
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6335382/publications.pdf Version: 2024-02-01

KALLIII

#	Article	IF	CITATIONS
1	Peptide self-assembly: thermodynamics and kinetics. Chemical Society Reviews, 2016, 45, 5589-5604.	18.7	760
2	An Injectable Selfâ€Assembling Collagen–Gold Hybrid Hydrogel for Combinatorial Antitumor Photothermal/Photodynamic Therapy. Advanced Materials, 2016, 28, 3669-3676.	11.1	700
3	Simple Peptideâ€Tuned Selfâ€Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. Angewandte Chemie - International Edition, 2016, 55, 3036-3039.	7.2	453
4	Supramolecular Photosensitizers with Enhanced Antibacterial Efficiency. Angewandte Chemie - International Edition, 2013, 52, 8285-8289.	7.2	294
5	25th Anniversary Article: Reversible and Adaptive Functional Supramolecular Materials: "Noncovalent Interaction―Matters. Advanced Materials, 2013, 25, 5530-5548.	11.1	275
6	Peptideâ€Modulated Selfâ€Assembly of Chromophores toward Biomimetic Lightâ€Harvesting Nanoarchitectonics. Advanced Materials, 2016, 28, 1031-1043.	11.1	253
7	Janus effect of antifreeze proteins on ice nucleation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14739-14744.	3.3	205
8	White-light emission from a single-emitting-component Ca9Gd(PO4)7:Eu2+,Mn2+ phosphor with tunable luminescent properties for near-UV light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 9061.	6.7	204
9	Advances in flexible organic field-effect transistors and their applications for flexible electronics. Npj Flexible Electronics, 2022, 6, .	5.1	194
10	Self-Assembled Minimalist Multifunctional Theranostic Nanoplatform for Magnetic Resonance Imaging-Guided Tumor Photodynamic Therapy. ACS Nano, 2018, 12, 8266-8276.	7.3	191
11	Selfâ€Assembled Zinc/Cystineâ€Based Chloroplast Mimics Capable of Photoenzymatic Reactions for Sustainable Fuel Synthesis. Angewandte Chemie - International Edition, 2017, 56, 7876-7880.	7.2	176
12	Supramolecular free radicals: near-infrared organic materials with enhanced photothermal conversion. Chemical Science, 2015, 6, 3975-3980.	3.7	174
13	Peptideâ€Induced Hierarchical Longâ€Range Order and Photocatalytic Activity of Porphyrin Assemblies. Angewandte Chemie - International Edition, 2015, 54, 500-505.	7.2	164
14	Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization. Accounts of Chemical Research, 2018, 51, 1082-1091.	7.6	159
15	Hierarchically Nanostructured Coordination Polymer: Facile and Rapid Fabrication and Tunable Morphologies. Crystal Growth and Design, 2010, 10, 790-797.	1.4	158
16	Trace Solvent as a Predominant Factor To Tune Dipeptide Self-Assembly. ACS Nano, 2016, 10, 2138-2143.	7.3	156
17	Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide–Porphyrin Coâ€Assemblies with a Selfâ€Mineralized Reaction Center. Angewandte Chemie - International Edition, 2016, 55, 12503-12507.	7.2	145
18	Optical Properties and Energy Transfer of NaCaPO ₄ :Ce ³⁺ ,Tb ³⁺ Phosphors for Potential Application in Lightâ€Emitting Diodes. European Journal of Inorganic Chemistry, 2010, 2010, 4636-4642.	1.0	143

#	Article	IF	CITATIONS
19	Facile and rapid fabrication of metal–organic framework nanobelts and color-tunable photoluminescence properties. Journal of Materials Chemistry, 2010, 20, 3272.	6.7	142
20	Superamphiphiles Based on Directional Chargeâ€Transfer Interactions: From Supramolecular Engineering to Wellâ€Defined Nanostructures. Angewandte Chemie - International Edition, 2011, 50, 4952-4956.	7.2	138
21	Highly Uniform Gd(OH) ₃ and Gd ₂ O ₃ :Eu ³⁺ Nanotubes: Facile Synthesis and Luminescence Properties. Journal of Physical Chemistry C, 2009, 113, 6050-6055.	1.5	134
22	Distinct ice patterns on solid surfaces with various wettabilities. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11285-11290.	3.3	132
23	Oxidized Quasiâ€Carbon Nitride Quantum Dots Inhibit Ice Growth. Advanced Materials, 2017, 29, 1606843.	11.1	121
24	Injectable and NIRâ€Responsive DNA–Inorganic Hybrid Hydrogels with Outstanding Photothermal Therapy. Advanced Materials, 2020, 32, e2004460.	11.1	114
25	Room-Temperature Synthesis of Multi-Morphological Coordination Polymer and Tunable White-Light Emission. Crystal Growth and Design, 2010, 10, 16-19.	1.4	111
26	Carbonâ€Tailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media. Advanced Energy Materials, 2018, 8, 1801258.	10.2	111
27	Ultra-strong bio-glue from genetically engineered polypeptides. Nature Communications, 2021, 12, 3613.	5.8	104
28	Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Letters, 2021, 497, 229-242.	3.2	98
29	Fabrication and Mechanical Properties of Engineered Proteinâ€Based Adhesives and Fibers. Advanced Materials, 2020, 32, e1906360.	11.1	97
30	Coordination-Induced Formation of One-Dimensional Nanostructures of Europium Benzene-1,3,5-tricarboxylate and Its Solid-State Thermal Transformation. Crystal Growth and Design, 2009, 9, 3519-3524.	1.4	89
31	Photooxidaseâ€Mimicking Nanovesicles with Superior Photocatalytic Activity and Stability Based on Amphiphilic Amino Acid and Phthalocyanine Coâ€Assembly. Angewandte Chemie - International Edition, 2019, 58, 2000-2004.	7.2	86
32	Simple Peptideâ€Tuned Selfâ€Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. Angewandte Chemie, 2016, 128, 3088-3091.	1.6	85
33	Facile shape-controlled synthesis of luminescent europium benzene-1,3,5-tricarboxylate architectures at room temperature. CrystEngComm, 2009, 11, 2622.	1.3	80
34	A supramolecular approach to fabricate highly emissive smart materials. Scientific Reports, 2013, 3, 2372.	1.6	80
35	Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angewandte Chemie - International Edition, 2021, 60, 23687-23694.	7.2	78
36	Attractive Pickering Emulsion Gels. Advanced Materials, 2021, 33, e2102362.	11.1	78

#	Article	IF	CITATIONS
37	Improving surface-wetting characterization. Science, 2019, 363, 1147-1148.	6.0	76
38	Porphyrin-containing hyperbranched supramolecular polymers: enhancing ¹ O ₂ -generation efficiency by supramolecular polymerization. Polymer Chemistry, 2014, 5, 53-56.	1.9	70
39	Uncertainties in contact angle goniometry. Soft Matter, 2019, 15, 7089-7096.	1.2	69
40	Self-Assembly of Supra-amphiphiles Based on Dual Charge-Transfer Interactions: From Nanosheets to Nanofibers. Langmuir, 2012, 28, 10697-10702.	1.6	68
41	Dualâ€Mode Learning of Ambipolar Synaptic Phototransistor Based on 2D Perovskite/Organic Heterojunction for Flexible Color Recognizable Visual System. Small, 2021, 17, e2102820.	5.2	66
42	Coâ€Assembly of Heparin and Polypeptide Hybrid Nanoparticles for Biomimetic Delivery and Antiâ€Thrombus Therapy. Small, 2016, 12, 4719-4725.	5.2	64
43	Peptide-Directed Hierarchical Mineralized Silver Nanocages for Anti-Tumor Photothermal Therapy. ACS Sustainable Chemistry and Engineering, 2018, 6, 7574-7588.	3.2	64
44	Facile selective synthesis and luminescence behavior of hierarchical NaY(WO4)2:Eu3+ and Y6WO12:Eu3+. CrystEngComm, 2011, 13, 3001.	1.3	62
45	Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications. Advances in Colloid and Interface Science, 2015, 225, 177-193.	7.0	62
46	Chemical Formation and Multiple Applications of Organic–Inorganic Hybrid Perovskite Materials. Journal of the American Chemical Society, 2019, 141, 1406-1414.	6.6	61
47	Engineered Nearâ€Infrared Fluorescent Protein Assemblies for Robust Bioimaging and Therapeutic Applications. Advanced Materials, 2020, 32, e2000964.	11.1	58
48	Supercharged Proteins and Polypeptides. Advanced Materials, 2020, 32, e1905309.	11.1	58
49	From Bolaâ€amphiphiles to Supraâ€amphiphiles: The Transformation from Twoâ€Dimensional Nanosheets into Oneâ€Dimensional Nanofibers with Tunableâ€Packing Fashion of nâ€Type Chromophores. Chemistry - A European Journal, 2012, 18, 8622-8628.	1.7	57
50	Mechanically Strong Globularâ€Proteinâ€Based Fibers Obtained Using a Microfluidic Spinning Technique. Angewandte Chemie - International Edition, 2020, 59, 4344-4348.	7.2	56
51	Emergence of light-driven protometabolism on recruitment of a photocatalytic cofactor by a self-replicator. Nature Chemistry, 2020, 12, 603-607.	6.6	55
52	Size Fractionation of Graphene Oxide Nanosheets via Controlled Directional Freezing. Journal of the American Chemical Society, 2017, 139, 12517-12523.	6.6	52
53	Bioinspired and Mechanically Strong Fibers Based on Engineered Nonâ€5pider Chimeric Proteins. Angewandte Chemie - International Edition, 2020, 59, 8148-8152.	7.2	51
54	Solvothermally Mediated Selfâ€Assembly of Ultralong Peptide Nanobelts Capable of Optical Waveguiding. Small, 2016, 12, 2575-2579.	5.2	50

#	Article	IF	CITATIONS
55	Self-assembly of biomimetic light-harvesting complexes capable of hydrogen evolution. Green Energy and Environment, 2017, 2, 58-63.	4.7	50
56	An Artificial Phaseâ€Transitional Underwater Bioglue with Robust and Switchable Adhesion Performance. Angewandte Chemie - International Edition, 2021, 60, 12082-12089.	7.2	48
57	Emergence of low-symmetry foldamers from single monomers. Nature Chemistry, 2020, 12, 1180-1186.	6.6	47
58	Chemical Fueling Enables Molecular Complexification of Selfâ€Replicators**. Angewandte Chemie - International Edition, 2021, 60, 11344-11349.	7.2	47
59	Facile Synthesis and Luminescence Properties of Highly Uniform MF/YVO4:Ln3+ (Ln = Eu, Dy, and Sm) Composite Microspheres. Crystal Growth and Design, 2009, 9, 3702-3706.	1.4	44
60	Significantly Improving the Bioefficacy for Rheumatoid Arthritis with Supramolecular Nanoformulations. Advanced Materials, 2021, 33, e2100098.	11.1	44
61	Active Encapsulation in Biocompatible Nanocapsules. Small, 2020, 16, e2002716.	5.2	42
62	Injectable In Situ Induced Robust Hydrogel for Photothermal Therapy and Bone Fracture Repair. Advanced Functional Materials, 2021, 31, 2010779.	7.8	42
63	An Engineered Proteinâ^'Au Bioplaster for Efficient Skin Tumor Therapy. Advanced Materials, 2022, 34, e2110062.	11.1	42
64	Biocompatible and pHâ€Responsive Colloidal Surfactants with Tunable Shape for Controlled Interfacial Curvature. Angewandte Chemie - International Edition, 2020, 59, 9365-9369.	7.2	41
65	pH and enzymatic double-stimuli responsive multi-compartment micelles from supra-amphiphilic polymers. Polymer Chemistry, 2012, 3, 3056.	1.9	40
66	Durable Anti-Icing Coatings Based on Self-Sustainable Lubricating Layer. ACS Omega, 2017, 2, 2047-2054.	1.6	40
67	Intrinsically flexible displays: key materials and devices. National Science Review, 2022, 9, .	4.6	40
68	Castor oilâ€based waterborne polyurethanes with tunable properties and excellent biocompatibility. European Journal of Lipid Science and Technology, 2016, 118, 1512-1520.	1.0	39
69	UV-curable enzymatic antibacterial waterborne polyurethane coating. Biochemical Engineering Journal, 2016, 113, 107-113.	1.8	39
70	Enzyme-immobilized clay nanotube–chitosan membranes with sustainable biocatalytic activities. Physical Chemistry Chemical Physics, 2017, 19, 562-567.	1.3	39
71	Transparent Impact-Resistant Composite Films with Bioinspired Hierarchical Structure. ACS Applied Materials & Interfaces, 2019, 11, 23616-23622.	4.0	39
72	Anisotropic Protein Organofibers Encoded With Extraordinary Mechanical Behavior for Cellular Mechanobiology Applications. Angewandte Chemie - International Edition, 2020, 59, 21481-21487.	7.2	39

#	Article	IF	CITATIONS
73	Proteinaceous Fibers with Outstanding Mechanical Properties Manipulated by Supramolecular Interactions. CCS Chemistry, 2021, 3, 1669-1677.	4.6	39
74	Size Controllable, Transparent, and Flexible 2D Silver Meshes Using Recrystallized Ice Crystals as Templates. ACS Nano, 2017, 11, 9898-9905.	7.3	38
75	Genetically Engineered Supercharged Polypeptide Fluids: Fast and Persistent Selfâ€Ordering Induced by Touch. Angewandte Chemie - International Edition, 2018, 57, 6878-6882.	7.2	38
76	Ultralowâ€Power and Multisensory Artificial Synapse Based on Electrolyteâ€Gated Vertical Organic Transistors. Advanced Functional Materials, 2022, 32, .	7.8	38
77	Controlling the self-assembly of cationic bolaamphiphiles: counterion-directed transitions from 0D/1D to exclusively 2D planar structures. Chemical Science, 2013, 4, 4486.	3.7	37
78	Nanoparticleâ€Stabilized Oxygen Microcapsules Prepared by Interfacial Polymerization for Enhanced Oxygen Delivery. Angewandte Chemie - International Edition, 2021, 60, 9284-9289.	7.2	37
79	Improving Bioavailability of Hydrophobic Prodrugs through Supramolecular Nanocarriers Based on Recombinant Proteins for Osteosarcoma Treatment. Angewandte Chemie - International Edition, 2021, 60, 11252-11256.	7.2	37
80	An Amylase-Responsive Bolaform Supra-Amphiphile. ACS Applied Materials & Interfaces, 2016, 8, 4927-4933.	4.0	36
81	Selfâ€Assembled Zinc/Cystineâ€Based Chloroplast Mimics Capable of Photoenzymatic Reactions for Sustainable Fuel Synthesis. Angewandte Chemie, 2017, 129, 7984-7988.	1.6	36
82	Fabrication of Anti-Icing Surfaces by Short α-Helical Peptides. ACS Applied Materials & Interfaces, 2018, 10, 1957-1962.	4.0	36
83	Significant Upregulation of Alzheimer's βâ€Amyloid Levels in a Living System Induced by Extracellular Elastin Polypeptides. Angewandte Chemie - International Edition, 2019, 58, 18703-18709.	7.2	36
84	Primitive Photosynthetic Architectures Based on Selfâ€Organization and Chemical Evolution of Amino Acids and Metal lons. Advanced Science, 2018, 5, 1701001.	5.6	35
85	Extracellular Matrix Proteins Involved in Alzheimer's Disease. Chemistry - A European Journal, 2020, 26, 12101-12110.	1.7	35
86	Diversity of Marine Heatwaves in the South China Sea Regulated by ENSO Phase. Journal of Climate, 2022, 35, 877-893.	1.2	35
87	Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system. Physical Chemistry Chemical Physics, 2016, 18, 16738-16747.	1.3	33
88	Nanoparticleâ€Assisted Alignment of Carbon Nanotubes on DNA Origami. Angewandte Chemie - International Edition, 2020, 59, 4892-4896.	7.2	33
89	Lanthanide-Based Photothermal Materials: Fabrication and Biomedical Applications. ACS Applied Bio Materials, 2020, 3, 3975-3986.	2.3	33
90	Robust Biological Fibers Based on Widely Available Proteins: Facile Fabrication and Suturing Application. Small, 2020, 16, e1907598.	5.2	33

#	Article	IF	CITATIONS
91	Nematic DNA Thermotropic Liquid Crystals with Photoresponsive Mechanical Properties. Small, 2017, 13, 1701207.	5.2	32
92	Facile synthesis and catalytic properties of CeO2 with tunable morphologies from thermal transformation of cerium benzendicarboxylate complexes. CrystEngComm, 2011, 13, 1786.	1.3	31
93	Liquefaction of Biopolymers: Solvent-free Liquids and Liquid Crystals from Nucleic Acids and Proteins. Accounts of Chemical Research, 2017, 50, 1212-1221.	7.6	31
94	Embellishment of Upconversion Nanoparticles with Ultrasmall Perovskite Quantum Dots for Fullâ€Color Tunable, Dualâ€Modal Luminescence Anticounterfeiting. Advanced Optical Materials, 2021, 9, 2100814.	3.6	31
95	Highly Plasticized Lanthanide Luminescence for Information Storage and Encryption Applications. Advanced Science, 2022, 9, e2105108.	5.6	30
96	Facile synthesis of highly uniform octahedral LuVO4 microcrystals by a facile chemical conversion method. CrystEngComm, 2009, 11, 2745.	1.3	29
97	Synthesis and characterization of highly uniform Lu2O3:Ln3+ (Ln = Eu, Er, Yb) luminescent hollow microspheres. CrystEngComm, 2010, 12, 2943.	1.3	28
98	Extracellular Elastin Molecule Modulates Alzheimer's Aβ Dynamics <i>In Vitro</i> and <i>In Vivo</i> by Affecting Microglial Activities. CCS Chemistry, 2021, 3, 1830-1837.	4.6	28
99	Biomimetic Oxygen-Evolving Photobacteria Based on Amino Acid and Porphyrin Hierarchical Self-Organization. ACS Nano, 2017, 11, 12840-12848.	7.3	26
100	Amino-Acid-Mediated Biomimetic Formation of Light-Harvesting Antenna Capable of Hydrogen Evolution. ACS Applied Bio Materials, 2018, 1, 748-755.	2.3	26
101	Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community. Research, 2020, 2020, 6925296.	2.8	26
102	Reversibly Photoâ€Modulating Mechanical Stiffness and Toughness of Bioengineered Protein Fibers. Angewandte Chemie - International Edition, 2021, 60, 3222-3228.	7.2	25
103	De novo rational design of a freestanding, supercharged polypeptide, proton-conducting membrane. Science Advances, 2020, 6, eabc0810.	4.7	24
104	Engineering High Strength and Superâ€Toughness of Unfolded Structural Proteins and their Extraordinary Antiâ€Adhesion Performance for Abdominal Hernia Repair. Advanced Materials, 2022, 34, e2200842.	11.1	24
105	Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide–Porphyrin Coâ€Assemblies with a Selfâ€Mineralized Reaction Center. Angewandte Chemie, 2016, 128, 12691-12695.	1.6	23
106	Detection and Chiral Recognition of αâ€Hydroxyl Acid through ¹ H and CEST NMR Spectroscopy Using a Ytterbium Macrocyclic Complex. Angewandte Chemie - International Edition, 2019, 58, 18286-18289.	7.2	23
107	Solventâ€Free Plasticity and Programmable Mechanical Behaviors of Engineered Proteins. Advanced Materials, 2020, 32, e1907697.	11.1	23
108	Biocompatible Inorganic Nanoagent for Efficient Synergistic Tumor Treatment with Augmented Antitumor Immunity. Small, 2022, 18, e2200897.	5.2	23

#	Article	IF	CITATIONS
109	Facile synthesis and luminescent properties of flower-like LaPO4:Ln3+ (Ln = Ce, Tb) hierarchical architectures. CrystEngComm, 2010, 12, 2865.	1.3	22
110	Engineered Anisotropic Fluids of Rareâ€Earth Nanomaterials. Angewandte Chemie - International Edition, 2020, 59, 18213-18217.	7.2	20
111	DNAâ€Based Concatenated Encoding System for Highâ€Reliability and Highâ€Density Data Storage. Small Methods, 2022, 6, e2101335.	4.6	20
112	Outâ€ofâ€Equilibrium Selfâ€Replication Allows Selection for Dynamic Kinetic Stability in a System of Competing Replicators. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
113	Highly Stiff and Stretchable DNA Liquid Crystalline Organogels with Super Plasticity, Ultrafast Selfâ€Healing, and Magnetic Response Behaviors. Advanced Materials, 2022, 34, e2106208.	11.1	19
114	Mechanochromic Responses of Cholesteric Liquid Crystal Droplets with Nanoscale Periodic Helical Structures Showing Reversible and Tunable Structural Color. ACS Applied Polymer Materials, 2022, 4, 463-468.	2.0	19
115	Engineered protein nanodrug as an emerging therapeutic tool. Nano Research, 2022, 15, 5161-5172.	5.8	19
116	Tunable Aggregationâ€Induced Emission of Tetraphenylethylene via Short Peptideâ€Directed Selfâ€Assembly. Advanced Materials Interfaces, 2017, 4, 1600183.	1.9	18
117	Recent progress in stretchable organic field-effect transistors. Science China Technological Sciences, 2019, 62, 1255-1276.	2.0	18
118	Bioinspired and Mechanically Strong Fibers Based on Engineered Non‧pider Chimeric Proteins. Angewandte Chemie, 2020, 132, 8225-8229.	1.6	18
119	Facile synthesis of Y ₄ O(OH) ₉ NO ₃ :Eu3+/Y ₂ O ₃ :Eu3+nanotubes and nanobundles from nanolamellar precursors. CrystEngComm, 2010, 12, 585-590.	1.3	16
120	Combinational application of metal–organic frameworksâ€based nanozyme and nucleic acid delivery in cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1773.	3.3	16
121	Engineering DNAâ€Guided Hydroxyapatite Bulk Materials with High Stiffness and Outstanding Antimicrobial Ability for Dental Inlay Applications. Advanced Materials, 2022, 34, e2202180.	11.1	16
122	Preparation and characterization of epoxidized soybean oilâ€based paper composite as potential waterâ€resistant materials. Journal of Applied Polymer Science, 2015, 132, .	1.3	15
123	Dipeptide concave nanospheres based on interfacially controlled self-assembly: from crescent to solid. Physical Chemistry Chemical Physics, 2016, 18, 30926-30930.	1.3	15
124	Biomacromolecule-based photo-thermal agents for tumor treatment. Journal of Materials Chemistry B, 2021, 9, 7007-7022.	2.9	15
125	An Engineered Protein Adhesive with Properties of Tissue Integration and Controlled Release for Efficient Cartilage Repair. Advanced Healthcare Materials, 2021, 10, e2100109.	3.9	15
126	An Artificial Phaseâ€Transitional Underwater Bioglue with Robust and Switchable Adhesion Performance. Angewandte Chemie, 2021, 133, 12189-12196.	1.6	14

#	Article	IF	CITATIONS
127	Selfâ€Sorting in Dynamic Combinatorial Libraries Leads to the Coâ€Existence of Foldamers and Selfâ€Replicators. Angewandte Chemie - International Edition, 2021, 60, 13569-13573.	7.2	14
128	Bioengineered Proteinâ€based Adhesives for Biomedical Applications. Chemistry - A European Journal, 2022, 28, .	1.7	14
129	Self-healing, reusable and conductive cellulose nanocrystals-containing adhesives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128797.	2.3	14
130	Stretching Single Polymer Chains of Donor–Acceptor Foldamers: Toward the Quantitative Study on the Extent of Folding. Langmuir, 2013, 29, 14438-14443.	1.6	13
131	Photooxidaseâ€Mimicking Nanovesicles with Superior Photocatalytic Activity and Stability Based on Amphiphilic Amino Acid and Phthalocyanine Coâ€Assembly. Angewandte Chemie, 2019, 131, 2022-2026.	1.6	13
132	Ectopic bone formation in vivo induced by a novel synthetic peptide derived from BMP-2 using porous collagen scaffolds. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 701-705.	0.4	12
133	Facile synthesis of hierarchically superstructured praseodymium benzenetricarboxylate with controllable morphologies. CrystEngComm, 2011, 13, 452-458.	1.3	12
134	Azobenzeneâ€Based Photomechanical Biomaterials. Advanced NanoBiomed Research, 2021, 1, 2100020.	1.7	12
135	Mechanically Strong Globularâ€Proteinâ€Based Fibers Obtained Using a Microfluidic Spinning Technique. Angewandte Chemie, 2020, 132, 4374-4378.	1.6	11
136	Recent advances in gadolinium-based MRI metal responsive agent. Science China Technological Sciences, 2018, 61, 1329-1333.	2.0	10
137	SHORTâ€TERM EFFECTS OF ACETATE AND MICROAEROBIC CONDITIONS ON PHOTOSYNTHESIS AND RESPIRATION IN <i>CHLORELLA SOROKINIANA</i> GXNN 01 (CHLOROPHYTA) ¹ . Journal of Phycology, 2012, 48, 992-1001.	1.0	9
138	Engineering Cu _{2â^'<i>x</i>} S-conjugated upconverting nanocomposites for NIR-II light-induced enhanced chemodynamic/photothermal therapy of cancer. Journal of Materials Chemistry B, 2021, 9, 7216-7228.	2.9	9
139	Selfâ€Sorting in Dynamic Combinatorial Libraries Leads to the Coâ€Existence of Foldamers and Selfâ€Replicators. Angewandte Chemie, 2021, 133, 13681-13685.	1.6	9
140	Thermal Decomposition of CdS Nanowires Assisted by ZIF-67 to Induce the Formation of Co ₉ S ₈ -Based Carbon Nanomaterials with High Lithium-Storage Abilities. ACS Applied Energy Materials, 2018, 1, 6242-6249.	2.5	8
141	Genetically Engineered Supercharged Polypeptide Fluids: Fast and Persistent Selfâ€Ordering Induced by Touch. Angewandte Chemie, 2018, 130, 6994-6998.	1.6	8
142	Detection and Chiral Recognition of αâ€Hydroxyl Acid through 1 H and CEST NMR Spectroscopy Using a Ytterbium Macrocyclic Complex. Angewandte Chemie, 2019, 131, 18454-18457.	1.6	8
143	Anisotropic Protein Organofibers Encoded With Extraordinary Mechanical Behavior for Cellular Mechanobiology Applications. Angewandte Chemie, 2020, 132, 21665-21671.	1.6	8
144	Reversibly Photoâ€Modulating Mechanical Stiffness and Toughness of Bioengineered Protein Fibers. Angewandte Chemie, 2021, 133, 3259-3265.	1.6	8

#	Article	IF	CITATIONS
145	Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angewandte Chemie, 2021, 133, 23880-23887.	1.6	8
146	Chemical Fueling Enables Molecular Complexification of Selfâ€Replicators**. Angewandte Chemie, 2021, 133, 11445-11450.	1.6	8
147	Engineering non-covalently assembled protein nanoparticles for long-acting gouty arthritis therapy. Journal of Materials Chemistry B, 2021, 9, 9923-9931.	2.9	8
148	Stimuliâ€Responsive Natural Proteins and Their Applications. ChemBioChem, 2022, 23, .	1.3	8
149	Enzymatic waterborne polyurethane towards a robust and environmentally friendly anti-biofouling coating. RSC Advances, 2016, 6, 31698-31704.	1.7	7
150	Nanoparticleâ€Assisted Alignment of Carbon Nanotubes on DNA Origami. Angewandte Chemie, 2020, 132, 4922-4926.	1.6	7
151	Misspecification analysis of twoâ€phase gammaâ€Wiener degradation models. Quality and Reliability Engineering International, 2020, 36, 2066-2084.	1.4	6
152	A New Type of Biological Glue Derived from Fish Swim Bladder: Outstanding Adhesion and Surgical Applications. Advanced Materials Technologies, 2021, 6, 2100303.	3.0	6
153	Neutral Dissociation of Superexcited Nitric Oxide Induced by Intense Laser Fields. Chinese Journal of Chemical Physics, 2010, 23, 252-254.	0.6	5
154	Ultrasound-Induced Morphology Transformation from 3D Microspheres to 1D Nanorods of Luminescent Coordination Polymer. Journal of Nanoscience and Nanotechnology, 2011, 11, 1935-1940.	0.9	5
155	Stable ion bond for high damping, high wet resistance, and low rolling resistance high vinyl polybutadiene rubberâ€based dicarboxylate ionomer. Journal of Applied Polymer Science, 2020, 137, 49374.	1.3	5
156	Engineered Anisotropic Fluids of Rareâ€Earth Nanomaterials. Angewandte Chemie, 2020, 132, 18370-18374.	1.6	5
157	Biocompatible and pHâ€Responsive Colloidal Surfactants with Tunable Shape for Controlled Interfacial Curvature. Angewandte Chemie, 2020, 132, 9451-9455.	1.6	5
158	Improving Bioavailability of Hydrophobic Prodrugs through Supramolecular Nanocarriers Based on Recombinant Proteins for Osteosarcoma Treatment. Angewandte Chemie, 2021, 133, 11352-11356.	1.6	5
159	Reliability Evaluation of Two-Phase Degradation Process with a Fuzzy Change-Point. Journal of Shanghai Jiaotong University (Science), 2022, 27, 867-872.	O.5	5
160	Biosynthetic Structural Proteins with Super Plasticity, Extraordinary Mechanical Performance, Biodegradability, Biocompatibility and Information Storage Ability. Angewandte Chemie, 2022, 134, .	1.6	5
161	Bright and stable gold nanocluster assemblies by silica/zirconia double-shell encapsulation. Journal of Materials Chemistry C, 2022, 10, 10001-10008.	2.7	5
162	Neutral dissociation of methane in the ultra-fast laser pulse. Science Bulletin, 2008, 53, 1946-1950.	4.3	4

#	Article	IF	CITATIONS
163	Dissociation of molecules in intense laser beam. Laser Physics, 2009, 19, 1640-1650.	0.6	4
164	Outâ€ofâ€Equilibrium Selfâ€Replication Allows Selection for Dynamic Kinetic Stability in a System of Competing Replicators. Angewandte Chemie, 2022, 134, .	1.6	4
165	Reliability assessment of NAND SSD based on acceleration degradation test. , 2017, , .		3
166	Prior Distribution Selection Criterion in Accelerated Degradation Testing Bayesian Optimization Design Based on Bayes Factors. , 2017, , .		3
167	Modifying Surfaces with the Primary and Secondary Faces of Cyclodextrins To Achieve a Distinct Anti-icing Capability. Langmuir, 2019, 35, 5176-5182.	1.6	3
168	The Spectroscopic Properties and Microscopic Imaging of Thulium-Doped Upconversion Nanoparticles Excited at Different NIR-II Light. Biosensors, 2021, 11, 148.	2.3	3
169	Frontispiece: Extracellular Matrix Proteins Involved in Alzheimer's Disease. Chemistry - A European Journal, 2020, 26, .	1.7	2
170	High-Efficiency Treatment for Osteoarthritis <i>via</i> Self-Assembled Dual-Functionalized Nanobiologics. ACS Biomaterials Science and Engineering, 2022, 8, 3320-3328.	2.6	2
171	lon-Pair Dissociation Dynamics of SO ₂ in the Photon Energy Range 14.87â^15.15 eV. Journal of Physical Chemistry A, 2010, 114, 9999-10004.	1.1	1
172	Research on reliability assessment of space electronic products based on integration of highly accelerated life test and accelerated degradation test. , 2016, , .		1
173	Preparation of Butadiene-Isoprene Copolymer with High Vinyl Contents by Al(OPhCH3)(i-Bu)2/MoO2Cl2â^™TNPP. Polymers, 2019, 11, 527.	2.0	1
174	Process intensification for rare-earth doped luminescent nanomaterials. Chinese Journal of Chemical Engineering, 2020, 28, 2497.	1.7	1
175	A <i>T</i> _{2ex} MRI Dy-based contrast agent for direct pH imaging using a ratiometric approach. Dalton Transactions, 2021, 50, 2014-2017.	1.6	1
176	Directed Selfâ€Assembly: Tunable Aggregationâ€Induced Emission of Tetraphenylethylene via Short Peptideâ€Directed Selfâ€Assembly (Adv. Mater. Interfaces 1/2017). Advanced Materials Interfaces, 2017, 4, .	1.9	0
177	Peptide-Based Supramolecular Chemistry. , 2017, , 135-163.		0
178	Preparation of high 1,2â€orientation butadieneâ€styrene copolymer by coordination copolymerization with molybdenumâ€based catalytic system. Journal of Applied Polymer Science, 2020, 137, 48897.	1.3	0
179	Nanoparticleâ€Stabilized Oxygen Microcapsules Prepared by Interfacial Polymerization for Enhanced Oxygen Delivery. Angewandte Chemie, 2021, 133, 9370-9375.	1.6	0
180	Highly sensitive solid chemical sensor for veterinary drugs based on the synergism between hydrogen bonds and low-dimensional polymer networks. Journal of Materials Chemistry C, 0, , .	2.7	0