Michael S C Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6334563/publications.pdf Version: 2024-02-01

90790
35 67
index g-index
132 4740
es ranked citing authors

#	Article	IF	CITATIONS
1	Using Developmental Trajectories to Understand Developmental Disorders. Journal of Speech, Language, and Hearing Research, 2009, 52, 336-358.	1.6	377
2	Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling. Behavioral and Brain Sciences, 2002, 25, 727-750.	0.7	276
3	Exploring the Williams syndrome face-processing debate: the importance of building developmental trajectories. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2004, 45, 1258-1274.	5.2	266
4	Verbal and non-verbal intelligence changes in the teenage brain. Nature, 2011, 479, 113-116.	27.8	195
5	What makes counting count? Verbal and visuo-spatial contributions to typical and atypical number development. Journal of Experimental Child Psychology, 2003, 85, 50-62.	1.4	182
6	Neuroconstructivism. Developmental Science, 2007, 10, 75-83.	2.4	177
7	Language Switching Costs in Bilingual Visual Word Recognition. Journal of Memory and Language, 2000, 43, 44-66.	2.1	164
8	Improving Methodological Standards in Behavioral Interventions for Cognitive Enhancement. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 2019, 3, 2-29.	1.6	149
9	New Advances in Understanding Sensitive Periods in Brain Development. Current Directions in Psychological Science, 2008, 17, 1-5.	5.3	145
10	Past tense formation in Williams syndrome. Language and Cognitive Processes, 2001, 16, 143-176.	2.2	137
11	A cross-syndrome study of the development of holistic face recognition in children with autism, Down syndrome, and Williams syndrome. Journal of Experimental Child Psychology, 2009, 102, 456-486.	1.4	137
12	Annual Research Review: Educational neuroscience: progress and prospects. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2019, 60, 477-492.	5.2	124
13	Précis of <i>Neuroconstructivism: How the Brain Constructs Cognition</i> . Behavioral and Brain Sciences, 2008, 31, 321-331.	0.7	114
14	Modeling language acquisition in atypical phenotypes Psychological Review, 2003, 110, 647-682.	3.8	112
15	The principles and practices of educational neuroscience: Comment on Bowers (2016) Psychological Review, 2016, 123, 620-627.	3.8	110
16	Night-time screen-based media device use and adolescents' sleep and health-related quality of life. Environment International, 2019, 124, 66-78.	10.0	110
17	Development of motion processing in children with autism. Developmental Science, 2010, 13, 826-838.	2.4	109
18	Different approaches to relating genotype to phenotype in developmental disorders. Developmental Psychobiology, 2002, 40, 311-322.	1.6	108

#	Article	IF	CITATIONS
19	Multiple Routes from Occipital to Temporal Cortices during Reading. Journal of Neuroscience, 2011, 31, 8239-8247.	3.6	100
20	The overâ€pruning hypothesis of autism. Developmental Science, 2016, 19, 284-305.	2.4	83
21	Human handedness: An inherited evolutionary trait. Behavioural Brain Research, 2013, 237, 200-206.	2.2	71
22	Connectionist Models of Cognition. , 2001, , 23-58.		66
23	Education, the science of learning, and the COVID-19 crisis. Prospects, 2020, 49, 87-90.	2.3	66
24	Consciousness: mapping the theoretical landscape. Trends in Cognitive Sciences, 2000, 4, 372-382.	7.8	65
25	Contrasting Effects of Vocabulary Knowledge on Temporal and Parietal Brain Structure across Lifespan. Journal of Cognitive Neuroscience, 2010, 22, 943-954.	2.3	63
26	Spatial cognition and science achievement: The contribution of intrinsic and extrinsic spatial skills from 7 to 11 years. British Journal of Educational Psychology, 2018, 88, 675-697.	2.9	63
27	Mechanisms of developmental regression in autism and the broader phenotype: A neural network modeling approach Psychological Review, 2011, 118, 637-654.	3.8	59
28	Can Developmental Disorders Reveal the Component Parts of the Human Language Faculty?. Language Learning and Development, 2005, 1, 65-92.	1.4	54
29	Language switching in bilingual production: Empirical data and computational modelling. Bilingualism, 2014, 17, 294-315.	1.3	54
30	What can developmental disorders tell us about the neurocomputational constraints that shape development? The case of Williams syndrome. Development and Psychopathology, 2003, 15, 969-990.	2.3	50
31	The Right Posterior Paravermis and the Control of Language Interference. Journal of Neuroscience, 2011, 31, 10732-10740.	3.6	50
32	Audioâ€visual speech perception: a developmental <scp>ERP</scp> investigation. Developmental Science, 2014, 17, 110-124.	2.4	50
33	The developmental relations between spatial cognition and mathematics in primary school children. Developmental Science, 2019, 22, e12786.	2.4	50
34	Bilingual children show an advantage in controlling verbal interference during spoken language comprehension. Bilingualism, 2015, 18, 490-501.	1.3	47
35	Computational Modeling in Developmental Psychology. IEEE Transactions on Evolutionary Computation, 2007, 11, 137-150.	10.0	45
36	First demonstration of effective spatial training for nearÂtransfer to spatial performance and farÂtransfer to a range of mathematics skills at 8Âyears. Developmental Science, 2020, 23, e12909.	2.4	40

#	Article	IF	CITATIONS
37	Atypical development of configural face recognition in children with autism, <scp>D</scp> own syndrome and <scp>W</scp> illiams syndrome. Journal of Intellectual Disability Research, 2015, 59, 422-438.	2.0	39
38	Speeded naming, frequency and the development of the lexicon in Williams syndrome. Language and Cognitive Processes, 2006, 21, 721-759.	2.2	38
39	A bilingual advantage in controlling language interference during sentence comprehension. Bilingualism, 2012, 15, 858-872.	1.3	38
40	Modeling socioeconomic status effects on language development Developmental Psychology, 2013, 49, 2325-2343.	1.6	34
41	Critical periods and catastrophic interference effects in the development of selfâ€organizing feature maps. Developmental Science, 2008, 11, 371-389.	2.4	33
42	Handedness as a marker of cerebral lateralization in children with and without autism. Behavioural Brain Research, 2014, 268, 14-21.	2.2	31
43	The computational modeling of sensitive periods. Developmental Psychobiology, 2006, 48, 337-344.	1.6	29
44	Neuronal Activation for Semantically Reversible Sentences. Journal of Cognitive Neuroscience, 2010, 22, 1283-1298.	2.3	28
45	Characterising Compensation. Cortex, 2005, 41, 434-442.	2.4	27
46	The development of metaphorical language comprehension in typical development and in Williams syndrome. Journal of Experimental Child Psychology, 2010, 106, 99-114.	1.4	27
47	Environmental and Genetic Influences on Neurocognitive Development. Clinical Psychological Science, 2014, 2, 628-637.	4.0	27
48	Educating the adult brain: How the neuroscience of learning can inform educational policy. International Review of Education, 2014, 60, 99-122.	2.1	27
49	Evidence of an advantage in visuo-spatial memory for bilingual compared to monolingual speakers. Bilingualism, 2017, 20, 602-612.	1.3	27
50	Total recall in the SCAMP cohort: Validation of self-reported mobile phone use in the smartphone era. Environmental Research, 2018, 161, 1-8.	7.5	26
51	The use of discrimination scaling tasks: A novel perspective on the development of spatial scaling in children. Cognitive Development, 2018, 47, 133-145.	1.3	24
52	Domain-Specific Inhibitory Control Training to Improve Children's Learning of Counterintuitive Concepts in Mathematics and Science. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 2020, 4, 296-314.	1.6	24
53	Definitions versus categorization: assessing the development of lexico-semantic knowledge in Williams syndrome. International Journal of Language and Communication Disorders, 2010, 46, 100824014249025.	1.5	22
54	Modeling Mechanisms of Persisting and Resolving Delay in Language Development. Journal of Speech, Language, and Hearing Research, 2014, 57, 467-483.	1.6	20

#	Article	IF	CITATIONS
55	Cohort Profile: The Study of Cognition, Adolescents and Mobile Phones (SCAMP). International Journal of Epidemiology, 2019, 48, 25-26l.	1.9	19
56	Love Is… AN ABSTRACT WORD: THE INFLUENCE OF LEXICAL SEMANTICS ON VERBAL SHORT-TERM MEMORY IN WILLIAMS SYNDROME. Cortex, 2005, 41, 169-179.	[√] 2.4	18
57	Educational neuroscience in the near and far future: Predictions from the analogy with the history of medicine. Trends in Neuroscience and Education, 2013, 2, 23-26.	3.1	18
58	Metaphor as Categorization: A Connectionist Implementation. Metaphor and Symbol, 2001, 16, 5-27.	1.0	16
59	What Can the Study of Genetics Offer to Educators?. Mind, Brain, and Education, 2015, 9, 72-80.	1.9	16
60	Syndromic Autism: Progressing Beyond Current Levels of Description. Review Journal of Autism and Developmental Disorders, 2017, 4, 321-327.	3.4	15
61	A neurocomputational model of developmental trajectories of gifted children under a polygenic model: When are gifted children held back by poor environments?. Intelligence, 2018, 69, 200-212.	3.0	15
62	Aged-based differences in spatial language skills from 6 to 10 years: Relations with spatial and mathematics skills. Learning and Instruction, 2021, 73, 101417.	3.2	15
63	Stress and Learning in Pupils: Neuroscience Evidence and its Relevance for Teachers. Mind, Brain, and Education, 2021, 15, 177-188.	1.9	14
64	A multi-level developmental approach to exploring individual differences in Down syndrome: genes, brain, behaviour, and environment. Research in Developmental Disabilities, 2020, 104, 103638.	2.2	13
65	Essay Review: Limits on plasticity. Journal of Cognition and Development, 2003, 4, 99-125.	1.3	12
66	Cross-syndrome comparison of real-world executive functioning and problem solving using a new problem-solving questionnaire. Research in Developmental Disabilities, 2016, 59, 80-92.	2.2	12
67	Computational modeling of interventions for developmental disorders Psychological Review, 2019, 126, 693-726.	3.8	12
68	Social networking site use in young adolescents: Association with health-related quality of life and behavioural difficulties. Computers in Human Behavior, 2020, 109, 106320.	8.5	11
69	Residual normality: Friend or foe?. Behavioral and Brain Sciences, 2002, 25, 772-780.	0.7	10
70	Multiscale Modeling of Gene–Behavior Associations in an Artificial Neural Network Model of Cognitive Development. Cognitive Science, 2016, 40, 51-99.	1.7	10
71	Using an ANN-based computational model to simulate and evaluate Chinese students' individualized cognitive abilities important in their English acquisition. Computer Assisted Language Learning, 2019, 32, 366-397.	7.1	10
72	Neuromyths About Neurodevelopmental Disorders: Misconceptions by Educators and the General Public. Mind, Brain, and Education, 2021, 15, 289-298.	1.9	10

#	Article	IF	CITATIONS
73	Multiple causality in developmental disorders: methodological implications from computational modelling. Developmental Science, 2003, 6, 537-556.	2.4	9
74	The benefits of computational modelling for the study of developmental disorders: extending the Triesch et al. model to ADHD. Developmental Science, 2006, 9, 151-155.	2.4	9
75	How computational models help explain the origins of reasoning. IEEE Computational Intelligence Magazine, 2006, 1, 32-40.	3.2	9
76	Do more intelligent brains retain heightened plasticity for longer in development? A computational investigation. Developmental Cognitive Neuroscience, 2016, 19, 258-269.	4.0	9
77	Digital Technology Use and BMI: Evidence From a Cross-sectional Analysis of an Adolescent Cohort Study. Journal of Medical Internet Research, 2021, 23, e26485.	4.3	9
78	What Is Typical Language Development?. Language Learning and Development, 2010, 6, 162-169.	1.4	8
79	Intervening to alleviate word-finding difficulties in children: case series data and a computational modelling foundation. Cognitive Neuropsychology, 2015, 32, 133-168.	1.1	8
80	Response to Dougherty and Robey (2018) on Neuroscience and Education: Enough Bridge Metaphors—Interdisciplinary Research Offers the Best Hope for Progress. Current Directions in Psychological Science, 2019, 28, 337-340.	5.3	8
81	The developmental trajectories of spatial skills in middle childhood. British Journal of Developmental Psychology, 2021, 39, 566-583.	1.7	8
82	Theories that develop. Bilingualism, 2002, 5, 216-217.	1.3	7
83	Processed data on the night-time use of screen-based media devices and adolescents' sleep quality and health-related quality of life. Data in Brief, 2019, 23, 103761.	1.0	7
84	Differential Associations of Apolipoprotein E ε4 Genotype With Attentional Abilities Across the Life Span of Individuals With Down Syndrome. JAMA Network Open, 2020, 3, e2018221.	5.9	7
85	Is the Mystery of Thought Demystified by Contextâ€Dependent Categorisation? Towards a New Relation Between Language and Thought. Mind and Language, 2012, 27, 595-618.	2.3	6
86	Understanding Delay in Developmental Disorders. Child Development Perspectives, 2016, 10, 73-80.	3.9	6
87	Intervention for children with word-finding difficulties: a parallel group randomised control trial. International Journal of Speech-Language Pathology, 2018, 20, 708-719.	1.2	6
88	Understanding differing outcomes from semantic and phonological interventions with children with word-finding difficulties: A group and case series study. Cortex, 2021, 134, 145-161.	2.4	6
89	The development of similarity: Testing the prediction of a computational model of metaphor comprehension. Language and Cognitive Processes, 2009, 24, 1406-1430.	2.2	5
90	Developmental Trajectories in Genetic Disorders. International Review of Research in Developmental Disabilities, 2011, , 43-73.	0.8	5

#	Article	IF	CITATIONS
91	Visuo-attentional correlates of Autism Spectrum Disorder (ASD) in children with Down syndrome: A comparative study with children with idiopathic ASD. Research in Developmental Disabilities, 2020, 104, 103678.	2.2	5
92	How Do Simple Connectionist Networks Achieve a Shift From "Featural―to "Correlational― Processing in Categorization?. Infancy, 2004, 5, 199-207.	1.6	4
93	NeuroconstructivismeÂ: comprendre les trajectoires développementales typiques et atypiques. Enfance, 2014, 2014, 205-236.	0.2	4
94	Cross-Sectional Methodologies in Developmental Psychology. , 2015, , 354-360.		4
95	Common mechanisms in intelligence and development: A study of ability profiles in mental age-matched primary school children. Intelligence, 2016, 56, 99-107.	3.0	4
96	Studying Development in Williams Syndrome: Progress, Prospects, and Challenges. Advances in Neurodevelopmental Disorders, 2019, 3, 343-346.	1.1	4
97	The role of context in verbal humor processing in autism. Journal of Experimental Child Psychology, 2021, 209, 105166.	1.4	4
98	NeuroconstructivismeÂ: comprendre les trajectoires développementales typiques et atypiques. Enfance, 2014, N° 3, 205-236.	0.2	4
99	Plotting the causes of developmental disorders. Trends in Cognitive Sciences, 2005, 9, 465-466.	7.8	3
100	Studying development in the 21 st Century. Behavioral and Brain Sciences, 2008, 31, 345-356.	0.7	3
101	Are imaging and lesioning convergent methods for assessing functional specialisation? Investigations using an artificial neural network. Brain and Cognition, 2012, 78, 38-49.	1.8	3
102	Modularity and Developmental Disorders. , 2013, , .		3
103	What is universal and what differs in language development?. Language, Cognition and Neuroscience, 2015, 30, 922-927.	1.2	3
104	Developmental Disorders: Few Specific Disorders and No Specific Brain Regions. Current Biology, 2020, 30, R304-R306.	3.9	3
105	Comprehension of metaphor and metonymy in children with Williams syndrome. International Journal of Language and Communication Disorders, 2009, 44, 962-978.	1.5	3
106	Modulatory effects of SES and multilinguistic experience on cognitive development: a longitudinal data analysis of multilingual and monolingual adolescents from the SCAMP cohort. International Journal of Bilingual Education and Bilingualism, 2022, 25, 3489-3506.	2.1	3
107	Quantities of qualia. Behavioral and Brain Sciences, 1999, 22, 169-170.	0.7	2

108 Transfer learning across heterogeneous tasks using behavioural genetic principles. , 2013, , .

2

IF # ARTICLE CITATIONS Rule extraction from autoencoderâ€based connectionist computational models. Concurrency 2.2 Computation Practice and Experience, 2019, 31, e4262. Essay Review: Limits on plasticity. Journal of Cognition and Development, 2003, 4, 99-125. 110 1.32 Neurocomputational Methods., 2022, , 662-687. Development as a Cause in Developmental Disorders: (Commentary on "Control and Cross-Domain) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 3.2 112 1 Intelligence, 2002, 18, 50-54. On hermit crabs and humans. Developmental Science, 2013, 16, 314-316. 2.4 Evolving Connectionist Models to Capture Population Variability across Language Development: 114 1.3 1 Modeling Children's Past Tense Formation. Artificial Life, 2020, 26, 217-241. Dynamic and Connectionist Approaches to Development: Toward a Future of Mutually Beneficial Coevolution., 2009, , 337-353 Connectionism., 2012, , 767-771. 116 1 1. Lâ€[™]acquisition du langage dans les pathologies du développement. , 2009, , 449-475. 118 What Makes Us Conscious?. Journal of Intelligent Systems, 1999, 9, . 1.6 0 A Hidden Knowledge Discovering Approach for Past Tense and Plural Problems to Language Cognition. 119 COMPETITION AS A MECHANISM FOR PRODUCING SENSITIVE PERIODS IN CONNECTIONIST MODELS OF 120 0 DEVELOPMENT., 2009,,. Cognition: The developmental trajectory approach., 2011, , 13-35. The relationship between SLI in English and Modern Greek. Language Acquisition and Language 122 0.1 0 Disorders, 2015, , 145-174. Exploring the Williams syndrome face-processing debate., 2018, , 132-160.