## Robert J Letcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6335199/publications.pdf

Version: 2024-02-01

166 11,315 60 100 papers citations h-index g-index

167 167 167 7274 all docs docs citations times ranked citing authors

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Temporal change and the influence of climate and weather factors on mercury concentrations in Hudson Bay polar bears, caribou, and seabird eggs. Environmental Research, 2022, 207, 112169.                                                                   | 3.7 | 11        |
| 2  | Global distribution of ustiloxins in rice and their male-biased hepatotoxicity. Environmental Pollution, 2022, 301, 118992.                                                                                                                                   | 3.7 | 12        |
| 3  | Metabolic transformation of environmentally-relevant brominated flame retardants in Fauna: A review. Environment International, 2022, 161, 107097.                                                                                                            | 4.8 | 12        |
| 4  | A risk assessment review of mercury exposure in Arctic marine and terrestrial mammals. Science of the Total Environment, 2022, 829, 154445.                                                                                                                   | 3.9 | 29        |
| 5  | Climate change and mercury in the Arctic: Biotic interactions. Science of the Total Environment, 2022, 834, 155221.                                                                                                                                           | 3.9 | 24        |
| 6  | Occurrence and translocation of ustiloxins in rice false smut-occurred paddy fields, Hubei, China. Environmental Pollution, 2022, 307, 119460.                                                                                                                | 3.7 | 6         |
| 7  | A Critical Review of Bioaccumulation and Biotransformation of Organic Chemicals in Birds. Reviews of Environmental Contamination and Toxicology, 2022, 260, .                                                                                                 | 0.7 | 3         |
| 8  | A comprehensive system for detection of behavioral change of D. magna exposed to various chemicals. Journal of Hazardous Materials, 2021, 402, 123731.                                                                                                        | 6.5 | 15        |
| 9  | Individual Prey Specialization Drives PCBs in Icelandic Killer Whales. Environmental Science & Camp; Technology, 2021, 55, 4923-4931.                                                                                                                         | 4.6 | 21        |
| 10 | Emerging contaminants and biological effects in Arctic wildlife. Trends in Ecology and Evolution, 2021, 36, 421-429.                                                                                                                                          | 4.2 | 23        |
| 11 | Tris(1,3-dichloro-2-propyl)phosphate Reduces Growth Hormone Expression via Binding to Growth Hormone Releasing Hormone Receptors and Inhibits the Growth of Crucian Carp. Environmental Science & Environmental Science amp; Technology, 2021, 55, 8108-8118. | 4.6 | 14        |
| 12 | Organophosphate (OP) diesters and a review of sources, chemical properties, environmental occurrence, adverse effects, and future directions. Environment International, 2021, 155, 106691.                                                                   | 4.8 | 79        |
| 13 | Assessment of the effects of early life exposure to triphenyl phosphate on fear, boldness, aggression, and activity in Japanese quail (Coturnix japonica) chicks. Environmental Pollution, 2020, 258, 113695.                                                 | 3.7 | 9         |
| 14 | Uptake, Deposition, and Metabolism of Triphenyl Phosphate in Embryonated Eggs and Chicks of Japanese Quail ( <i>Coturnix japonica</i> ). Environmental Toxicology and Chemistry, 2020, 39, 565-573.                                                           | 2.2 | 5         |
| 15 | Perfluoroalkyl acids and sulfonamides and dietary, biological and ecological associations in peregrine falcons from the Laurentian Great Lakes Basin, Canada. Environmental Research, 2020, 191, 110151.                                                      | 3.7 | 13        |
| 16 | Functional Group-Dependent Screening of Organophosphate Esters (OPEs) and Discovery of an Abundant OPE Bis-(2-ethylhexyl)-phenyl Phosphate in Indoor Dust. Environmental Science & Eamp; Technology, 2020, 54, 4455-4464.                                     | 4.6 | 66        |
| 17 | Side-chain fluorinated polymer surfactants in biosolids from wastewater treatment plants. Journal of Hazardous Materials, 2020, 388, 122044.                                                                                                                  | 6.5 | 51        |

Promotion effect of liver tumor progression in male kras transgenic zebrafish induced by tris (1,) Tj ETQq0 0 0 rgBT\_2.9verlock\_10 Tf 50 6

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Distribution behaviour in body compartments and in ovo transfer of flame retardants in North American Great Lakes herring gulls. Environmental Pollution, 2020, 262, 114306.                                                        | 3.7 | 8         |
| 20 | Polar Bear ( <i>Ursus maritimus</i> )., 2020, , 196-212.                                                                                                                                                                            |     | 0         |
| 21 | Tetrabromobisphenol-A-Bis(dibromopropyl ether) Flame Retardant in Eggs, Regurgitates, and Feces of Herring Gulls from Multiple North American Great Lakes Locations. Environmental Science & Eamp; Technology, 2019, 53, 9564-9571. | 4.6 | 11        |
| 22 | InÂvitro metabolic activation of triphenyl phosphate leading to the formation of glutathione conjugates by rat liver microsomes. Chemosphere, 2019, 237, 124474.                                                                    | 4.2 | 8         |
| 23 | Distribution of flame retardants in smartphones and identification of current-use organic chemicals including three novel aryl organophosphate esters. Science of the Total Environment, 2019, 693, 133654.                         | 3.9 | 29        |
| 24 | A review of chlorinated paraffin contamination in Arctic ecosystems. Emerging Contaminants, 2019, 5, 219-231.                                                                                                                       | 2.2 | 34        |
| 25 | Current-use halogenated and organophosphorous flame retardants: AÂreview of their presence in Arctic ecosystems. Emerging Contaminants, 2019, 5, 179-200.                                                                           | 2.2 | 41        |
| 26 | Response to L. Witting: PCBs still a major risk for global killer whale populations. Marine Mammal Science, 2019, 35, 1201-1206.                                                                                                    | 0.9 | 4         |
| 27 | Progression of liver tumor was promoted by tris(1,3-dichloro-2-propyl) phosphate through the induction of inflammatory responses in kras transgenic zebrafish. Environmental Pollution, 2019, 255, 113315.                          | 3.7 | 15        |
| 28 | Validated quantitative cannabis profiling for Canadian regulatory compliance - Cannabinoids, aflatoxins, and terpenes. Analytica Chimica Acta, 2019, 1088, 79-88.                                                                   | 2.6 | 25        |
| 29 | Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. Science of the Total Environment, 2019, 696, 133792.                                                                                | 3.9 | 184       |
| 30 | A rapid method of preparing complex organohalogen extracts from avian eggs: Applications to in vitro toxicogenomics screening. Environmental Toxicology and Chemistry, 2019, 38, 811-819.                                           | 2.2 | 10        |
| 31 | Bioaccumulation and biomagnification of perfluoroalkyl acids and precursors in East Greenland polar bears and their ringed seal prey. Environmental Pollution, 2019, 252, 1335-1343.                                                | 3.7 | 76        |
| 32 | Hexachlorobutadiene (HCBD) contamination in the Arctic environment: A review. Emerging Contaminants, 2019, 5, 116-122.                                                                                                              | 2.2 | 17        |
| 33 | Organophosphate esters (OPEs) in Chinese foodstuffs: Dietary intake estimation via a market basket method, and suspect screening using high-resolution mass spectrometry. Environment International, 2019, 128, 343-352.            | 4.8 | 98        |
| 34 | A review of halogenated natural products in Arctic, Subarctic and Nordic ecosystems. Emerging Contaminants, 2019, 5, 89-115.                                                                                                        | 2.2 | 40        |
| 35 | A review on organophosphate Ester (OPE) flame retardants and plasticizers in foodstuffs: Levels, distribution, human dietary exposure, and future directions. Environment International, 2019, 127, 35-51.                          | 4.8 | 220       |
| 36 | State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic. Science of the Total Environment, 2019, 664, 1063-1083.                                       | 3.9 | 106       |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Persistent, bioaccumulative, and toxic properties of liquid crystal monomers and their detection in indoor residential dust. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26450-26458.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3 | 76        |
| 38 | Organophosphate Ester, 2-Ethylhexyl Diphenyl Phosphate (EHDPP), Elicits Cytotoxic and Transcriptomic Effects in Chicken Embryonic Hepatocytes and Its Biotransformation Profile Compared to Humans. Environmental Science & Eamp; Technology, 2019, 53, 2151-2160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.6 | 57        |
| 39 | Structure-Dependent <i>in Vitro</i> Metabolism of Alkyl-Substituted Analogues of Triphenyl Phosphate in East Greenland Polar Bears and Ringed Seals. Environmental Science and Technology Letters, 2018, 5, 214-219.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.9 | 20        |
| 40 | Polychlorinated Diphenylsulfides Activate Aryl Hydrocarbon Receptor 2 in Zebrafish Embryos:<br>Potential Mechanism of Developmental Toxicity. Environmental Science & Emp; Technology, 2018, 52, 4402-4412.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.6 | 22        |
| 41 | Persistent organic pollutants and penile bone mineral density in East Greenland and Canadian polar bears (Ursus maritimus) during 1996–2015. Environment International, 2018, 114, 212-218.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.8 | 12        |
| 42 | Covalent binding of the organophosphate insecticide profenofos to tyrosine on $\hat{l}_{\pm}$ - and $\hat{l}^{2}$ -tubulin proteins. Chemosphere, 2018, 199, 154-159.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.2 | 10        |
| 43 | Perfluoroalkyl Acids in European Starling Eggs Indicate Landfill and Urban Influences in Canadian Terrestrial Environments. Environmental Science & En | 4.6 | 21        |
| 44 | Liquid Crystal Monomers (LCMs): A New Generation of Persistent Bioaccumulative and Toxic (PBT) Compounds?. Environmental Science & Environmental Scien | 4.6 | 57        |
| 45 | A mixed-mode chromatographic separation method for the analysis of dialkyl phosphates. Journal of Chromatography A, 2018, 1535, 63-71.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8 | 16        |
| 46 | Persistent organic pollutants, skull size and bone density of polar bears ( Ursus maritimus ) from East Greenland 1892–2015 and Svalbard 1964–2004. Environmental Research, 2018, 162, 74-80.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.7 | 17        |
| 47 | <i>In Vitro</i> and <i>in Silico</i> Competitive Binding of Brominated Polyphenyl Ether Contaminants with Human and Gull Thyroid Hormone Transport Proteins. Environmental Science & Environmental Sci | 4.6 | 18        |
| 48 | Organophosphate triesters and selected metabolites enhance binding of thyroxine to human transthyretin in vitro. Toxicology Letters, 2018, 285, 87-93.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4 | 47        |
| 49 | Organophosphate esters in East Greenland polar bears and ringed seals: Adipose tissue concentrations and inÂvitro depletion and metabolite formation. Chemosphere, 2018, 196, 240-250.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.2 | 43        |
| 50 | Photolysis of highly brominated flame retardants leads to time-dependent dioxin-responsive mRNA expression in chicken embryonic hepatocytes. Chemosphere, 2018, 194, 352-359.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.2 | 13        |
| 51 | Chemical and biological transfer: Which one is responsible for the maternal transfer toxicity of tris(1,3-dichloro-2-propyl) phosphate in zebrafish?. Environmental Pollution, 2018, 243, 1376-1382.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7 | 14        |
| 52 | Predicting global killer whale population collapse from PCB pollution. Science, 2018, 361, 1373-1376.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0 | 252       |
| 53 | Unexpected Observations: Exposure to Aromatase Inhibitor Prochloraz Did Not Alter the Vitellogenin Content of Zebrafish Ova but Did Inhibit the Growth of Larval Offspring. Environmental Science and Technology Letters, 2018, 5, 629-634.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.9 | 7         |
| 54 | Down-Regulation of <i>hspb9</i> and <i>hspb11</i> Contributes to Wavy Notochord in Zebrafish Embryos Following Exposure to Polychlorinated Diphenylsulfides. Environmental Science & Empry Technology, 2018, 52, 12829-12840.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.6 | 7         |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF              | CITATIONS         |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|
| 55 | Unusually high Deca-BDE concentrations and new flame retardants in a Canadian Arctic top predator, the glaucous gull. Science of the Total Environment, 2018, 639, 977-987.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.9             | 42                |
| 56 | Exposure to tris(1,3-dichloro-2-propyl) phosphate for Two generations decreases fecundity of zebrafish at environmentally relevant concentrations. Aquatic Toxicology, 2018, 200, 178-187.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.9             | 21                |
| 57 | Isomer-Specific Hexabromocyclododecane (HBCDD) Levels in Top Predator Fish from Across Canada and 36-Year Temporal Trends in Lake Ontario. Environmental Science & Environment | 4.6             | 14                |
| 58 | Immunologic, reproductive, and carcinogenic risk assessment from POP exposure in East Greenland polar bears (Ursus maritimus) during 1983–2013. Environment International, 2018, 118, 169-178.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.8             | 79                |
| 59 | In ovo tris(2â€butoxyethyl) phosphate concentrations significantly decrease in late incubation after a single exposure via injection, with no evidence of effects on hatching success or latent effects on growth or reproduction in zebra finches. Environmental Toxicology and Chemistry, 2017, 36, 83-88.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2             | 4                 |
| 60 | Contaminants of emerging concern in Caspian tern compared to herring gull eggs from Michigan colonies in the Great Lakes of North America. Environmental Pollution, 2017, 222, 154-164.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7             | 41                |
| 61 | Time-dependent inhibitory effects of Tris(1, 3-dichloro-2-propyl) phosphate on growth and transcription of genes involved in the GH/IGF axis, but not the HPT axis, in female zebrafish. Environmental Pollution, 2017, 229, 470-478.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7             | 43                |
| 62 | Exploring adduct formation between human serum albumin and eleven organophosphate ester flame retardants and plasticizers using MALDI-TOF/TOF and LC-Q/TOF. Chemosphere, 2017, 180, 169-177.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.2             | 17                |
| 63 | A rapid analytical method to quantify complex organohalogen contaminant mixtures in large samples of high lipid mammalian tissues. Chemosphere, 2017, 176, 243-248.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.2             | 11                |
| 64 | Effects of Polar Bear and Killer Whale Derived Contaminant Cocktails on Marine Mammal Immunity. Environmental Science & Enviro | 4.6             | 56                |
| 65 | Establishment of a three-step method to evaluate effects of chemicals on development of zebrafish embryo/larvae. Chemosphere, 2017, 186, 209-217.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.2             | 2                 |
| 66 | Side-chain fluorinated polymer surfactants in aquatic sediment and biosolid-augmented agricultural soil from the Great Lakes basin of North America. Science of the Total Environment, 2017, 607-608, 262-270.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.9             | 37                |
| 67 | Volatile Methylsiloxanes and Organophosphate Esters in the Eggs of European Starlings ( <i>Sturnus) Tj ETQq1 1 CT Technology, 2017, 51, 9836-9845.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ).784314<br>4.6 | rgBT /Overl<br>28 |
| 68 | Optimization of an in vitro assay methodology for competitive binding of thyroidogenic xenobiotics with thyroxine on human transthyretin and albumin. MethodsX, 2017, 4, 404-412.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7             | 2                 |
| 69 | Whole-Life-Stage Characterization in the Basic Biology of <i>Daphnia magna</i> and Effects of TDCIPP on Growth, Reproduction, Survival, and Transcription of Genes. Environmental Science & Eamp; Technology, 2017, 51, 13967-13975.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.6             | 48                |
| 70 | Spatiotemporal patterns and relationships among the diet, biochemistry, and exposure to flame retardants in an apex avian predator, the peregrine falcon. Environmental Research, 2017, 158, 43-53.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7             | 35                |
| 71 | Halogenated Flame Retardants in Predator and Prey Fish From the Laurentian Great Lakes: Age-Dependent Accumulation and Trophic Transfer. Environmental Science & Environmental | 4.6             | 36                |
| 72 | A Review of Organophosphate Esters in the Environment from Biological Effects to Distribution and Fate. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 2-7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3             | 180               |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Parental transfer of tris(1,3-dichloro-2-propyl) phosphate and transgenerational inhibition of growth of zebrafish exposed to environmentally relevant concentrations. Environmental Pollution, 2017, 220, 196-203.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7 | 74        |
| 74 | In Vitro Metabolism of Photolytic Breakdown Products of Tetradecabromo-1,4-diphenoxybenzene Flame Retardant in Herring Gull and Rat Liver Microsomal Assays. Environmental Science & Emp; Technology, 2016, 50, 8335-8343.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.6 | 7         |
| 75 | Multigenerational effects of tris(1,3-dichloro-2-propyl) phosphate on the free-living ciliate protozoa Tetrahymena thermophila exposed to environmentally relevant concentrations and after subsequent recovery. Environmental Pollution, 2016, 218, 50-58.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.7 | 22        |
| 76 | Environmentally relevant organophosphate triesters in herring gulls: In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay. Toxicology and Applied Pharmacology, 2016, 308, 59-65.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3 | 91        |
| 77 | A Reagent-Free Screening Assay for Evaluation of the Effects of Chemicals on the Proliferation and Morphology of HeLa-GFP Cells. Environmental Science and Technology Letters, 2016, 3, 322-326.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.9 | 3         |
| 78 | Retrospective analysis of organophosphate flame retardants in herring gull eggs and relation to the aquatic food web in the Laurentian Great Lakes of North America. Environmental Research, 2016, 150, 255-263.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.7 | 93        |
| 79 | Acute Exposure to Tris(1,3-dichloro-2-propyl) Phosphate (TDCIPP) Causes Hepatic Inflammation and Leads to Hepatotoxicity in Zebrafish. Scientific Reports, 2016, 6, 19045.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.6 | 45        |
| 80 | Organophosphate Flame Retardants and Plasticizers in Aqueous Solution: pH-Dependent Hydrolysis, Kinetics, and Pathways. Environmental Science & Enviro | 4.6 | 130       |
| 81 | Spatio-temporal trends and monitoring design of perfluoroalkyl acids in the eggs of gull (Larid) species from across Canada and parts of the United States. Science of the Total Environment, 2016, 565, 440-450.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.9 | 22        |
| 82 | Sunlight Irradiation of Highly Brominated Polyphenyl Ethers Generates Polybenzofuran Products That Alter Dioxin-responsive mRNA Expression in Chicken Hepatocytes. Environmental Science & Environmental Science & Technology, 2016, 50, 2318-2327.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6 | 19        |
| 83 | A New Fluorinated Surfactant Contaminant in Biota: Perfluorobutane Sulfonamide in Several Fish Species. Environmental Science & Environmental Science  | 4.6 | 90        |
| 84 | Determination of glucuronide conjugates of hydroxyl triphenyl phosphate (OH-TPHP) metabolites in human urine and its use as a biomarker of TPHP exposure. Chemosphere, 2016, 149, 314-319.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.2 | 39        |
| 85 | Organophosphate pesticide method development and presence of chlorpyrifos in the feet of nearctic-neotropical migratory songbirds from Canada that over-winter in Central America agricultural areas. Chemosphere, 2016, 144, 827-835.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.2 | 7         |
| 86 | Trends of polybrominated diphenyl ethers and hexabromocyclododecane in eggs of Canadian Arctic seabirds reflect changing use patterns. Environmental Research, 2015, 142, 651-661.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.7 | 40        |
| 87 | A review of ecological impacts of global climate change on persistent organic pollutant and mercury pathways and exposures in arctic marine ecosystems. Environmental Epigenetics, 2015, 61, 617-628.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9 | 116       |
| 88 | Determination of organophosphate diesters in urine samples by a high-sensitivity method based on ultra high pressure liquid chromatography-triple quadrupole-mass spectrometry. Journal of Chromatography A, 2015, 1426, 154-160.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8 | 41        |
| 89 | Penile density and globally used chemicals in Canadian and Greenland polar bears. Environmental Research, 2015, 137, 287-291.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.7 | 34        |
| 90 | Hexabromocyclododecane Flame Retardant Isomers in Sediments from Detroit River and Lake Erie of the Laurentian Great Lakes of North America. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 31-36.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3 | 19        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF                | CITATIONS           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 91  | Uptake, distribution, depletion, and in ovo transfer of isomers of hexabromocyclododecane flame retardant in dietâ€exposed American kestrels (⟨i⟩Falco sparverius⟨li⟩). Environmental Toxicology and Chemistry, 2015, 34, 1103-1112.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.2               | 23                  |
| 92  | Methodology and determination of tetradecabromo-1,4-diphenoxybenzene flame retardant and breakdown by-products in sediments from the Laurentian Great Lakes. Chemosphere, 2015, 118, 342-349.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.2               | 9                   |
| 93  | Investigating Endocrine and Physiological Parameters of Captive American Kestrels Exposed by Diet to Selected Organophosphate Flame Retardants. Environmental Science & Echnology, 2015, 49, 7448-7455.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.6               | 60                  |
| 94  | Determination of organophosphate flame retardants and plasticizers in lipid-rich matrices using dispersive solid-phase extraction as a sample cleanup step and ultra-high performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry. Analytica Chimica Acta, 2015, 885, 183-190.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.6               | 49                  |
| 95  | Physiologically-based pharmacokinetic modelling of immune, reproductive and carcinogenic effects from contaminant exposure in polar bears (Ursus maritimus) across the Arctic. Environmental Research, 2015, 140, 45-55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7               | 77                  |
| 96  | Legacy and emerging organic pollutants in liver and plasma of long-finned pilot whales (Globicephala) Tj ETQq0 270-285.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0 rgBT /<br>3.9 | Overlock 10 T<br>22 |
| 97  | <i>In Vitro</i> Metabolism of the Flame Retardant Triphenyl Phosphate in Chicken Embryonic Hepatocytes and the Importance of the Hydroxylation Pathway. Environmental Science and Technology Letters, 2015, 2, 100-104.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.9               | 81                  |
| 98  | Environmentally Relevant Concentrations of the Flame Retardant Tris(1,3-dichloro-2-propyl) Phosphate Inhibit Growth of Female Zebrafish and Decrease Fecundity. Environmental Science & Echnology, 2015, 49, 14579-14587.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.6               | 107                 |
| 99  | Spatial and temporal comparisons of legacy and emerging flame retardants in herring gull eggs from colonies spanning the Laurentian Great Lakes of Canada and United States. Environmental Research, 2015, 142, 720-730.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7               | 64                  |
| 100 | Effects of Tris(1,3-dichloro-2-propyl) Phosphate on Growth, Reproduction, and Gene Transcription of <i>Daphnia magna</i> at Environmentally Relevant Concentrations. Environmental Science & Environm  | 4.6               | 81                  |
| 101 | Biochemical and Transcriptomic Effects of Herring Gull Egg Extracts from Variably Contaminated Colonies of the Laurentian Great Lakes in Chicken Hepatocytes. Environmental Science & Emp; Technology, 2015, 49, 10190-10198.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.6               | 21                  |
| 102 | Thyroid hormones and deiodinase activity in plasma and tissues in relation to high levels of organohalogen contaminants in East Greenland polar bears (Ursus maritimus). Environmental Research, 2015, 136, 413-423.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7               | 40                  |
| 103 | Rapid in Vitro Metabolism of the Flame Retardant Triphenyl Phosphate and Effects on Cytotoxicity and mRNA Expression in Chicken Embryonic Hepatocytes. Environmental Science & Empry Technology, 2014, 48, 13511-13519.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.6               | 180                 |
| 104 | Liquid chromatography-electrospray–tandem mass spectrometry method for determination of organophosphate diesters in biotic samples including Great Lakes herring gull plasma. Journal of Chromatography A, 2014, 1374, 85-92.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.8               | 45                  |
| 105 | Steroid hormones in blood plasma from Greenland sledge dogs ( <i>Canis familiaris</i> ) dietary exposed to organohalogen polluted minke whale ( <i>Balaenoptera acuterostrata</i> ) blubber. Toxicological and Environmental Chemistry, 2014, 96, 273-286.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6               | 23                  |
| 106 | Photolytic Degradation Products of Two Highly Brominated Flame Retardants Cause Cytotoxicity and mRNA Expression Alterations in Chicken Embryonic Hepatocytes. Environmental Science & Emp; Technology, 2014, 48, 12039-12046.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.6               | 38                  |
| 107 | Comparative Body Compartment Composition and <i>In Ovo</i> Transfer of Organophosphate Flame Retardants in North American Great Lakes Herring Gulls. Environmental Science & E | 4.6               | 166                 |
| 108 | Organophosphate flame retardants and organosiloxanes in predatory freshwater fish from locations across Canada. Environmental Pollution, 2014, 193, 254-261.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.7               | 100                 |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF  | Citations |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos. Toxicology and Applied Pharmacology, 2014, 279, 303-310.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3 | 46        |
| 110 | <i>In Vitro</i> Metabolic Formation of Perfluoroalkyl Sulfonamides from Copolymer Surfactants of Pre- and Post-2002 Scotchgard Fabric Protector Products. Environmental Science & Environmental Scienc | 4.6 | 41        |
| 111 | 1,2-Dibromo-4-(1,2-dibromoethyl)-cyclohexane and tris(methylphenyl) phosphate cause significant effects on development, mRNA expression, and circulating bile acid concentrations in chicken embryos. Toxicology and Applied Pharmacology, 2014, 277, 279-287.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3 | 27        |
| 112 | Comparative hepatic in vitro depletion and metabolite formation of major perfluorooctane sulfonate precursors in arctic polar bear, beluga whale, and ringed seal. Chemosphere, 2014, 112, 225-231.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.2 | 46        |
| 113 | Perfluoroalkyl acids in the Canadian environment: Multi-media assessment of current status and trends. Environment International, 2013, 59, 183-200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.8 | 65        |
| 114 | Three decades (1983–2010) of contaminant trends in East Greenland polar bears (Ursus maritimus). Part 2: Brominated flame retardants. Environment International, 2013, 59, 494-500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.8 | 60        |
| 115 | Three decades (1983–2010) of contaminant trends in East Greenland polar bears (Ursus maritimus).<br>Part 1: Legacy organochlorine contaminants. Environment International, 2013, 59, 485-493.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.8 | 74        |
| 116 | In Ovo Effects of Two Organophosphate Flame Retardants—TCPP and TDCPP—on Pipping Success, Development, mRNA Expression, and Thyroid Hormone Levels in Chicken Embryos. Toxicological Sciences, 2013, 134, 92-102.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4 | 169       |
| 117 | Global change effects on the longâ€ŧerm feeding ecology and contaminant exposures of <scp>E</scp> ast <scp>G</scp> reenland polar bears. Global Change Biology, 2013, 19, 2360-2372.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.2 | 147       |
| 118 | Tetradecabromodiphenoxybenzene Flame Retardant Undergoes Photolytic Debromination. Environmental Science & Environmental Scien | 4.6 | 20        |
| 119 | European Starlings (Sturnus vulgaris) Suggest That Landfills Are an Important Source of<br>Bioaccumulative Flame Retardants to Canadian Terrestrial Ecosystems. Environmental Science & Emp;<br>Technology, 2013, 47, 12238-12247.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.6 | 54        |
| 120 | Reply to Comment on "Novel Methoxylated Polybrominated Diphenoxybenzene Congeners and Possible Sources in Herring Gull Eggs from the Laurentian Great Lakes of North America― Environmental Science & Technology, 2012, 46, 3589-3590.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.6 | 6         |
| 121 | Flame retardants in eggs of American kestrels and European starlings from southern Lake Ontario region (North America). Journal of Environmental Monitoring, 2012, 14, 2870.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.1 | 22        |
| 122 | Novel Flame Retardants in Urban-Feeding Ring-Billed Gulls from the St. Lawrence River, Canada. Environmental Science & Environ | 4.6 | 93        |
| 123 | Newly Discovered Methoxylated Polybrominated Diphenoxybenzenes Have Been Contaminants in the Great Lakes Herring Gull Eggs for Thirty Years. Environmental Science & Environmental Science & 2012, 46, 9456-9463.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.6 | 14        |
| 124 | Determination of non-halogenated, chlorinated and brominated organophosphate flame retardants in herring gull eggs based on liquid chromatography–tandem quadrupole mass spectrometry. Journal of Chromatography A, 2012, 1220, 169-174.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.8 | 142       |
| 125 | Flame retardants in eggs of four gull species (Laridae) from breeding sites spanning Atlantic to Pacific Canada. Environmental Pollution, 2012, 168, 1-9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.7 | 91        |
| 126 | Twenty years of temporal change in perfluoroalkyl sulfonate and carboxylate contaminants in herring gull eggs from the Laurentian Great Lakes. Journal of Environmental Monitoring, 2011, 13, 3365.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1 | 51        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF               | CITATIONS         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 127 | Novel Methoxylated Polybrominated Diphenoxybenzene Congeners and Possible Sources in Herring<br>Gull Eggs from the Laurentian Great Lakes of North America. Environmental Science & Dysamp;<br>Technology, 2011, 45, 9523-9530.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.6              | 40                |
| 128 | Monitoring of Perfluorinated Compounds in Aquatic Biota: An Updated Review. Environmental Science & En | 4.6              | 663               |
| 129 | Flame retardants and legacy contaminants in polar bears from Alaska, Canada, East Greenland and Svalbard, 2005–2008. Environment International, 2011, 37, 365-374.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.8              | 102               |
| 130 | Perfluoroalkyl carboxylates and sulfonates and precursors in relation to dietary source tracers in the eggs of four species of gulls (Larids) from breeding sites spanning Atlantic to Pacific Canada. Environment International, 2011, 37, 1175-1182.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.8              | 59                |
| 131 | Contemporary 14C radiocarbon levels of oxygenated polybrominated diphenyl ethers (O-PBDEs) isolated in sponge–cyanobacteria associations. Marine Pollution Bulletin, 2011, 62, 631-636.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3              | 24                |
| 132 | Dicationic ion-pairing of phosphoric acid diesters post-liquid chromatography and subsequent determination by electrospray positive ionization-tandem mass spectrometry. Journal of Chromatography A, 2011, 1218, 8083-8088.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.8              | 42                |
| 133 | Comparative hepatic microsomal biotransformation of selected PBDEs, including decabromodiphenyl ether, and decabromodiphenyl ethane flame retardants in Arctic marineâ€feeding mammals. Environmental Toxicology and Chemistry, 2011, 30, 1506-1514.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.2              | 55                |
| 134 | Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Science of the Total Environment, 2010, 408, 2995-3043.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.9              | 660               |
| 135 | Pipping Success, Isomer-Specific Accumulation, and Hepatic mRNA Expression in Chicken Embryos Exposed to HBCD. Toxicological Sciences, 2010, 115, 492-500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.4              | 38                |
| 136 | Recombinant Albumin and Transthyretin Transport Proteins from Two Gull Species and Human: Chlorinated and Brominated Contaminant Binding and Thyroid Hormones. Environmental Science & Environmental & | 4.6              | 84                |
| 137 | Historical Contaminants, Flame Retardants, and Halogenated Phenolic Compounds in Peregrine Falcon ( <i>Falco peregrinus</i> ) Nestlings in the Canadian Great Lakes Basin. Environmental Science & Eamp; Technology, 2010, 44, 3520-3526.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.6              | 61                |
| 138 | High-Sensitivity Method for Determination of Tetrabromobisphenol-S and Tetrabromobisphenol-A Derivative Flame Retardants in Great Lakes Herring Gull Eggs by Liquid Chromatographyâ <sup>^</sup> Atmospheric Pressure Photoionizationâ <sup>^</sup> Tandem Mass Spectrometry. Environmental Science & Environmental Science & Hotology, 2010, 44, 8615-8621.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.6              | 74                |
| 139 | Metabolism of Polybrominated Diphenyl Ethers (PBDEs) by Human Hepatocytes <i>in Vitro</i> . Environmental Health Perspectives, 2009, 117, 197-202.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.8              | 212               |
| 140 | Recombinant Transthyretin Purification and Competitive Binding with Organohalogen Compounds in Two Gull Species (Larus argentatus and Larus hyperboreus). Toxicological Sciences, 2009, 107, 440-450.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4              | 97                |
| 141 | Biochemical tracers reveal intra-specific differences in the food webs utilized by individual seabirds. Oecologia, 2009, 160, 15-23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9              | 41                |
| 142 | Polybrominated Diphenyl Ethers and Their Hydroxylated Analogues in Ringed Seals ( <i>Phoca) Tj ETQq0 0 0 rgBT 3494-3499.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /Overlock<br>4.6 | 10 Tf 50 14<br>70 |
| 143 | Sea Ice-associated Diet Change Increases the Levels of Chlorinated and Brominated Contaminants in Polar Bears. Environmental Science & Environmental S | 4.6              | 120               |
| 144 | Bioaccumulation and biotransformation of brominated and chlorinated contaminants and their metabolites in ringed seals (Pusa hispida) and polar bears (Ursus maritimus) from East Greenland. Environment International, 2009, 35, 1118-1124.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.8              | 110               |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF       | CITATIONS      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|
| 145 | Isomers of Dechlorane Plus flame retardant in the eggs of herring gulls (Larus argentatus) from the Laurentian Great Lakes of North America: Temporal changes and spatial distribution. Chemosphere, 2009, 75, 115-120.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.2      | 93             |
| 146 | Reproductive performance in East Greenland polar bears (Ursus maritimus) may be affected by organohalogen contaminants as shown by physiologically-based pharmacokinetic (PBPK) modelling. Chemosphere, 2009, 77, 1558-1568.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.2      | 62             |
| 147 | Pipping success and liver mRNA expression in chicken embryos exposed in ovo to C8 and C11 perfluorinated carboxylic acids and C10 perfluorinated sulfonate. Toxicology Letters, 2009, 190, 134-139.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4      | 31             |
| 148 | Temporal Trends and Spatial Distribution of Non-polybrominated Diphenyl Ether Flame Retardants in the Eggs of Colonial Populations of Great Lakes Herring Gulls. Environmental Science & Eamp; Technology, 2009, 43, 312-317.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.6      | 171            |
| 149 | Analysis of fluorotelomer alcohols and perfluorinated sulfonamides in biotic samples by liquid chromatography-atmospheric pressure photoionization mass spectrometry. Journal of Chromatography A, 2008, 1215, 92-99.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8      | 60             |
| 150 | Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus). Environmental Pollution, 2008, 152, 621-629.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.7      | 149            |
| 151 | Dramatic Changes in the Temporal Trends of Polybrominated Diphenyl Ethers (PBDEs) in Herring Gull Eggs From the Laurentian Great Lakes: 1982–2006. Environmental Science & Echnology, 2008, 42, 1524-1530.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.6      | 140            |
| 152 | Target Tissue Selectivity and Burdens of Diverse Classes of Brominated and Chlorinated Contaminants in Polar Bears (Ursus maritimus) from East Greenland. Environmental Science & Eamp; Technology, 2008, 42, 752-759.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.6      | 95             |
| 153 | Organohalogen contamination in breeding glaucous gulls from the Norwegian Arctic: Associations with basal metabolism and circulating thyroid hormones. Environmental Pollution, 2007, 145, 138-145.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7      | 70             |
| 154 | Current-Use Flame Retardants in the Eggs of Herring Gulls (Larus argentatus) from the Laurentian Great Lakes. Environmental Science & Environmental Sc | 4.6      | 214            |
| 155 | Brominated Flame Retardants in Glaucous Gulls from the Norwegian Arctic:Â More Than Just an Issue of Polybrominated Diphenyl Ethers. Environmental Science & Environmental Science & 2007, 41, 4925-4931.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.6      | 141            |
| 156 | Xenoendocrine Pollutants May Reduce Size of Sexual Organs in East Greenland Polar Bears (Ursus) Tj ETQq0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rgBT/Ove | rlock 10 Tf 50 |
| 157 | ORGANOHALOGEN CONTAMINANTS AND METABOLITES IN BELUGA WHALE (DELPHINAPTERUS LEUCAS) LIVER FROM TWO CANADIAN POPULATIONS. Environmental Toxicology and Chemistry, 2006, 25, 1246.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2      | 83             |
| 158 | NEW ORGANOCHLORINE CONTAMINANTS AND METABOLITES IN PLASMA AND EGGS OF GLAUCOUS GULLS (LARUS HYPERBOREUS) FROM THE NORWEGIAN ARCTIC. Environmental Toxicology and Chemistry, 2005, 24, 2486.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.2      | 75             |
| 159 | An assessment of the toxicological significance of anthropogenic contaminants in Canadian arctic wildlife. Science of the Total Environment, 2005, 351-352, 57-93.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.9      | 160            |
| 160 | Flame Retardants and Methoxylated and Hydroxylated Polybrominated Diphenyl Ethers in Two<br>Norwegian Arctic Top Predators:  Glaucous Gulls and Polar Bears. Environmental Science & Eamp;<br>Technology, 2005, 39, 6021-6028.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.6      | 263            |
| 161 | Polybrominated Diphenyl Ethers and Hydroxylated and Methoxylated Brominated and Chlorinated Analogues in the Plasma of Fish from the Detroit River. Environmental Science & En | 4.6      | 183            |
| 162 | DIETARY ACCUMULATION AND METABOLISM OF POLYBROMINATED DIPHENYL ETHERS BY JUVENILE CARP (CYPRINUS CARPIO). Environmental Toxicology and Chemistry, 2004, 23, 1939.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.2      | 146            |

| #   | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Metabolism in the toxicokinetics and fate of brominated flame retardants—a review. Environment International, 2003, 29, 801-828.                                                                                                                                                       | 4.8 | 368       |
| 164 | Methylsulfone polycglorinated biphenyl and 2,2â€bis(chlorophenyl)â€1,1â€dichloroethylene metabolites in beluga whale ( <i>Delphinapterus leucas</i> ) from the St. Lawrence river estuary and western Hudson bay, Canada. Environmental Toxicology and Chemistry, 2000, 19, 1378-1388. | 2.2 | 12        |
| 165 | Biotransformation versus Bioaccumulation: Sources of Methyl Sulfone PCB and 4,4â€~-DDE Metabolites in the Polar Bear Food Chain. Environmental Science & Eamp; Technology, 1998, 32, 1656-1661.                                                                                        | 4.6 | 111       |
| 166 | Electron Capture/Negative Ionization Mass Spectrometric Characteristics of Bioaccumulating Methyl Sulfone-Substituted Polychlorinated Biphenyls. Journal of Mass Spectrometry, 1997, 32, 232-240.                                                                                      | 0.7 | 9         |