEEE Transactions on Power Electronics, 2021, 36, 11593-11605.	7.9	9
79	A Harmonic Injection Method Equivalent to the Resonant Controller for Speed Ripple Reduction of PMSM. IEEE Transactions on Industrial Electronics, 2022, 69, 9793-9803.	7.9	9
80	Analysis of Synergistic Stator Permanent Magnet Machine With the Synergies of Flux-Switching and Flux-Reversal Effects. IEEE Transactions on Industrial Electronics, 2022, 69, 12237-12248.	7.9	9
81	Design and Analysis of Electromagnetic Gears With Variable Gear Ratios. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	8
82	Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles. Energies, 2018, 11, 2141.	3.1	8
83	Online Adaptation of Two-Parameter Inverter Model in Sensorless Motor Drives. IEEE Transactions on Industrial Electronics, 2022, 69, 9860-9871.	7.9	8
84	Design and Analysis of a Magnetless Flux-Switching DC-Excited Machine for Wind Power Generation. Journal of International Council on Electrical Engineering, 2014, 4, 80-87.	0.4	7
85	A Simple Three-Degree-of-Freedom Digital Current Controller With Dead Beat Response for AC Machines. IEEE Transactions on Industrial Electronics, 2022, 69, 7848-7858.	7.9	7
86	Design and Analysis of a Doubly Salient Wound Field Starter Generator for Cost-Effective Automobile Application. IEEE Transactions on Vehicular Technology, 2022, 71, 6900-6911.	6.3	7
87	Comparison of flux-switching machines with and without permanent magnets. Chinese Journal of Electrical Engineering, 2015, 1, 78-84.	3.4	6
88	Comparative Study and Design Optimization of a Dual-Mechanical-Port Electric Machine for Hybrid Electric Vehicle Applications. IEEE Transactions on Vehicular Technology, 2022, 71, 8341-8353.	6.3	6
89	Comparison of chaotic PWM algorithms for electric vehicle motor drives. , 2012, , .		5
90	Fault Signature of a Flux-Switching DC-Field Generator. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	5

#	Article	IF	CITATIONS
91	Design and Evaluation of an Efficient Three-Phase Four-Leg Voltage Source Inverter with Reduced IGBTs. Energies, 2017, 10, 530.	3.1	5
92	Switched Reluctance Motor Drives for Hybrid Electric Vehicles. , 0, , .		5
93	DEVELOPMENT OF MULTIPLE-FREQUENCY WIRELESS COORDINATIVE MOTOR DRIVES. Progress in Electromagnetics Research C, 2019, 91, 143-156.	0.9	5
94	Resilience-Oriented Control for Cyber-Physical Hybrid Energy Storage Systems Using a Semiconsensus Scheme: Design and Practice. IEEE Transactions on Industrial Electronics, 2023, 70, 2508-2519.	7.9	5
95	Two-degree-of-freedom Quasi-PIR Controller for Smooth Speed Control of Permanent Magnet Vernier Machine. , 2021, , .		5
96	A Digital Current Controller Based on Active Resistance Term Feedback for SPMSM Drives. IEEE Transactions on Power Electronics, 2022, 37, 9827-9839.	7.9	5
97	Torque Component Redistribution and Enhancement for Hybrid Permanent Magnet Motor With Permanent Magnet Offset Placement. IEEE Transactions on Transportation Electrification, 2023, 9, 631-641.	7.8	5
98	Adjustable-Flux Permanent Magnet Synchronous Motor Sensorless Drive System Based on Parameter-Sensitive Adaptive Online Decoupling Control Strategy. IEEE Transactions on Transportation Electrification, 2023, 9, 501-511.	7.8	5
99	Optimal design and implementation of a permanent magnet linear vernier machine for direct-drive wave energy extraction. , 2012, , .		4
100	Development of a Singly Fed Mechanical-Offset Machine for Electric Vehicles. IEEE Transactions on Energy Conversion, 2018, 33, 516-525.	5.2	4
101	Analysis of Air-Gap Field Modulation in Parallel-Hybrid-Excited Harmonic-Shift Machines. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	4
102	Quantitative Analysis on Maximum Efficiency Point and Specific High-Efficiency Region of Permanent-Magnet Machines. IEEE Transactions on Industrial Electronics, 2022, 69, 1333-1345.	7.9	4
103	Design of a Decoupled Double-Stator Flux-Switching Permanent-Magnet Rotary-Linear Motor with Two Degree-of-Freedom Motion. , 2021, , .		4
104	Vibration Reduction Design of Consequent Pole PM Machine by Symmetrizing Local and Global Magnetic Field. IEEE Transactions on Industrial Electronics, 2023, 70, 243-254.	7.9	4
105	A Comparison of Permanent-Magnet Vernier Motor and Interior Permanent-Magnet Motor for Hybrid Electric Vehicles. , 2022, , .		4
106	A dual-memory permanent magnet brushless machine for automotive integrated starter-generator application. , 2012, , .		3
107	Quantitative comparison of partitioned-stator machines for hybrid electric vehicles. CES Transactions on Electrical Machines and Systems, 2017, 1, 146-153.	3.5	3
108	Frequency-Modulated Wireless Direct-Drive Motor Control. IEEE Transactions on Magnetics, 2021, 57, 1-7.	2.1	3

CHRISTOPHER H T LEE

#	Article	IF	CITATIONS
109	Deadbeat Predictive Current Control Considering Inverter Nonlinearity for Permanent Magnet Synchronous Machine Drives. , 2021, , .		3
110	Nonlinear Varying-Network Magnetic Circuit Analysis of Consequent-Pole Permanent-Magnet Motor for Electric Vehicles. World Electric Vehicle Journal, 2021, 12, 254.	3.0	3
111	Analysis of Vernier Machine with Stator-V-Shaped Permanent-Magnet Arrangement. , 2021, , .		3
112	A Linear Control Approach to Design Digital Speed Control System for PMSMs. IEEE Transactions on Power Electronics, 2022, 37, 8596-8610.	7.9	3
113	An efficient offshore wind-wave hybrid generation system using direct-drive multitoothed rotating and linear machines. , 2014, , .		2
114	A new fault-tolerant flux-reversal doubly-salient magnetless motor drive with four-phase topology. , 2015, , .		2
115	Design and Comparison of Direct-Drive Stator-PM Machines for Electric Power Generation. , 2016, , .		2
116	Low-Frequency-Switching High-Frequency-Resonating Wireless Power Transfer. IEEE Transactions on Magnetics, 2021, 57, 1-8.	2.1	2
117	Harmonic Reduction for Two-Slot Pitch Winding Permanent Magnet Vernier Machines with Stator Shifting Technique. , 2021, , .		2
118	A transverse flux permanent magnet linear generator for hybrid electric vehicles. , 2013, , .		1
119	Design and analysis of a DC field multitooth switched reluctance machine by using soft-magnetic-composite material. , 2013, , .		1
120	The design of a smart power conversion system as an undergraduate cross-discipline integrated design project. , 2014, , .		1
121	Development of partitioned stator flux-switching machines for electric vehicles. Journal of International Council on Electrical Engineering, 2017, 7, 276-281.	0.4	1
122	Design and Analysis of Partitioned-Stator Switched-Flux Dual-Excitation Machine for Hybrid Electric Vehicles. World Electric Vehicle Journal, 2018, 9, 40.	3.0	1
123	Wireless Secondary-Converterless Bipolar Drive for AC Application. , 2019, , .		1
124	Analysis of Split-Tooth Stator-Slot Permanent-Magnet Machines With Different PM Arrangements. IEEE Transactions on Magnetics, 2022, 58, 1-6.	2.1	1
125	A Novel Fault Tolerant Flux Switching Memory Machine with Highly Flux-Controllability. , 2021, , .		1
126	An Enhanced Deadbeat Predictive Current Control of SPMSM With Linear Disturbance Observer. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 6304-6316.	5.4	1

#	Article	IF	CITATIONS
127	Performance Improvement of Surface Permanent Magnet Vernier Motor by Adjusting Current Control Angle Considering Magnetic Saturation. , 2022, , .		1
128	Design and analysis of high-performance motors with partitioned-stator topology for hybrid electric vehicles. HKIE Transactions, 2017, 24, 228-236.	0.1	0
129	Guest Editorial: Special Section on Identification and Observation Informatics for Energy Generation, Conversion, and Applications. IEEE Transactions on Industrial Informatics, 2019, 15, 5999-6000.	11.3	0
130	Educating Engineers: A Time-Honored Text [Book Review]. IEEE Power and Energy Magazine, 2021, 19, 95-96.	1.6	0
131	Guest editorial: Modern electric machines and drives for wind power generation. IET Renewable Power Generation, 2021, 15, 1861-1863.	3.1	0
132	Proposed Dual-Mode Machine for Wind Power Harvesting. Springer Theses, 2018, , 111-129.	0.1	0
133	Multi-tooth Machines—Design and Analysis. Springer Theses, 2018, , 29-44.	0.1	0
134	Overview of Magnetless Doubly Salient Brushless Machines. Springer Theses, 2018, , 7-25.	0.1	0
135	Double-Rotor Machines—Design and Analysis. Springer Theses, 2018, , 45-63.	0.1	0
136	Proposed Reliable Gearless Machine for Magnetic Differential System. Springer Theses, 2018, , 153-172.	0.1	0
137	Proposed Electronic-Geared Machine for Electric Vehicle Applications. Springer Theses, 2018, , 173-196.	0.1	0
138	Proposed Flux-Reversal DC-Field Machine for Wind Power Generation. Springer Theses, 2018, , 91-109.	0.1	0
139	Development of Singly Fed Mechanical-Offset Machine for Torque Ripple Minimization. Springer Theses, 2018, , 65-87.	0.1	0
140	Lowâ€carbon operation of a multiâ€energy system with hydrogenâ€based vehicle applications. IET Renewable Power Generation, 0, , .	3.1	0
141	Analysis and Suppression of Cross-Coupling Demagnetization in Dual Permanent Magnet Machine for Direct-Drive Application. IEEE Transactions on Transportation Electrification, 2023, 9, 474-487.	7.8	О