Kin Seng Chiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6332763/publications.pdf Version: 2024-02-01

		53794	85541
322	7,842	45	71
papers	citations	h-index	g-index
325	325	325	3934
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Optics Express, 2008, 16, 2252.	3.4	318
2	Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes. Journal of Lightwave Technology, 1985, 3, 385-391.	4.6	305
3	Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Optics Letters, 2014, 39, 1235.	3.3	170
4	Analysis of etched long-period fibre grating and its response to external refractive index. Electronics Letters, 2000, 36, 966.	1.0	167
5	Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides. Optical and Quantum Electronics, 1994, 26, S113-S134.	3.3	153
6	High-sensitivity pressure sensor using a shielded polymer-coated fiber Bragg grating. IEEE Photonics Technology Letters, 2001, 13, 618-619.	2.5	144
7	Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror. Electronics Letters, 2000, 36, 1609.	1.0	143
8	Simultaneous pressure and temperature measurement with polymer-coated fibre Bragg grating. Electronics Letters, 2000, 36, 564.	1.0	121
9	All Single-Mode Fiber Mach–Zehnder Interferometer Based on Two Peanut-Shape Structures. Journal of Lightwave Technology, 2012, 30, 805-810.	4.6	110
10	Fabry–Perot optical fiber tip sensor for high temperature measurement. Optics Communications, 2010, 283, 3683-3685.	2.1	108
11	Temperature-Insensitive Mode Converters With CO ₂ -Laser Written Long-Period Fiber Gratings. IEEE Photonics Technology Letters, 2015, 27, 1006-1009.	2.5	101
12	Thermal effects on the transmission spectra of long-period fiber gratings. Optics Communications, 2002, 208, 321-327.	2.1	96
13	Long-period gratings in planar optical waveguides. Applied Optics, 2002, 41, 6351.	2.1	94
14	Analysis of phase-shifted long-period fiber gratings. IEEE Photonics Technology Letters, 1998, 10, 1596-1598.	2.5	91
15	Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect. IEEE Photonics Technology Letters, 2002, 14, 361-362.	2.5	86
16	Propagation of short optical pulses in directional couplers with Kerr nonlinearity. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 1437.	2.1	85
17	Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides. IEEE Photonics Technology Letters, 2003, 15, 1094-1096.	2.5	81
18	Glass Structure Changes in CO\$_{2}\$-Laser Writing of Long-Period Fiber Gratings in Boron-Doped Single-Mode Fibers. Journal of Lightwave Technology, 2009, 27, 857-863.	4.6	81

#	Article	IF	CITATIONS
19	Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Optics Express, 2014, 22, 28154.	3.4	71
20	Modulation instabilities in two-core optical fibers. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1693.	2.1	70
21	Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence. Journal of Lightwave Technology, 2003, 21, 3399-3405.	4.6	67
22	Compact Three-Dimensional Polymer Waveguide Mode Multiplexer. Journal of Lightwave Technology, 2015, 33, 4580-4588.	4.6	67
23	Four-Wave Mixing in a Microfiber Attached Onto a Graphene Film. IEEE Photonics Technology Letters, 2014, 26, 249-252.	2.5	66
24	Experimental verification of optical models of graphene with multimode slab waveguides. Optics Letters, 2016, 41, 2129.	3.3	66
25	Stimulated Raman scattering in a multimode optical fiber: evolution of modes in Stokes waves. Optics Letters, 1992, 17, 352.	3.3	62
26	Propagation characteristics of a segmented cladding fiber. Optics Letters, 2001, 26, 491.	3.3	61
27	Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings. Optics Communications, 2011, 284, 5299-5302.	2.1	61
28	Soliton interaction in a two-core optical fiber. Optics Communications, 2004, 229, 431-439.	2.1	60
29	Mode converters based on cascaded long-period waveguide gratings. Optics Letters, 2016, 41, 3130.	3.3	60
30	Long-Period Fiber Grating Within D-Shaped Fiber Using Magnetic Fluid for Magnetic-Field Detection. IEEE Photonics Journal, 2012, 4, 2095-2104.	2.0	58
31	Mode-Locked Fiber Laser With Transverse-Mode Selection Based on a Two-Mode FBC. IEEE Photonics Technology Letters, 2014, 26, 1766-1769.	2.5	57
32	Wide-Range pH Sensor Based on a Smart- Hydrogel-Coated Long-Period Fiber Grating. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 284-288.	2.9	56
33	Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches. Optics Letters, 2017, 42, 407.	3.3	56
34	A novel tunable all-optical incoherent negative-tap fiber-optic transversal filter based on a DFB laser diode and fiber Bragg gratings. IEEE Photonics Technology Letters, 2000, 12, 1207-1209.	2.5	55
35	Analysis of Two Parallel Long-Period Fiber Gratings. Journal of Lightwave Technology, 2004, 22, 1358-1366.	4.6	55
36	Coupling between two parallel long-period fibre gratings. Electronics Letters, 2000, 36, 1408.	1.0	54

#	Article	IF	CITATIONS
37	Mode multiplexer based on integrated horizontal and vertical polymer waveguide couplers. Optics Letters, 2015, 40, 3125.	3.3	50
38	Ultra-efficient and stable electro-optic dendrimers containing supramolecular homodimers of semifluorinated dipolar aromatics. Materials Chemistry Frontiers, 2018, 2, 901-909.	5.9	49
39	Coupled-mode equations for pulse switching in parallel waveguides. IEEE Journal of Quantum Electronics, 1997, 33, 950-954.	1.9	48
40	Simultaneous existence of a multiplicity of stable and unstable solitons in dissipative systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 291, 115-123.	2.1	48
41	CO_2 laser writing of long-period fiber gratings in optical fibers under tension. Optics Letters, 2008, 33, 1933.	3.3	48
42	Temperature-compensated fiber-Bragg-grating-based magnetostrictive sensor for dc and ac currents. Optical Engineering, 2003, 42, 1906.	1.0	47
43	Light coupling between two parallel CO_2-laser written long-period fiber gratings. Optics Express, 2007, 15, 17645.	3.4	47
44	Graphene-Based Ammonia-Gas Sensor Using In-Fiber Mach-Zehnder Interferometer. IEEE Photonics Technology Letters, 2017, 29, 2035-2038.	2.5	47
45	Mode switch based on electro-optic long-period waveguide grating in lithium niobate. Optics Letters, 2015, 40, 237.	3.3	46
46	Mode Multiplexer With Cascaded Vertical Asymmetric Waveguide Directional Couplers. Journal of Lightwave Technology, 2018, 36, 2903-2911.	4.6	46
47	UV-written long-period gratings on polymer waveguides. IEEE Photonics Technology Letters, 2005, 17, 594-596.	2.5	45
48	Micro-Fiber-Based FBG Sensor for Simultaneous Measurement of Vibration and Temperature. IEEE Photonics Technology Letters, 2013, 25, 1751-1753.	2.5	45
49	Ultra-broadband mode filters based on graphene-embedded waveguides. Optics Letters, 2017, 42, 3868.	3.3	45
50	Stress-induced birefringence fibers designed for single-polarization single-mode operation. Journal of Lightwave Technology, 1989, 7, 436-441.	4.6	44
51	Analysis of the effective-index method for the vector modes of rectangular-core dielectric waveguides. IEEE Transactions on Microwave Theory and Techniques, 1996, 44, 692-700.	4.6	44
52	Switching dynamics of short optical pulses in a nonlinear directional coupler. IEEE Journal of Quantum Electronics, 1999, 35, 79-83.	1.9	44
53	Microbend-induced mode coupling in a graded-index multimode fiber. Applied Optics, 2005, 44, 7394.	2.1	44
54	Widely tunable long-period waveguide grating couplers. Optics Express, 2006, 14, 12644.	3.4	44

#	Article	IF	CITATIONS
55	Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing. Optics Letters, 2014, 39, 6030.	3.3	44
56	Gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror. IEEE Photonics Technology Letters, 2001, 13, 942-944.	2.5	43
57	Writing of Long-Period Gratings in Conventional and Photonic-Crystal Polarization-Maintaining Fibers by CO\$_{2}\$-Laser Pulses. IEEE Photonics Technology Letters, 2008, 20, 132-134.	2.5	43
58	Analysis of apodized phase-shifted long-period fiber gratings. Optics Communications, 2005, 244, 233-243.	2.1	42
59	Characterization of Long-Period Fiber Gratings Written by CO\$_{2}\$ Laser in Twisted Single-Mode Fibers. Journal of Lightwave Technology, 2009, 27, 4863-4869.	4.6	42
60	All-fiber vibration sensor based on a Fabry–Perot interferometer and a microstructure beam. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1211.	2.1	42
61	Finite element method for cutoff frequencies of weakly guiding fibres of arbitrary cross-section. Optical and Quantum Electronics, 1984, 16, 487-493.	3.3	41
62	Finite-element analysis of optical fibres with iterative treatment of the infinite 2-D space. Optical and Quantum Electronics, 1985, 17, 381-391.	3.3	39
63	Effective-index method for the analysis of optical waveguide couplers and arrays: an asymptotic theory. Journal of Lightwave Technology, 1991, 9, 62-72.	4.6	39
64	Refractive-index sensor based on long-range surface plasmon mode excitation with longperiod waveguide grating. Optics Express, 2009, 17, 7933.	3.4	39
65	Widely Wavelength-Tunable Mode Converter Based on Polymer Waveguide Grating. IEEE Photonics Technology Letters, 2015, 27, 1985-1988.	2.5	39
66	Surface-Plasmon-Resonance Refractive-Index Sensor With Cu-Coated Polymer Waveguide. IEEE Photonics Technology Letters, 2016, 28, 1835-1838.	2.5	38
67	Electro-optic mode switch based on lithium-niobate Mach–Zehnder interferometer. Applied Optics, 2016, 55, 4418.	2.1	38
68	Tuning the strength of intramolecular charge-transfer of triene-based nonlinear optical dyes for electro-optics and optofluidic lasers. Journal of Materials Chemistry C, 2017, 5, 7472-7478.	5.5	38
69	Ultra-broadband mode converters based on length-apodized long-period waveguide gratings. Optics Express, 2017, 25, 14341.	3.4	38
70	Tunable long-period fiber gratings for EDFA gain and ASE equalization. Microwave and Optical Technology Letters, 2000, 25, 181-184.	1.4	37
71	Broadband mode switch based on a three-dimensional waveguide Mach–Zehnder interferometer. Optics Letters, 2017, 42, 4877.	3.3	37
72	Temperature sensitivity of a long-period waveguide grating in a channel waveguide. Applied Physics Letters, 2005, 86, 241115.	3.3	36

#	Article	IF	CITATIONS
73	Reconfigurable broadband mode (de)multiplexer based on an integrated thermally induced long-period grating and asymmetric Y-junction. Optics Letters, 2018, 43, 2082.	3.3	36
74	Buried graphene electrode heater for a polymer waveguide thermo-optic device. Optics Letters, 2019, 44, 1480.	3.3	36
75	Electrode optimization for high-speed traveling-wave integrated optic modulators. Journal of Lightwave Technology, 1998, 16, 232-238.	4.6	34
76	Ultralow-loss fusion splicing between negative curvature hollow-core fibers and conventional SMFs with a reverse-tapering method. Optics Express, 2021, 29, 22470.	3.4	34
77	Temperature-insensitive fiber-Bragg-grating-based vibration sensor. Optical Engineering, 2001, 40, 2582.	1.0	33
78	Widely tunable optical bandpass filter by use of polymer long-period waveguide gratings. Applied Optics, 2006, 45, 2755.	2.1	33
79	Detection of high-frequency ultrasound with a polarization-maintaining fiber. Journal of Lightwave Technology, 1990, 8, 1221-1227.	4.6	32
80	Birefringence in benzocyclobutene strip optical waveguides. IEEE Photonics Technology Letters, 2003, 15, 700-702.	2.5	32
81	Band-rejection filter with widely tunable center wavelength and contrast using metal long-period grating on polymer waveguide. IEEE Photonics Technology Letters, 2006, 18, 1109-1111.	2.5	32
82	Robust Mode Matching between Structurally Dissimilar Optical Fiber Waveguides. ACS Photonics, 2021, 8, 857-863.	6.6	31
83	Breathers and â€~black' rogue waves of coupled nonlinear Schrödinger equations with dispersion and nonlinearity of opposite signs. Communications in Nonlinear Science and Numerical Simulation, 2015, 28, 28-38.	3.3	30
84	Mode-Selective Switch Based on Thermo-Optic Asymmetric Directional Coupler. IEEE Photonics Technology Letters, 2018, 30, 618-621.	2.5	30
85	Graphene electrodes for lithium-niobate electro-optic devices. Optics Letters, 2018, 43, 1718.	3.3	29
86	Optical coupling between a long-period fiber grating and a parallel tilted fiber Bragg grating. Optics Letters, 2009, 34, 1726.	3.3	28
87	CO_2 laser writing of long-period fiber grating in photonic crystal fiber under tension. Optics Express, 2009, 17, 4533.	3.4	28
88	Dispersion characteristics of strip dielectric waveguides. IEEE Transactions on Microwave Theory and Techniques, 1991, 39, 349-352.	4.6	27
89	Writing of Apodized Phase-Shifted Long-Period Fiber Gratings With a Computer-Controlled CO\$_{2} Laser. IEEE Photonics Technology Letters, 2009, 21, 657-659.	2.5	27
90	Self-seeding of Fabry-Perot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high-sidemode suppression ratio. IEEE Photonics Technology Letters, 2000, 12, 1441-1443.	2.5	26

#	Article	IF	CITATIONS
91	Electro-optic long-period waveguide gratings in lithium niobate. Optics Express, 2008, 16, 20409.	3.4	26
92	Long-period gratings inscribed in photonic crystal fiber by symmetric CO_2 laser irradiation. Optics Express, 2013, 21, 13208.	3.4	26
93	Modulation instability with arbitrarily high perturbation frequencies in metamaterials with nonlinear dispersion and saturable nonlinearity. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1484.	2.1	26
94	Externally pumped low-loss graphene-based fiber Mach-Zehnder all-optical switches with mW switching powers. Optics Express, 2019, 27, 4216.	3.4	26
95	The characterization of highâ€frequency ultrasonic fields using a polarimetric optical fiber sensor. Journal of Applied Physics, 1989, 66, 1565-1570.	2.5	25
96	Design of optical strip-loaded waveguides with zero modal birefringence. Journal of Lightwave Technology, 1998, 16, 1240-1248.	4.6	25
97	Study of polarization-dependent coupling in optical waveguide directional couplers by the effective-index method with built-in perturbation correction. Journal of Lightwave Technology, 2002, 20, 1018-1026.	4.6	25
98	Long-period gratings in polymer ridge waveguides. Optics Express, 2005, 13, 1150.	3.4	25
99	Highly Sensitive Temperature-Independent Strain Sensor Based on a Long-Period Fiber Grating With a CO\$_{2}\$-Laser Engraved Rotary Structure. IEEE Photonics Technology Letters, 2009, 21, 543-545.	2.5	25
100	Pressure-assisted low-loss fusion splicing between photonic crystal fiber and single-mode fiber. Optics Express, 2012, 20, 24465.	3.4	25
101	Nanoscale light–matter interactions in metal–organic frameworks cladding optical fibers. Nanoscale, 2020, 12, 9991-10000.	5.6	25
102	Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry–Perot laser diode with a high-birefringence fiber loop mirror. Applied Physics Letters, 2000, 76, 3676-3678.	3.3	24
103	Holey optical fiber with circularly distributed holes analyzed by the radial effective-index method. Optics Letters, 2003, 28, 2449.	3.3	24
104	Generation of Dual-Wavelength Picosecond Pulses From a Self-Seeded Fabry–PÉrot Laser Diode and a Polarization-Maintaining Fiber Bragg Grating. IEEE Photonics Technology Letters, 2004, 16, 1742-1744.	2.5	23
105	Design and fabrication of a broadband polymer vertically coupled optical switch. Journal of Lightwave Technology, 2006, 24, 904-911.	4.6	23
106	Propagation of ultrashort pulses in a nonlinear two-core photonic crystal fiber. Applied Physics B: Lasers and Optics, 2010, 98, 815-820.	2.2	23
107	Three-dimensional long-period waveguide gratings for mode-division-multiplexing applications. Optics Express, 2018, 26, 15289.	3.4	23
108	Ultra-Broadband Mode Filter Based on Phase-Shifted Long-Period Grating. IEEE Photonics Technology Letters, 2019, 31, 1052-1055.	2.5	23

#	Article	IF	CITATIONS
109	Electro-optic reconfigurable two-mode (de)multiplexer on thin-film lithium niobate. Optics Letters, 2021, 46, 1001.	3.3	23
110	Effective-index method with built-in perturbation correction for the vector modes of rectangular-core optical waveguides. Journal of Lightwave Technology, 1999, 17, 716-722.	4.6	22
111	Refractive-index profiling of graded-index planar waveguides from effective indexes measured with different external refractive indexes. Journal of Lightwave Technology, 2000, 18, 1412-1417.	4.6	22
112	Design of polarization-insensitive Bragg gratings in zero-birefringence ridge waveguides. IEEE Journal of Quantum Electronics, 2001, 37, 1138-1145.	1.9	22
113	Analysis and design of long-period waveguide-grating couplers. Journal of Lightwave Technology, 2005, 23, 4363-4373.	4.6	22
114	Thermally tunable lithium-niobate long-period waveguide grating filter fabricated by reactive ion etching. Optics Letters, 2010, 35, 484.	3.3	22
115	Modulation instabilities in birefringent two-core optical fibres. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 165404.	1.5	22
116	Horizontal Directional Coupler Formed With Waveguides of Different Heights for Mode-Division Multiplexing. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	22
117	Polarization-insensitive ultra-broadband mode filter based on a 3D graphene structure buried in an optical waveguide. Optica, 2020, 7, 744.	9.3	22
118	CO/sub 2/-laser-induced long-period gratings in graded-index multimode fibers for sensor applications. IEEE Photonics Technology Letters, 2006, 18, 190-192.	2.5	21
119	Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator. Optics Letters, 2010, 35, 769.	3.3	21
120	Nonlinear Switching of Ultrashort Pulses in Multicore Fibers. IEEE Journal of Quantum Electronics, 2011, 47, 1499-1505.	1.9	21
121	A photochromic dye doped polymeric Mach–Zehnder interferometer for UV light detection. Journal of Materials Chemistry C, 2019, 7, 6257-6265.	5.5	21
122	Thermo-Optically Controlled Vertical Waveguide Directional Couplers for Mode-Selective Switching. IEEE Photonics Journal, 2018, 10, 1-14.	2.0	20
123	Low-power all-optical switch based on a graphene-buried polymer waveguide Mach-Zehnder interferometer. Optics Express, 2022, 30, 6786.	3.4	20
124	Technique of applying the prism-coupler method for accurate measurement of the effective indices of channel waveguides. Optical Engineering, 2008, 47, 034601.	1.0	19
125	Reconfigurable Three-Mode Converter Based On Cascaded Electro-Optic Long-Period Gratings. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-6.	2.9	19
126	Polarization-insensitive mode-independent thermo-optic switch based on symmetric waveguide directional coupler. Optics Express, 2019, 27, 35385.	3.4	19

#	Article	IF	CITATIONS
127	Geometrical birefringence in a class of step-index fiber. Journal of Lightwave Technology, 1987, 5, 737-744.	4.6	18
128	<title>Effective-index analysis of optical waveguides</title> ., 1995,,.		18
129	Scaling property and multi-resonance of PCF-based long period gratings. Optics Express, 2004, 12, 6252.	3.4	18
130	Propagation of short pulses in an active nonlinear two-core optical fiber. IEEE Journal of Quantum Electronics, 2004, 40, 1597-1602.	1.9	18
131	Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry-Pe/spl acute/rot laser diode. IEEE Photonics Technology Letters, 2005, 17, 450-452.	2.5	18
132	Condition for the realization of a temperature-insensitive long-period waveguide grating. Optics Letters, 2006, 31, 2716.	3.3	18
133	Graphene Bragg gratings on microfiber. Optics Express, 2014, 22, 23829.	3.4	18
134	Mode-selective coupling between few-mode fibers and buried channel waveguides. Optics Express, 2016, 24, 30108.	3.4	18
135	Nano-functionalized long-period fiber grating probe for disease-specific protein detection. Journal of Materials Chemistry B, 2018, 6, 386-392.	5.8	18
136	Ultraviolet photolytic-induced changes in optical fibers: the thermal expansion coefficient. Optics Letters, 1993, 18, 965.	3.3	17
137	Refractive-index profiling of graded-index planar waveguides from effective indexes measured for both mode types and at different wavelengths. Journal of Lightwave Technology, 1996, 14, 827-832.	4.6	17
138	Effective-index method with built-in perturbation correction for integrated optical waveguides. Journal of Lightwave Technology, 1996, 14, 223-228.	4.6	17
139	Magneto-optical electric-current sensor with enhanced sensitivity. Measurement Science and Technology, 2002, 13, N61-N63.	2.6	17
140	Temperature-Insensitive Real-Time Inclinometer Based on an Etched Fiber Bragg Grating. IEEE Photonics Technology Letters, 2014, 26, 1049-1052.	2.5	17
141	Fast and low-power thermo-optic switch based on organic–inorganic hybrid strip-loaded waveguides. Optics Letters, 2018, 43, 5102.	3.3	17
142	Generation of dual-wavelength picosecond pulses with close wavelength separation from a self-seeded Fabry-Perot laser diode. IEEE Photonics Technology Letters, 2003, 15, 1452-1454.	2.5	16
143	Multiplexing of Temperature-Compensated Fiber-Bragg-Grating Magnetostrictive Sensors With a Dual-Wavelength Pulse Laser. IEEE Photonics Technology Letters, 2004, 16, 572-574.	2.5	16
144	Optical rib waveguide based on epitaxial Ba0.7Sr0.3TiO3 thin film grown on MgO. Thin Solid Films, 2006, 510, 329-333.	1.8	16

#	Article	IF	CITATIONS
145	Fabrication of segmented cladding fiber by bicomponent spinning. Polymer Engineering and Science, 2009, 49, 1865-1870.	3.1	16
146	Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning. Optics Express, 2011, 19, 12045.	3.4	16
147	Leaky-mode long-period grating on a lithium-niobate-on-insulator waveguide. Optica, 2021, 8, 1624.	9.3	16
148	Soliton states in a nonlinear directional coupler with intermodal dispersion. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 301, 27-34.	2.1	15
149	Long-Period Waveguide Gratings. Japanese Journal of Applied Physics, 2004, 43, 5690-5696.	1.5	15
150	Leaky optical waveguide for high power applications. Applied Physics B: Lasers and Optics, 2006, 85, 11-16.	2.2	15
151	Polymer waveguide Mach-Zehnder interferometer coated with dipolar polycarbonate for on-chip nitroaromatics detection. Sensors and Actuators B: Chemical, 2020, 305, 127406.	7.8	15
152	Electro-optic mode-selective switch based on cascaded three-dimensional lithium-niobate waveguide directional couplers. Optics Express, 2020, 28, 35506.	3.4	15
153	Design of highly birefringent fibers to optimize or minimize pressure-induced birefringence. IEEE Photonics Technology Letters, 1991, 3, 654-656.	2.5	14
154	Rib waveguides with degenerate polarised modes. Electronics Letters, 1996, 32, 1098.	1.0	14
155	Evaluation of intermodal dispersion in a two-core fiber with non-identical cores. Optics Communications, 2003, 219, 171-176.	2.1	14
156	Birefringence characteristics of benzocyclobutene rib optical waveguides. Electronics Letters, 2004, 40, 372.	1.0	14
157	Symmetric 3 x 3 optical coupler using three parallel long-period fiber gratings. Optics Express, 2007, 15, 6494.	3.4	14
158	Design and Fabrication of Polymer Cross Fiber for Large-Core Single-Mode Operation. Journal of Lightwave Technology, 2009, 27, 101-107.	4.6	14
159	Propylene Carbonate Based Compact Fiber Mach–Zehnder Interferometric Electric Field Sensor. Journal of Lightwave Technology, 2013, 31, 1566-1572.	4.6	14
160	Industry Compatible Embossing Process for the Fabrication of Waveguide-Embedded Optical Printed Circuit Boards. Journal of Lightwave Technology, 2013, 31, 4045-4050.	4.6	14
161	Optofluidic laser explosive sensor with ultralow detection limit and large dynamic range using donor-acceptor-donor organic dye. Sensors and Actuators B: Chemical, 2019, 298, 126830.	7.8	14
162	Phenolic-compounds sensor based on immobilization of tyrosinase in polyacrylamide gel on long-period fiber grating. Optics and Laser Technology, 2020, 131, 106464.	4.6	14

#	Article	IF	CITATIONS
163	Coupled-zigzag-wave theory for guided waves in slab waveguide arrays. Journal of Lightwave Technology, 1992, 10, 1380-1387.	4.6	13
164	New design of optical electric-current sensor for sensitivity improvement. IEEE Transactions on Instrumentation and Measurement, 2000, 49, 418-423.	4.7	13
165	A wide-angle X-junction in polymer using truncated-structural branches (TSB). Journal of Lightwave Technology, 2002, 20, 86-91.	4.6	13
166	Temperature compensation for a fiber-Bragg-grating-based magnetostrictive sensor. Microwave and Optical Technology Letters, 2003, 36, 211-213.	1.4	13
167	Design and fabrication of a three-dimensional polymer optical waveguide polarization splitter. Optics Communications, 2005, 250, 297-301.	2.1	13
168	Fiber-Bragg-grating cavity sensor interrogated with a self-seeded fabry-Perot laser diode. IEEE Photonics Technology Letters, 2006, 18, 2153-2155.	2.5	13
169	Transfer-matrix method for the analysis of two parallel dissimilar nonuniform long-period fiber gratings. Journal of Lightwave Technology, 2006, 24, 1008-1018.	4.6	13
170	Analysis of long-period waveguide grating arrays. Journal of Lightwave Technology, 2006, 24, 3856-3863.	4.6	13
171	Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors. Optics Communications, 2008, 281, 5797-5803.	2.1	13
172	Growth of c-axis orientation ZnO films on polymer substrates by radio-frequency magnetron sputtering. Optical Materials, 2008, 30, 1244-1250.	3.6	13
173	Development of long-period fiber grating coupling devices. Applied Optics, 2009, 48, F61.	2.1	13
174	A Lithium-Niobate Waveguide Directional Coupler for Switchable Mode Multiplexing. IEEE Photonics Technology Letters, 2018, 30, 1764-1767.	2.5	13
175	Lab on optical fiber: surface nano-functionalization for real-time monitoring of VOC adsorption/desorption in metal-organic frameworks. Nanophotonics, 2021, 10, 2705-2716.	6.0	13
176	Use of a fibre-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers. Physics in Medicine and Biology, 1989, 34, 1609-1622.	3.0	12
177	Fiber-Bragg-grating force sensor based on a wavelength-switching actively mode-locked erbium-doped fiber laser. Applied Optics, 2005, 44, 4822.	2.1	12
178	Tailoring the transmission characteristics of polymer long-period waveguide gratings by UV irradiation. IEEE Photonics Technology Letters, 2005, 17, 2340-2342.	2.5	12
179	Large-core single-mode channel waveguide based on geometrically shaped leaky cladding. Applied Physics B: Lasers and Optics, 2008, 90, 507-512.	2.2	12
180	Lithium–Niobate Channel Waveguide for the Realization of Long-Period Gratings. IEEE Photonics Technology Letters, 2008, 20, 1258-1260.	2.5	12

#	Article	IF	CITATIONS
181	Formulae for the Design of Polarization-Insensitive Multimode Interference Couplers. IEEE Photonics Technology Letters, 2011, 23, 1277-1279.	2.5	12
182	Compact three-core fibers with ultra-low differential group delays for broadband mode-division multiplexing. Optics Express, 2015, 23, 20867.	3.4	12
183	Broad-band optical coupler based on evanescent-field coupling between three parallel long-period fiber gratings. IEEE Photonics Technology Letters, 2006, 18, 229-231.	2.5	11
184	Pulse propagation in a decoupled two-core fiber. Optics Express, 2010, 18, 21261.	3.4	11
185	Analysis of Lithium Niobate Electrooptic Long-Period Waveguide Gratings. Journal of Lightwave Technology, 2010, 28, 1477-1484.	4.6	11
186	Modulation instabilities in equilateral three-core optical fibers. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 2357.	2.1	11
187	Wavelength tuning in self-seeded gain-switched Fabry-Perot laser diode with Moirel̀•grating. Electronics Letters, 1999, 35, 2209.	1.0	11
188	Temperature sensitivity of coated stress-induced birefringent optical fibers. Optical Engineering, 1997, 36, 999.	1.0	10
189	Fast wavelength tuning of a self-seeded Fabry-Perot laser diode with a Fabry-Perot semiconductor filter. IEEE Photonics Technology Letters, 2001, 13, 1364-1366.	2.5	10
190	Design of long-period waveguide grating filter by control of waveguide cladding profile. Journal of Lightwave Technology, 2006, 24, 3540-3546.	4.6	10
191	Characterization of Ultrathin Dielectric Films With the Prism-Coupler Method. Journal of Lightwave Technology, 2007, 25, 1206-1212.	4.6	10
192	UV-written long-period waveguide grating coupler for broadband add/drop multiplexing. Optics Communications, 2009, 282, 378-381.	2.1	10
193	Lithium-Niobate Mach-Zehnder Interferometer With Enhanced Index Contrast by SiO ₂ Film. IEEE Photonics Technology Letters, 2015, 27, 1224-1227.	2.5	10
194	Effects of Injection Current on the Modulation Bandwidths of Quantum-Dot Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2019, 66, 4805-4810.	3.0	10
195	Graphene electrodes for electric poling of electro-optic polymer films. Optics Letters, 2020, 45, 2383.	3.3	10
196	Phase drift compensation for electric current sensor employing a twisted fiber or a spun highly birefringent fiber. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6, 803-809.	2.9	9
197	THEORY OF PULSE PROPAGATION IN OPTICAL DIRECTIONAL COUPLERS. Journal of Nonlinear Optical Physics and Materials, 2005, 14, 133-147.	1.8	9
198	Polarization-insensitive polymer waveguide Bragg gratings. Microwave and Optical Technology Letters, 2006, 48, 334-338.	1.4	9

#	Article	IF	CITATIONS
199	Refractive-Index Profiling of Buried Planar Waveguides by an Inverse Wentzel–Kramer–Brillouin Method. Journal of Lightwave Technology, 2008, 26, 1367-1373.	4.6	9
200	CO\$_{2}\$ Laser-Written Long-Period Fiber Gratings in a Germanium–Boron Codoped Fiber: Effects of Applying Tension During the Writing Process. IEEE Photonics Technology Letters, 2009, 21, 1456-1458.	2.5	9
201	Planar long-period grating filter based on long-range surface plasmon mode of buried metal stripe waveguide. Optics Express, 2010, 18, 8963.	3.4	9
202	High-Order-Mode-Pass Mode (De)Multiplexer With a Hybrid-Core Vertical Directional Coupler. Journal of Lightwave Technology, 2019, 37, 3932-3938.	4.6	9
203	All-optical loss modulation with graphene-buried polymer waveguides. Optics Letters, 2019, 44, 3685.	3.3	9
204	Stimulated Raman scattering in a multimode optical fiber: self-focusing or mode competition?. Optics Communications, 1993, 95, 235-238.	2.1	8
205	Optimization of Illumination Performance of Trichromatic White Light-Emitting Diode and Characterization of Its Modulation Bandwidth for Communication Applications. IEEE Photonics Journal, 2018, 10, 1-11.	2.0	8
206	All-optical mode switching with a graphene-buried polymer waveguide directional coupler. Optics Letters, 2022, 47, 2414.	3.3	8
207	Acousto-optical modulation method for measuring the beat length of a linearly birefringent optical fiber. Optics Letters, 1989, 14, 1029.	3.3	7
208	Iterative methods and stability of TE modes of nonlinear planar waveguides. Optics Communications, 1994, 109, 59-64.	2.1	7
209	Theory of zero-birefringence multiple-quantum-well optical waveguides. IEEE Journal of Quantum Electronics, 1999, 35, 1554-1564.	1.9	7
210	New design of a detachable bulk-optic Faraday effect current clamp. Optical Engineering, 2001, 40, 914.	1.0	7
211	Fiber Bragg-grating incorporated microbend sensor for simultaneous mechanical parameter and temperature measurement. IEEE Photonics Technology Letters, 2005, 17, 2697-2699.	2.5	7
212	Analysis of Six-Port Optical Fiber Couplers Based on Three Parallel Long-Period Fiber Gratings. Journal of Lightwave Technology, 2008, 26, 3277-3286.	4.6	7
213	All-fiber bandwidth-tunable band-rejection filter based on a composite grating induced by CO_2 laser pulses. Optics Express, 2009, 17, 16750.	3.4	7
214	CO_2 laser induced refractive index changes in optical polymers. Optics Express, 2012, 20, 576.	3.4	7
215	Simplified universal dispersion curves for graded-index planar waveguides based on the WKB method. Journal of Lightwave Technology, 1995, 13, 158-162.	4.6	6
216	An electric-current sensor employing twisted fibre with compensation for temperature and polarization fluctuations. Measurement Science and Technology, 1997, 8, 606-610.	2.6	6

#	Article	IF	CITATIONS
217	A polarization-compensated EDFA gain equalizer. Microwave and Optical Technology Letters, 2000, 27, 419-422.	1.4	6
218	Polarization dependence in polymer waveguide directional couplers. IEEE Photonics Technology Letters, 2005, 17, 1465-1467.	2.5	6
219	Development of optical polymer waveguide devices. , 2010, , .		6
220	Switching of ultrashort pulses in nonlinear high-birefringence two-core optical fibers. Optics Communications, 2014, 318, 11-16.	2.1	6
221	Polarization Switching in a Mode-Locked Fiber Laser Based on Reduced Graphene Oxide. IEEE Photonics Technology Letters, 2015, 27, 2535-2538.	2.5	6
222	Equivalent Circuit of Quantum-Dot LED and Acquisition of Carrier Lifetime in Active Layer. IEEE Electron Device Letters, 2020, 41, 87-90.	3.9	6
223	Sidewall-Grating-Assisted Polymer-Waveguide Directional Coupler for Forward Coupling of Fundamental Modes. , 2015, , .		6
224	Effects of elastic inhomogeneity on the intrinsic birefringence in a stress-induced birefringent optical fiber: a simple theory. Journal of Lightwave Technology, 1992, 10, 12-16.	4.6	5
225	Design of modified phase reversal electrode in broad-band electrooptic modulators at 100 GHz. IEEE Transactions on Microwave Theory and Techniques, 1997, 45, 142-145.	4.6	5
226	A wide-angle polymeric Y-junction using gradient-index (GRIN) zones. Microwave and Optical Technology Letters, 1999, 22, 126-129.	1.4	5
227	Design of waveguide structures for polarization-insensitive optical amplification. IEEE Journal of Quantum Electronics, 2000, 36, 1243-1250.	1.9	5
228	Refractive-index profiling of single-mode graded-index optical planar waveguides by the inverse Wentzel-Kramers-Brillouin method with improved accuracy. Optical Engineering, 2005, 44, 054601.	1.0	5
229	Generation of picosecond pulses at five close wavelengths by use of a self-seeded Fabry–Perot laser diode and a spectrum-split fiber Bragg grating. Applied Optics, 2005, 44, 2895.	2.1	5
230	Disappearance of modes in planar Bragg waveguides. Optics Letters, 2007, 32, 2369.	3.3	5
231	Characterization of Single-Mode Fiber With Fiber Bragg Gratings for the Design of Long-Period Gratings. Journal of Lightwave Technology, 2007, 25, 2129-2134.	4.6	5
232	Broadband Multiport Dynamic Optical Power Distributor Based on Thermooptic Polymer Waveguide Vertical Couplers. IEEE Photonics Technology Letters, 2008, 20, 273-275.	2.5	5
233	Analysis of Erbium-Doped Ultralarge-Core Segmented-Cladding Fibers for Optical Amplification. Journal of Lightwave Technology, 2008, 26, 3098-3103.	4.6	5
234	Propagation of ultrashort pulses in a nonlinear long-period fiber grating. Applied Physics B: Lasers and Optics, 2009, 94, 599-607.	2.2	5

#	Article	IF	CITATIONS
235	All-Fiber Tunable Microwave Photonic Filter Based on a Cladding-Mode Coupler. IEEE Photonics Technology Letters, 2010, 22, 1241-1243.	2.5	5
236	Mode-Selective Characteristics of an Optical Fiber With a High-Index Core and a Photonic Bandgap Cladding. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 251-257.	2.9	5
237	Optical modulation in hybrid antiresonant hollow-core fiber infiltrated with vanadium dioxide phase change nanocrystals. Optics Letters, 2020, 45, 4240.	3.3	5
238	Dual-sensor technique for extending the dynamic range of a fiber-optic interferometric sensor. Optics Letters, 1988, 13, 850.	3.3	4
239	Design of zero-birefringence semiconductor waveguides. , 1998, , .		4
240	The Effect of Radiation on Transmission of Quasi-Periodic Multi-Layer Planar Dielectric Gratings. Journal of Infrared, Millimeter and Terahertz Waves, 1999, 20, 681-698.	0.6	4
241	A novel wide-angle polymericX-junction using truncated-structural branches (TSB). Microwave and Optical Technology Letters, 1999, 22, 197-200.	1.4	4
242	Effects of intrapulse stimulated Raman scattering on short pulse propagation in a nonlinear two-core fiber. Applied Physics B: Lasers and Optics, 2007, 87, 45-52.	2.2	4
243	Effects of average index variation in apodized long-period fiber gratings. Photonic Sensors, 2013, 3, 102-111.	5.0	4
244	Remote high temperature sensing with a reflective bandpass long-period fiber grating and a fiber ring laser. Measurement Science and Technology, 2013, 24, 094023.	2.6	4
245	Phase Retrieval From Transmission Spectrum for Long-Period Fiber Gratings. Journal of Lightwave Technology, 2013, 31, 2223-2229.	4.6	4
246	Propagation of Solitary Pulses in Optical Fibers with Both Self-Steepening and Quintic Nonlinear Effects. Communications in Theoretical Physics, 2014, 61, 735-741.	2.5	4
247	Comparison of different optical models of graphene for the analysis of graphene-attached microfibers and D-shaped fibers. Optics Communications, 2019, 452, 347-354.	2.1	4
248	Broadband Mode Router Based on Three-Dimensional Mach-Zehnder Interferometer and Waveguide Branches. , 2018, , .		4
249	<title>Novel temperature compensation techniques for fiber Bragg gratings-based magnetostrictive sensors</title> . , 1999, 3897, 87.		3
250	Tunable fiber attenuators for channel power equalization in WDM systems. Microwave and Optical Technology Letters, 2000, 26, 1-4.	1.4	3
251	A digital optical switch (DOS) in polymer using truncated-structuralX-branches (TSXB). Microwave and Optical Technology Letters, 2000, 27, 229-233.	1.4	3
252	Experimental demonstration of cross-polarisation mixing of a laser beam and a spectrum of light in a single-mode optical fibre. Optics Communications, 2000, 176, 101-104.	2.1	3

12	C	<u> </u>
KIN.	SENG	CHIANG
	CLINC	0111/11/0

#	Article	IF	CITATIONS
253	Fast accurate wavelength switching of an erbium-doped fiber laser with a Fabry–Perot semiconductor filter and fiber Bragg gratings. Applied Physics Letters, 2000, 77, 4268-4270.	3.3	3
254	Properties of PCF-based long period gratings. , 2005, , .		3
255	Wavelength switching of picosecond pulses generated from a self-seeded Fabry–Perot laser diode with a tilted fiber Bragg grating formed in a graded-index multimode fiber. Applied Optics, 2011, 50, 829.	2.1	3
256	UV exposure on a single-mode fiber within a multimode interference structure. Optics Letters, 2014, 39, 6521.	3.3	3
257	Trade-Offs Between Illumination and Modulation Performances of Quantum-Dot LED. IEEE Photonics Technology Letters, 2020, 32, 726-729.	2.5	3
258	Electrically generated optical waveguide in a lithium-niobate thin film. Optics Express, 2020, 28, 29895.	3.4	3
259	Design of a new thin-film electro-optic switch. Optics and Laser Technology, 1983, 15, 83-90.	4.6	2
260	Perturbation analysis of finitely clad optical waveguides and couplers. Optical and Quantum Electronics, 1990, 22, 239-257.	3.3	2
261	Comments, with reply, on 'Determination of two-dimensional optical waveguide index distribution function parameters from effective indexes' by T. Shiozawa et al. Journal of Lightwave Technology, 1991, 9, 414-415.	4.6	2
262	Polarimetric four-wave mixing in a single-mode fiber. IEEE Photonics Technology Letters, 2001, 13, 803-805.	2.5	2
263	The WDM performance of compactX-junction switches in polymer. Microwave and Optical Technology Letters, 2001, 28, 423-426.	1.4	2
264	Interrogation of fiber Bragg grating displacement/bending sensors using dual-wavelength pulses generated from a self-seeded Fabry-Perot laser diode. Optical Engineering, 2005, 44, 114401.	1.0	2
265	Pulsed Laser Deposition of Ba0.6Sr0.4TiO3 Thin Films and Their Optical Properties. Integrated Ferroelectrics, 2005, 69, 443-451.	0.7	2
266	Mach-Zehnder Electro-Optic Modulator Based on Epitaxial Ba _{0.7} Sr _{0.3} TiO ₃ Thin Films. Ferroelectrics, 2007, 357, 109-114.	0.6	2
267	CO <inf>2</inf> -Laser Writing of Polymer Long-Period Waveguide Gratings. , 2008, , .		2
268	Active chromatic control on the group velocity of light at arbitrary wavelength in benzocyclobutene polymer. Optics Express, 2009, 17, 18292.	3.4	2
269	Bottom-Heating Approach for the Realization of Thermooptic Polymer Waveguide Devices. IEEE Photonics Technology Letters, 2011, 23, 155-157.	2.5	2
270	Two-core photonic crystal fiber with zero intermodal dispersion. Optics Communications, 2013, 293, 49-53.	2.1	2

#	Article	IF	CITATIONS
271	Mode converter with sidewall-corrugated polymer waveguide grating. , 2015, , .		2
272	Thermo-optic switchable mode multiplexer based on cascaded vertical waveguide directional couplers. , 2017, , .		2
273	Mode Conversion with Vertical Polymer-Waveguide Directional Coupler. , 2016, , .		2
274	Design and analysis of coplanar waveguide optical modulator using finite element method. Journal of Infrared, Millimeter and Terahertz Waves, 1997, 18, 875-887.	0.6	1
275	Calculation of confinement factors for multiple-quantum-well optical amplifiers by the effective-index model. Microwave and Optical Technology Letters, 2000, 25, 275-278.	1.4	1
276	<title>Temperature-insensitive fiber-Bragg-grating-based vibration sensor</title> ., 2001, 4317, 585.		1
277	Fiber-bragg-grating force sensor based on a wavelength switching actively mode-locked fiber laser. , 2005, , .		1
278	UV-written buried waveguide devices in epoxy-coated benzocyclobutene. , 2005, , .		1
279	High-sensitivity temperature-independent strain sensor based on a long-period fiber grating with a CO 2 -laser engraved rotary structure. , 2008, , .		1
280	Optical sensing based on light coupling between two parallel long-period fiber gratings. Photonic Sensors, 2011, 1, 204-209.	5.0	1
281	Remote sensing based on reflective bandpass long-period fiber grating and fiber ring laser. , 2012, , .		1
282	Effect of irradiation symmetry of CO ₂ laser on mode coupling in long-period gratings inscribed in photonic crystal fiber. Proceedings of SPIE, 2013, , .	0.8	1
283	Polymer optical waveguide devices for mode-division-multiplexing applications. Proceedings of SPIE, 2017, , .	0.8	1
284	Radial Effective Index Method for the Analysis of Microstructured Fibers. , 2006, , 83-90.		1
285	Broadband filtering of the fundamental mode of a few-mode waveguide with a phase-shifted long-period grating. , 2018, , .		1
286	Experimental separation of different kinds of optical losses in integrated electro-optic modulators. Microwave and Optical Technology Letters, 1997, 14, 305-307.	1.4	0
287	A push-pull digital optical switch (DOS) in polymer using truncated-structuralX-branches (TSXB). Microwave and Optical Technology Letters, 2001, 30, 208-211.	1.4	0
288	<title>Interrogation of fiber Bragg grating sensors with a fiber grating filter tuned by a cantilever beam</title> . , 2001, , .		0

#	Article	IF	CITATIONS
289	Large mode area single-mode fiber: a modified segmented cladding fiber. , 2002, , .		0
290	Triangular-shaped bulk-optic glass sensor for simultaneous measurement of three ac currents. Optical Engineering, 2003, 42, 421.	1.0	0
291	Analysis of a holey optical fiber with circularly distributed holes. , 0, , .		0
292	Interrogation of fiber Bragg grating sensors using dual-wavelength pulses generated from a self-seeded Fabry-Perot laser diode. , 2005, , .		0
293	Generation of multiwavelength picosecond pulses using a self-seeded Fabry-Perot laser diode and a spectrum-split fiber Bragg grating. , 2005, , .		0
294	CO/sub 2/-laser fabricated long-period grating sensors in graded-index multimode fibers. , 2006, , .		0
295	Characterization of Cladding Modes for the Design of Long-Period Fiber Gratings. , 2007, , .		0
296	Dynamics in the writing of long-period gratings in boron-doped fibers by CO <inf>2</inf> -laser pulses. , 2008, , .		0
297	CO <inf>2</inf> -laser writing of long-period gratings in tensioned boron-doped fibers. , 2009, , .		0
298	Effects of group-delay difference on ultrashort pulse propagation in an active nonlinear LPFG. Optics Communications, 2009, 282, 4796-4799.	2.1	0
299	Electro-optic long-period waveguide grating devices. , 2012, , .		0
300	Micro-fiber inclinometer based on deformation of FBG. Proceedings of SPIE, 2013, , .	0.8	0
301	A real-time inclinometer based on an etched fiber Bragg grating connected to hollow-core fiber. , 2014, , .		0
302	Broadband photonic lantern mode multiplexers based on multilayer polymer waveguides. , 2015, , .		0
303	Application of the Hilbert Transform Method for the Retrieval of the Phase Characteristics of Plasmonic Metal Bragg Gratings. Plasmonics, 2015, 10, 107-115.	3.4	0
304	Light-emitting diode conditioned with YAG:Ce ³⁺ phosphors and CdSe/ZnS quantum dots for high color-rendering-index white-light generation. , 2017, , .		0
305	Graphene-coated in-fiber Mach-Zehnder interferometer for ammonia gas sensing. , 2017, , .		0

Recent Advances in the Analysis of Long-Period Fibre Gratings. , 2002, , .

0

#	Article	IF	CITATIONS
307	Development of Long-Period Fiber Grating Coupling Devices. , 2008, , .		0
308	Wavelength-Switchable Picosecond Laser Pulses Generated from a Self-Seeded Fabry-Perot Laser Diode and a Tilted Multimode Fiber Bragg Grating. , 2009, , .		0
309	Determination of equivalent step-index fibres from Petermann spot sizes. Electronics Letters, 1994, 30, 1881-1882.	1.0	0
310	Mode Rotator with Two Cascaded Waveguide Gratings. , 2015, , .		0
311	Ultra-broadband mode conversion with length-apodized long-period grating on polymer waveguide. , 2017, , .		0
312	Volatile organic gas recognition with an in-line fiber Mach-Zehnder interferometer coated with ZIF-8. , 2018, , .		0
313	Symmetric lithium-niobate waveguide fabricated by bonding for mode-division-multiplexing applications. , 2018, , .		0
314	Analysis of mode-selective coupling between few-mode fibers and waveguides with lateral misalignment. , 2018, , .		0
315	Graphene-Coated Surface-Plasmon-Resonance Waveguide Biosensor. , 2020, , .		0
316	Three-Mode Switch Based on Electro-Optic Long-Period Gratings Integrated along a Lithium-Niobate Waveguide. , 2020, , .		0
317	Electro-Optic Mode-Selective Switch Based on Cascaded Lithium-Niobate Waveguide Directional Couplers. , 2020, , .		0
318	Polarization-Insensitive Mode Filtering With L-Shaped Graphene Structure Embedded in Polymer Waveguide. , 2020, , .		0
319	Mode (De)multiplexer Without Mode Conversion Based on Three-Core Waveguide Directional Coupler. , 2020, , .		Ο
320	Symmetric Two-Mode Waveguide Directional Coupler on Thin-Film Lithium Niobate for Electro-Optic Mode Switching. , 2021, , .		0
321	Graphene-Buried Polymer Waveguide Mach-Zehnder Interferometer for Low-Power All-Optical Switching. , 2021, , .		Ο
322	Reversely tapered multicore fibers for simplified all-fiber fan-in and fan-out devices. , 2021, , .		0