Colin Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6332332/publications.pdf

Version: 2024-02-01

395 papers 48,687 citations

94 h-index

2797

2076 204 g-index

404 all docs

404 docs citations

times ranked

404

38152 citing authors

#	Article	IF	CITATIONS
1	Establishing a Deaf and American Sign Language Inclusive Residency Program. Academic Medicine, 2022, 97, 357-363.	0.8	2
2	Selective Isolation of Eggerthella lenta from Human Faeces and Characterisation of the Species Prophage Diversity. Microorganisms, 2022, 10, 195.	1.6	9
3	An oxidation resistant pediocin PA-1 derivative and penocin A display effective anti- <i>Listeria (i) activity in a model human gut environment. Gut Microbes, 2022, 14, 2004071.</i>	4.3	11
4	Location, Location, Location: What Should be Targeted Beyond Gross Disease for Localized Pancreatic Ductal Adenocarcinoma? Proposal of a Standardized Clinical Tumor Volume for Pancreatic Ductal Adenocarcinoma of the Head: The "Triangle Volume― Practical Radiation Oncology, 2022, 12, 215-225.	1.1	6
5	High local failure rates despite high marginâ€negative resection rates in a cohort of borderline resectable and locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy following multiâ€ngent chemotherapy. Cancer Medicine, 2022, , .	1.3	11
6	A Classification System for Defining and Estimating Dietary Intake of Live Microbes in US Adults and Children. Journal of Nutrition, 2022, 152, 1729-1736.	1.3	25
7	Phage-mediated horizontal gene transfer and its implications for the human gut microbiome. Gastroenterology Report, 2022, 10, goac012.	0.6	45
8	Multiagent Chemotherapy and Stereotactic Body Radiation Therapy in Patients with Unresectable Pancreatic Adenocarcinoma: A Prospective Nonrandomized Controlled Trial. Practical Radiation Oncology, 2022, 12, 511-523.	1.1	5
9	Insights into Gene Transcriptional Regulation of Kayvirus Bacteriophages Obtained from Therapeutic Mixtures. Viruses, 2022, 14, 626.	1.5	4
10	Mutualistic interplay between bacteriophages and bacteria in the human gut. Nature Reviews Microbiology, 2022, 20, 737-749.	13.6	47
11	Long-term outcomes with neoadjuvant chemotherapy with or without stereotactic body radiation therapy in patients with borderline resectable and locally advanced pancreatic adenocarcinoma Journal of Clinical Oncology, 2021, 39, 443-443.	0.8	1
12	The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 196-208.	8.2	316
13	Survival outcomes in the modern era for localized pancreatic cancer with multi-agent chemotherapy and stereotactic body radiation therapy Journal of Clinical Oncology, 2021, 39, 444-444.	0.8	2
14	Microbiome-based environmental monitoring of a dairy processing facility highlights the challenges associated with low microbial-load samples. Npj Science of Food, 2021, 5, 4.	2.5	18
15	Bio-Engineered Nisin with Increased Anti-Staphylococcus and Selectively Reduced Anti-Lactococcus Activity for Treatment of Bovine Mastitis. International Journal of Molecular Sciences, 2021, 22, 3480.	1.8	17
16	A Postbiotic Consisting of Heat-Treated Lactobacilli Has a Bifidogenic Effect in Pure Culture and in Human Fermented Fecal Communities. Applied and Environmental Microbiology, 2021, 87, .	1.4	17
17	Biases in Viral Metagenomics-Based Detection, Cataloguing and Quantification of Bacteriophage Genomes in Human Faeces, a Review. Microorganisms, 2021, 9, 524.	1.6	18
18	The Advantages and Challenges of Using Endolysins in a Clinical Setting. Viruses, 2021, 13, 680.	1.5	100

#	Article	IF	CITATIONS
19	The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 649-667.	8.2	701
20	Patient-Reported Outcome Measures and Dosimetric Correlates for Early Detection of Acute Radiation Therapyâ€"Related Esophagitis. Practical Radiation Oncology, 2021, 11, 185-192.	1.1	2
21	Microbiome and Infection: A Case for "Selective Depletion― Annals of Nutrition and Metabolism, 2021, 77, 4-9.	1.0	5
22	Characterization of an Endolysin Targeting Clostridioides difficile That Affects Spore Outgrowth. International Journal of Molecular Sciences, 2021, 22, 5690.	1.8	14
23	Recipe for Success: Suggestions and Recommendations for the Isolation and Characterisation of Bacteriocins. International Journal of Microbiology, 2021, 2021, 1-19.	0.9	14
24	A Bioengineered Nisin Derivative To Control Streptococcus uberis Biofilms. Applied and Environmental Microbiology, 2021, 87, e0039121.	1.4	12
25	Alpha-synuclein alters the faecal viromes of rats in a gut-initiated model of Parkinson's disease. Communications Biology, 2021, 4, 1140.	2.0	6
26	Reply to: Postbiotics â€" when simplification fails to clarify. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 827-828.	8.2	24
27	Long-term outcomes of a prospective single institution study with multiagent chemotherapy and stereotactic body radiation therapy in locally advanced or recurrent pancreatic adenocarcinoma Journal of Clinical Oncology, 2021, 39, 440-440.	0.8	0
28	Leviviricetes: expanding and restructuring the taxonomy of bacteria-infecting single-stranded RNA viruses. Microbial Genomics, 2021, 7, .	1.0	18
29	Prostate-Specimen Antigen (PSA) Screening and Shared Decision Making Among Deaf and Hearing Male Patients. Journal of Cancer Education, 2020, 35, 28-35.	0.6	18
30	Giant oversights in the human gut virome. Gut, 2020, 69, 1357-1358.	6.1	23
31	Overcoming barriers to phage application in food and feed. Current Opinion in Biotechnology, 2020, 61, 38-44.	3.3	54
32	Balancing the risks and rewards of live biotherapeutics. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 133-134.	8.2	12
33	Bacteriophage endolysins as a potential weapon to combat <i>Clostridioides difficile </i> infection. Gut Microbes, 2020, 12, 1813533.	4.3	25
34	Assessing and Providing Culturally Competent Care in Radiation Oncology for Deaf Cancer Patients. Advances in Radiation Oncology, 2020, 5, 333-344.	0.6	10
35	You have the microbiome you deserve. Gut Microbiome, 2020, 1, .	0.8	5
36	Characterizing Phage-Host Interactions in a Simplified Human Intestinal Barrier Model. Microorganisms, 2020, 8, 1374.	1.6	12

#	Article	IF	CITATIONS
37	Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nature Sustainability, 2020, 3, 981-990.	11.5	195
38	A New Phage Lysin Isolated from the Oral Microbiome Targeting Streptococcus pneumoniae. Pharmaceuticals, 2020, 13, 478.	1.7	11
39	Bioengineered Nisin Derivative M17Q Has Enhanced Activity against Staphylococcus epidermidis. Antibiotics, 2020, 9, 305.	1.5	8
40	Poles Apart: Where and How Cells Construct Nisin. MBio, 2020, 11, .	1.8	0
41	Bioengineering nisin to overcome the nisin resistance protein. Molecular Microbiology, 2019, 111, 717-731.	1.2	45
42	Bovine mastitis is a polymicrobial disease requiring a polydiagnostic approach. International Dairy Journal, 2019, 99, 104539.	1.5	11
43	Non-antibiotic microbial solutions for bovine mastitis $\hat{a}\in$ live biotherapeutics, bacteriophage, and phage lysins. Critical Reviews in Microbiology, 2019, 45, 564-580.	2.7	39
44	Identification and characterisation of capidermicin, a novel bacteriocin produced by Staphylococcus capitis. PLoS ONE, 2019, 14, e0223541.	1.1	24
45	The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. Cell Host and Microbe, 2019, 26, 527-541.e5.	5.1	449
46	The Effect of a Commercially Available Bacteriophage and Bacteriocin on Listeria monocytogenes in Coleslaw. Viruses, 2019, 11, 977.	1.5	16
47	A Live Bio-Therapeutic for Mastitis, Containing Lactococcus lactis DPC3147 With Comparable Efficacy to Antibiotic Treatment. Frontiers in Microbiology, 2019, 10, 2220.	1.5	19
48	Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Microbiome, 2019, 7, 7.	4.9	60
49	Understanding mode of action can drive the translational pipeline towards more reliable health benefits for probiotics. Current Opinion in Biotechnology, 2019, 56, 55-60.	3.3	55
50	Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj Biofilms and Microbiomes, 2018, 4, 9.	2.9	154
51	Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Current Opinion in Food Science, 2018, 20, 1-6.	4.1	63
52	The microbiology and treatment of human mastitis. Medical Microbiology and Immunology, 2018, 207, 83-94.	2.6	92
53	Phages of life – the path to pharma. British Journal of Pharmacology, 2018, 175, 412-418.	2.7	25
54	Complete Genome Sequence of Escherichia coli Phage APC_JM3.2 Isolated from a Chicken Cecum. Genome Announcements, 2018, 6, .	0.8	1

#	Article	IF	Citations
55	Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome, 2018, 6, 68.	4.9	162
56	Determinants of Reduced Genetic Capacity for Butyrate Synthesis by the Gut Microbiome in Crohn's Disease and Ulcerative Colitis. Journal of Crohn's and Colitis, 2018, 12, 204-216.	0.6	93
57	Identification of probiotic effector molecules: present state and future perspectives. Current Opinion in Biotechnology, 2018, 49, 217-223.	3.3	204
58	Reincarnation of Bacteriocins From the Lactobacillus Pangenomic Graveyard. Frontiers in Microbiology, 2018, 9, 1298.	1.5	18
59	The Lactobacillus casei Group: History and Health Related Applications. Frontiers in Microbiology, 2018, 9, 2107.	1.5	173
60	Phages & amp; antibiotic resistance: are the most abundant entities on earth ready for a comeback?. Future Microbiology, 2018, 13, 711-726.	1.0	29
61	The Genus Macrococcus. Advances in Applied Microbiology, 2018, 105, 1-50.	1.3	22
62	Heterologous Expression of Biopreservative Bacteriocins With a View to Low Cost Production. Frontiers in Microbiology, 2018, 9, 1654.	1.5	50
63	Mesophilic Sporeformers Identified in Whey Powder by Using Shotgun Metagenomic Sequencing. Applied and Environmental Microbiology, 2018, 84, .	1.4	15
64	A rapid PCR-based method to discriminate Macrococcus caseolyticus and Macrococcus canis from closely-related Staphylococcus species based on the ctaC gene sequence. Journal of Microbiological Methods, 2018, 152, 36-38.	0.7	13
65	RNA Phage Biology in a Metagenomic Era. Viruses, 2018, 10, 386.	1.5	45
66	Oral Delivery of Nisin in Resistant Starch Based Matrices Alters the Gut Microbiota in Mice. Frontiers in Microbiology, $2018, 9, 1186$.	1.5	36
67	Genomic Characterization of Listeria monocytogenes Isolates Associated with Clinical Listeriosis and the Food Production Environment in Ireland. Genes, 2018, 9, 171.	1.0	73
68	In silico Prediction and Exploration of Potential Bacteriocin Gene Clusters Within the Bacterial Genus Geobacillus. Frontiers in Microbiology, 2018, 9, 2116.	1.5	24
69	The potency of the broadÂspectrum bacteriocin, bactofencin A, against staphylococci is highly dependent on primary structure, N-terminal charge and disulphide formation. Scientific Reports, 2018, 8, 11833.	1.6	20
70	Viromes of one year old infants reveal the impact of birth mode on microbiome diversity. PeerJ, 2018, 6, e4694.	0.9	103
71	Raw donkey milk as a source of Enterococcus diversity: Assessment of their technological properties and safety characteristics. Food Control, 2017, 73, 81-90.	2.8	38
72	Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control Cronobacter sakazakii and Escherichia coli O157:H7. Food Microbiology, 2017, 65, 254-263.	2.1	59

#	Article	IF	Citations
73	Contribution of the novel sulfur-producing adjunct Lactobacillus nodensis to flavor development in Gouda cheese. Journal of Dairy Science, 2017, 100, 4322-4334.	1.4	16
74	Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. International Dairy Journal, 2017, 73, 1-9.	1.5	69
75	Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nature Microbiology, 2017, 2, 17057.	5.9	553
76	Bacteriocin Gene-Trait matching across the complete Lactobacillus Pan-genome. Scientific Reports, 2017, 7, 3481.	1.6	75
77	A Simple Method for the Purification of Nisin. Probiotics and Antimicrobial Proteins, 2017, 9, 363-369.	1.9	23
78	Genome Sequence of Geobacillus stearothermophilus DSM 458, an Antimicrobial-Producing Thermophilic Bacterium, Isolated from a Sugar Beet Factory. Genome Announcements, 2017, 5, .	0.8	8
79	Draft Genome Sequences of 25 Listeria monocytogenes Isolates Associated with Human Clinical Listeriosis in Ireland. Genome Announcements, 2017, 5, .	0.8	2
80	Controlled functional expression of the bacteriocins pediocin PA-1 and bactofencin A in Escherichia coli. Scientific Reports, 2017, 7, 3069.	1.6	47
81	Simulated gastrointestinal digestion of nisin and interaction between nisin and bile. LWT - Food Science and Technology, 2017, 86, 530-537.	2.5	24
82	Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews, 2017, 41, S129-S153.	3.9	74
83	Bacteriophages and Bacterial Plant Diseases. Frontiers in Microbiology, 2017, 8, 34.	1.5	310
84	Things Are Getting Hairy: Enterobacteria Bacteriophage vB_PcaM_CBB. Frontiers in Microbiology, 2017, 8, 44.	1.5	40
85	Detection and Enumeration of Spore-Forming Bacteria in Powdered Dairy Products. Frontiers in Microbiology, 2017, 8, 109.	1.5	54
86	Insights into the Mode of Action of the Sactibiotic Thuricin CD. Frontiers in Microbiology, 2017, 8, 696.	1.5	40
87	Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Frontiers in Microbiology, 2017, 8, 1205.	1.5	140
88	Development of a Click Beetle Luciferase Reporter System for Enhanced Bioluminescence Imaging of Listeria monocytogenes: Analysis in Cell Culture and Murine Infection Models. Frontiers in Microbiology, 2017, 8, 1797.	1.5	16
89	Recent advances in microbial fermentation for dairy and health. F1000Research, 2017, 6, 751.	0.8	69
90	Nisin in Combination with Cinnamaldehyde and EDTA to Control Growth of Escherichia coli Strains of Swine Origin. Antibiotics, 2017, 6, 35.	1.5	21

#	Article	IF	Citations
91	Bacteriophage Endolysins and their Applications. Science Progress, 2016, 99, 183-199.	1.0	24
92	Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?. Frontiers in Microbiology, 2016, 7, 461.	1.5	105
93	In Vitro Activities of Nisin and Nisin Derivatives Alone and In Combination with Antibiotics against Staphylococcus Biofilms. Frontiers in Microbiology, 2016, 7, 508.	1.5	86
94	New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Frontiers in Microbiology, 2016, 7, 1641.	1.5	210
95	Synergistic Nisin-Polymyxin Combinations for the Control of Pseudomonas Biofilm Formation. Frontiers in Microbiology, 2016, 7, 1713.	1.5	66
96	A Bioengineered Nisin Derivative, M21A, in Combination with Food Grade Additives Eradicates Biofilms of Listeria monocytogenes. Frontiers in Microbiology, 2016, 7, 1939.	1.5	37
97	Shedding light onbetL*: pPL2-luxmediated real-time analysis ofbetL* expression inListeria monocytogenes. Bioengineered, 2016, 7, 116-119.	1.4	1
98	RpoS loss in Cronobacter sakazakii by propagation in the presence of non-preferred carbon sources. International Dairy Journal, 2016, 57, 29-33.	1.5	2
99	The bacteriocin bactofencin A subtly modulates gut microbial populations. Anaerobe, 2016, 40, 41-49.	1.0	34
100	Genome Sequence of Jumbo Phage vB_AbaM_ME3 of <i>Acinetobacter baumanni</i> . Genome Announcements, 2016, 4, .	0.8	10
101	Phage therapy targeting <i>Escherichia coliâ€"</i> i>a story with no end?. FEMS Microbiology Letters, 2016, 363, fnw256.	0.7	38
102	The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells. Gut Pathogens, 2016, 8, 20.	1.6	43
103	<i>Listeria monocytogenes</i> mutants defective in gallbladder replication represent safety-enhanced vaccine delivery platforms. Human Vaccines and Immunotherapeutics, 2016, 12, 2059-2063.	1.4	10
104	Formicin $\hat{a}\in$ " a novel broad-spectrum two-component lantibiotic produced by Bacillus paralicheniformis APC 1576. Microbiology (United Kingdom), 2016, 162, 1662-1671.	0.7	31
105	Three New Escherichia coli Phages from the Human Gut Show Promising Potential for Phage Therapy. PLoS ONE, 2016, 11, e0156773.	1.1	66
106	Characterization of a Bacteriophage-Derived Murein Peptidase for Elimination of Antibiotic-Resistant Staphylococcus aureus. Current Protein and Peptide Science, 2016, 17, 183-190.	0.7	20
107	Novel Approaches to Improve the Intrinsic Microbiological Safety of Powdered Infant Milk Formula. Nutrients, 2015, 7, 1217-1244.	1.7	65
108	Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Frontiers in Microbiology, 2015, 6, 672.	1.5	83

#	Article	IF	Citations
109	Bioengineering Lantibiotics for Therapeutic Success. Frontiers in Microbiology, 2015, 6, 1363.	1.5	120
110	The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry. Frontiers in Microbiology, 2015, 6, 1418.	1.5	210
111	Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms. PLoS ONE, 2015, 10, e0138651.	1.1	61
112	Occurrence, Persistence, and Virulence Potential of <i>Listeria ivanovii</i> in Foods and Food Processing Environments in the Republic of Ireland. BioMed Research International, 2015, 2015, 1-10.	0.9	20
113	Bioengineering of the model lantibiotic nisin. Bioengineered, 2015, 6, 187-192.	1.4	94
114	In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project's reference genome database. BMC Microbiology, 2015, 15, 183.	1.3	112
115	Efficacies of Nisin A and Nisin V Semipurified Preparations Alone and in Combination with Plant Essential Oils for Controlling Listeria monocytogenes. Applied and Environmental Microbiology, 2015, 81, 2762-2769.	1.4	42
116	Heat resistance of Cronobacter sakazakii DPC 6529 and its behavior in reconstituted powdered infant formula. Food Research International, 2015, 69, 401-409.	2.9	24
117	Stress Adaptation in Foodborne Pathogens. Annual Review of Food Science and Technology, 2015, 6, 191-210.	5.1	105
118	Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Current Opinion in Food Science, 2015, 2, 51-57.	4.1	71
119	A Bioengineered Nisin Derivative to Control Biofilms of Staphylococcus pseudintermedius. PLoS ONE, 2015, 10, e0119684.	1.1	69
120	Proteomics as the final step in the functional metagenomics study of antimicrobial resistance. Frontiers in Microbiology, 2015, 6, 172.	1.5	20
121	Generation of the antimicrobial peptide caseicin A from casein byÂhydrolysis with thermolysin enzymes. International Dairy Journal, 2015, 49, 1-7.	1.5	17
122	A review of the systematic review process and its applicability for use in evaluating evidence for health claims on probiotic foods in the European Union. Nutrition Journal, 2015, 14, 16.	1.5	41
123	Lantibiotic Resistance. Microbiology and Molecular Biology Reviews, 2015, 79, 171-191.	2.9	143
124	Nisin H Is a New Nisin Variant Produced by the Gut-Derived Strain Streptococcus hyointestinalis DPC6484. Applied and Environmental Microbiology, 2015, 81, 3953-3960.	1.4	74
125	Impact of Environmental Factors on Bacteriocin Promoter Activity in Gut-Derived Lactobacillus salivarius. Applied and Environmental Microbiology, 2015, 81, 7851-7859.	1.4	24
126	Characterisation of the antibacterial properties of a bacterial derived peptidoglycan hydrolase (LysCs4), active against C. sakazakii and other Gram-negative food-related pathogens. International Journal of Food Microbiology, 2015, 215, 79-85.	2.1	9

#	Article	IF	Citations
127	The Sactibiotic Subclass of Bacteriocins: An Update. Current Protein and Peptide Science, 2015, 16, 549-558.	0.7	51
128	Metagenomic Identification of a Novel Salt Tolerance Gene from the Human Gut Microbiome Which Encodes a Membrane Protein with Homology to a brp/blh-Family β-Carotene 15,15′-Monooxygenase. PLoS ONE, 2014, 9, e103318.	1.1	36
129	Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Frontiers in Cellular and Infection Microbiology, 2014, 4, 9.	1.8	131
130	Combined metagenomic and phenomic approaches identify a novel salt tolerance gene from the human gut microbiome. Frontiers in Microbiology, 2014, 5, 189.	1.5	29
131	Metagenomics and novel gene discovery. Virulence, 2014, 5, 399-412.	1.8	103
132	Two-tiered biological containment strategy for <i>Lactococcus lactis </i> -based vaccine or immunotherapy vectors. Human Vaccines and Immunotherapeutics, 2014, 10, 333-337.	1.4	3
133	Genome analysis of the staphylococcal temperate phage DW2 and functional studies on the endolysin and tail hydrolase. Bacteriophage, 2014, 4, e28451.	1.9	15
134	The potential for emerging therapeutic options for <i>Clostridium difficile</i> infection. Gut Microbes, 2014, 5, 696-710.	4.3	33
135	Bacterial bile salt hydrolase in host metabolism: Potential for influencing gastrointestinal microbe-host crosstalk. Gut Microbes, 2014, 5, 669-674.	4.3	99
136	Heterologous Expression of Thuricin CD Immunity Genes in Listeria monocytogenes. Antimicrobial Agents and Chemotherapy, 2014, 58, 3421-3428.	1.4	4
137	Exploiting gut bacteriophages for human health. Trends in Microbiology, 2014, 22, 399-405.	3.5	146
138	Detection of Mycobacterium avium subspecies paratuberculosis in patients with Crohn's disease is unrelated to the presence of single nucleotide polymorphisms rs2241880 (ATG16L1) and rs10045431 (IL12B). Medical Microbiology and Immunology, 2014, 203, 195-205.	2.6	8
139	Inactivation of the <scp>SecA</scp> 2 protein export pathway in <i><scp>L</scp>isteria monocytogenes</i> promotes cell aggregation, impacts biofilm architecture and induces biofilm formation in environmental condition. Environmental Microbiology, 2014, 16, 1176-1192.	1.8	53
140	Phage Therapy in the Food Industry. Annual Review of Food Science and Technology, 2014, 5, 327-349.	5.1	253
141	Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 2014, 38, 171-178.	2.1	303
142	Bioavailability of the anti-clostridial bacteriocin thuricin CD in gastrointestinal tract. Microbiology (United Kingdom), 2014, 160, 439-445.	0.7	38
143	Exopolysaccharide-Producing Probiotic Lactobacilli Reduce Serum Cholesterol and Modify Enteric Microbiota in ApoE-Deficient Mice. Journal of Nutrition, 2014, 144, 1956-1962.	1.3	80
144	Altered FXR signalling is associated with bile acid dysmetabolism in short bowel syndrome-associated liver disease. Journal of Hepatology, 2014, 61, 1115-1125.	1.8	76

#	Article	IF	Citations
145	Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7421-7426.	3.3	471
146	The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 506-514.	8.2	5,773
147	Investigation of the Antimicrobial Activity of Bacillus licheniformis Strains Isolated from Retail Powdered Infant Milk Formulae. Probiotics and Antimicrobial Proteins, 2014, 6, 32-40.	1.9	12
148	Atypical Listeria innocua strains possess an intact LIPI-3. BMC Microbiology, 2014, 14, 58.	1.3	39
149	Transposon mutagenesis reveals genes involved in osmotic stress and drying in Cronobacter sakazakii. Food Research International, 2014, 55, 45-54.	2.9	35
150	Acid stress management by Cronobacter sakazakii. International Journal of Food Microbiology, 2014, 178, 21-28.	2.1	45
151	Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science and Technology, 2014, 38, 113-124.	7.8	285
152	Generation of Nonpolar Deletion Mutants in Listeria monocytogenes Using the "SOEing―Method. Methods in Molecular Biology, 2014, 1157, 187-200.	0.4	14
153	Divergent Evolution of the Activity and Regulation of the Glutamate Decarboxylase Systems in Listeria monocytogenes EGD-e and 10403S: Roles in Virulence and Acid Tolerance. PLoS ONE, 2014, 9, e112649.	1.1	40
154	Shining light on food microbiology; applications of Lux-tagged microorganisms in the food industry. Trends in Food Science and Technology, 2013, 32, 4-15.	7.8	18
155	In vivo activity of Nisin A and Nisin V against Listeria monocytogenesin mice. BMC Microbiology, 2013, 13, 23.	1.3	57
156	Sequence-based analysis of the microbial composition of water kefir from multiple sources. FEMS Microbiology Letters, 2013, 348, 79-85.	0.7	70
157	Virulence aspects of Listeria monocytogenes LO28 high pressure-resistant variants. Microbial Pathogenesis, 2013, 59-60, 48-51.	1.3	8
158	The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit Gram negative bacteria. BMC Microbiology, 2013, 13, 212.	1.3	58
159	Use of Microbes to Fight Microbes. World Review of Nutrition and Dietetics, 2013, , 178-185.	0.1	0
160	Saturation mutagenesis of selected residues of the αâ€peptide of the lantibiotic lacticin 3147 yields a derivative with enhanced antimicrobial activity. Microbial Biotechnology, 2013, 6, 564-575.	2.0	22
161	Bacteriocins â€" a viable alternative to antibiotics?. Nature Reviews Microbiology, 2013, 11, 95-105.	13.6	1,312
162	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	5.2	1,692

#	Article	IF	CITATIONS
163	A mutant in the Listeria monocytogenes Fur-regulated virulence locus (frvA) induces cellular immunity and confers protection against listeriosis in mice. Journal of Medical Microbiology, 2013, 62, 185-190.	0.7	19
164	Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Current Opinion in Biotechnology, 2013, 24, 130-134.	3.3	52
165	Gut solutions to a gut problem: bacteriocins, probiotics and bacteriophage for control of Clostridium difficile infection. Journal of Medical Microbiology, 2013, 62, 1369-1378.	0.7	59
166	Bactofencin A, a New Type of Cationic Bacteriocin with Unusual Immunity. MBio, 2013, 4, e00498-13.	1.8	46
167	Investigation of the Use of a Cocktail of Lux-Tagged Cronobacter Strains for Monitoring Growth in Infant Milk Formulae. Journal of Food Protection, 2013, 76, 1359-1365.	0.8	3
168	A single point mutation in the listerial $i>$ betL $i>$ if $i>$ sup $i>$ A $i>$ dependent promoter leads to improved osmo- and chill-tolerance and a morphological shift at elevated osmolarity. Bioengineered, 2013, 4, 401-407.	1.4	21
169	Antimicrobials. Gut Microbes, 2013, 4, 48-53.	4.3	24
170	Selection for Loss of RpoS in Cronobacter sakazakii by Growth in the Presence of Acetate as a Carbon Source. Applied and Environmental Microbiology, 2013, 79, 2099-2102.	1.4	15
171	<i>In Vivo</i> Assessment of Growth and Virulence Gene Expression during Commensal and Pathogenic Lifestyles of <i>luxABCDE</i> -Tagged Enterococcus faecalis Strains in Murine Gastrointestinal and Intravenous Infection Models. Applied and Environmental Microbiology, 2013, 79, 3986-3997.	1.4	24
172	Intensive Mutagenesis of the Nisin Hinge Leads to the Rational Design of Enhanced Derivatives. PLoS ONE, 2013, 8, e79563.	1.1	62
173	Saturation Mutagenesis of Lysine 12 Leads to the Identification of Derivatives of Nisin A with Enhanced Antimicrobial Activity. PLoS ONE, 2013, 8, e58530.	1.1	54
174	Analysis of Anti-Clostridium difficile Activity of Thuricin CD, Vancomycin, Metronidazole, Ramoplanin, and Actagardine, both Singly and in Paired Combinations. Antimicrobial Agents and Chemotherapy, 2013, 57, 2882-2886.	1.4	40
175	Structure-Activity Relationship of Synthetic Variants of the Milk-Derived Antimicrobial Peptide α _{s2} -Casein f(183–207). Applied and Environmental Microbiology, 2013, 79, 5179-5185.	1.4	33
176	Rethinking "probiotics― Gut Microbes, 2013, 4, 269-270.	4.3	16
177	The Effect of Dietary Supplementation with Spent Cider Yeast on the Swine Distal Gut Microbiome. PLoS ONE, 2013, 8, e75714.	1.1	37
178	Functional Environmental Screening of a Metagenomic Library Identifies stlA; A Unique Salt Tolerance Locus from the Human Gut Microbiome. PLoS ONE, 2013, 8, e82985.	1.1	39
179	Sequencing-Based Analysis of the Bacterial and Fungal Composition of Kefir Grains and Milks from Multiple Sources. PLoS ONE, 2013, 8, e69371.	1.1	169
180	Efficacy of Organic Acids, Bacteriocins, and the Lactoperoxidase System in Inhibiting the Growth of Cronobacter spp. in Rehydrated Infant Formula. Journal of Food Protection, 2012, 75, 1734-1742.	0.8	22

#	Article	IF	Citations
181	Cronobacter spp. in Powdered Infant Formula. Journal of Food Protection, 2012, 75, 607-620.	0.8	71
182	Assessing the Contributions of the LiaS Histidine Kinase to the Innate Resistance of Listeria monocytogenes to Nisin, Cephalosporins, and Disinfectants. Applied and Environmental Microbiology, 2012, 78, 2923-2929.	1.4	74
183	Isoprenoid biosynthesis in bacterial pathogens. Microbiology (United Kingdom), 2012, 158, 1389-1401.	0.7	142
184	Bacteriophages i-MR299-2 and i-NH-4 Can Eliminate Pseudomonas aeruginosa in the Murine Lung and on Cystic Fibrosis Lung Airway Cells. MBio, 2012, 3, e00029-12.	1.8	218
185	Virulence or Niche Factors: What's in a Name?. Journal of Bacteriology, 2012, 194, 5725-5727.	1.0	61
186	Extensive Manipulation of Caseicins A and B Highlights the Tolerance of These Antimicrobial Peptides to Change. Applied and Environmental Microbiology, 2012, 78, 2353-2358.	1.4	4
187	The <i>spiFEG</i> Locus in Streptococcus infantarius subsp. infantarius BAA-102 Confers Protection against Nisin U. Antimicrobial Agents and Chemotherapy, 2012, 56, 573-578.	1.4	9
188	Insights into Lantibiotic Immunity Provided by Bioengineering of Ltnl. Antimicrobial Agents and Chemotherapy, 2012, 56, 5122-5133.	1.4	6
189	Homologues and Bioengineered Derivatives of LtnJ Vary in Ability to Form <scp>d</scp> -Alanine in the Lantibiotic Lacticin 3147. Journal of Bacteriology, 2012, 194, 708-714.	1.0	22
190	Lacticin 3147 - Biosynthesis, Molecular Analysis, Immunity, Bioengineering and Applications. Current Protein and Peptide Science, 2012, 13, 193-204.	0.7	43
191	Subspecies diversity in bacteriocin production by intestinal <i>Lactobacillus salivarius </i> strains. Gut Microbes, 2012, 3, 468-473.	4.3	29
192	Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome. ISME Journal, 2012, 6, 1916-1925.	4.4	67
193	Carriage of Clostridium difficile in outpatients with irritable bowel syndrome. Journal of Medical Microbiology, 2012, 61, 1290-1294.	0.7	15
194	Residual Antibiotics Disrupt Meat Fermentation and Increase Risk of Infection. MBio, 2012, 3, e00190-12.	1.8	19
195	Lantibiotic Production by Pathogenic Microorganisms. Current Protein and Peptide Science, 2012, 13, 509-523.	0.7	8
196	Bac' to the future: bioengineering lantibiotics for designer purposes. Biochemical Society Transactions, 2012, 40, 1492-1497.	1.6	21
197	HmgR, a key enzyme in the mevalonate pathway for isoprenoid biosynthesis, is essential for growth of Listeria monocytogenes EGDe. Microbiology (United Kingdom), 2012, 158, 1684-1693.	0.7	36
198	Probiotics in Transition. Clinical Gastroenterology and Hepatology, 2012, 10, 1220-1224.	2.4	33

#	Article	IF	Citations
199	The Acid Tolerance Response of Salmonella spp.: An adaptive strategy to survive in stressful environments prevailing in foods and the host. Food Research International, 2012, 45, 482-492.	2.9	92
200	Polymorphisms in <i>rpoS</i> and Stress Tolerance Heterogeneity in Natural Isolates of Cronobacter sakazakii. Applied and Environmental Microbiology, 2012, 78, 3975-3984.	1.4	42
201	Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens. PLoS ONE, 2012, 7, e46884.	1.1	167
202	A Putative P-Type ATPase Required for Virulence and Resistance to Haem Toxicity in Listeria monocytogenes. PLoS ONE, 2012, 7, e30928.	1.1	39
203	Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488, 178-184.	13.7	2,618
204	Clostridium difficile Carriage in Elderly Subjects and Associated Changes in the Intestinal Microbiota. Journal of Clinical Microbiology, 2012, 50, 867-875.	1.8	184
205	Bacteriocin Production: a Probiotic Trait?. Applied and Environmental Microbiology, 2012, 78, 1-6.	1.4	505
206	Comparison of the Potency of the Lipid II Targeting Antimicrobials Nisin, Lacticin 3147 and Vancomycin Against Gram-Positive Bacteria. Probiotics and Antimicrobial Proteins, 2012, 4, 108-115.	1.9	25
207	Investigation of the role of ZurR in the physiology and pathogenesis of Listeria monocytogenes. FEMS Microbiology Letters, 2012, 327, 118-125.	0.7	25
208	Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. International Journal of Food Microbiology, 2012, 152, 189-205.	2.1	252
209	Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese. International Journal of Food Microbiology, 2012, 153, 58-65.	2.1	113
210	Bioengineered nisin derivatives with enhanced activity in complex matrices. Microbial Biotechnology, 2012, 5, 501-508.	2.0	50
211	The 3D Structure of Thuricin CD, a Two-Component Bacteriocin with Cysteine Sulfur to α-Carbon Cross-links. Journal of the American Chemical Society, 2011, 133, 7680-7683.	6.6	52
212	Probiotics, Enteric and Diarrheal Diseases, and Global Health. Gastroenterology, 2011, 140, 8-14.e9.	0.6	113
213	Classification of Bacteriocins from Gram-Positive Bacteria., 2011,, 29-53.		70
214	Probiotic and prebiotic claims in Europe: seeking a clear roadmap. British Journal of Nutrition, 2011, 106, 1765-1767.	1.2	23
215	Improving the Stress Tolerance of Probiotic Cultures: Recent Trends and Future Directions. , 2011, , 395-438.		18
216	Streptolysin S-like virulence factors: the continuing sagA. Nature Reviews Microbiology, 2011, 9, 670-681.	13.6	140

#	Article	IF	Citations
217	Genome Mining for Radical SAM Protein Determinants Reveals Multiple Sactibiotic-Like Gene Clusters. PLoS ONE, 2011, 6, e20852.	1.1	68
218	Real-Time Monitoring of Luciferase-Tagged Cronobacter sakazakii in Reconstituted Infant Milk Formula. Journal of Food Protection, 2011, 74, 573-579.	0.8	11
219	Fate and efficacy of lacticin 3147-producing Lactococcus lactis in the mammalian gastrointestinal tract. FEMS Microbiology Ecology, 2011, 76, 602-614.	1.3	50
220	Bioengineering of a Nisin Aâ€producing <i>Lactococcus lactis</i> to create isogenic strains producing the natural variants Nisin F, Q and Z. Microbial Biotechnology, 2011, 4, 375-382.	2.0	82
221	Factors affecting survival of Listeria monocytogenes and Listeria innocua in soil samples. Archives of Microbiology, 2011, 193, 775-785.	1.0	68
222	Further Identification of Novel Lantibiotic Operons Using LanM-Based Genome Mining. Probiotics and Antimicrobial Proteins, 2011, 3, 27-40.	1.9	7
223	The proceedings of the Tenth Symposium on Lactic Acid Bacteria. Microbial Cell Factories, 2011, 10, S1.	1.9	22
224	Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese. Microbial Cell Factories, 2011, 10, S7.	1.9	73
225	The impact of iron on Listeria monocytogenes; inside and outside the host. Current Opinion in Biotechnology, 2011, 22, 194-199.	3.3	30
226	<i>E. coli</i> O104:H4: Social media and the characterization of an emerging pathogen. Bioengineered Bugs, 2011, 2, 189-193.	2.0	9
227	Production of Multiple Bacteriocins from a Single Locus by Gastrointestinal Strains of Lactobacillus salivarius. Journal of Bacteriology, 2011, 193, 6973-6982.	1.0	58
228	Real-Time PCR Assay To Differentiate Listeriolysin S-Positive and -Negative Strains of <i>Listeria monocytogenes </i> . Applied and Environmental Microbiology, 2011, 77, 163-171.	1.4	66
229	Investigation of the Mechanisms by Which <i>Listeria monocytogenes</i> Grows in Porcine Gallbladder Bile. Infection and Immunity, 2011, 79, 369-379.	1.0	63
230	Altering the Composition of Caseicins A and B as a Means of Determining the Contribution of Specific Residues to Antimicrobial Activity. Applied and Environmental Microbiology, 2011, 77, 2496-2501.	1.4	18
231	Stress Survival Islet 1 (SSI-1) Survey in <i>Listeria monocytogenes</i> Reveals an Insert Common to <i>Listeria innocua</i> in Sequence Type 121 <i>L. monocytogenes</i> Strains. Applied and Environmental Microbiology, 2011, 77, 2169-2173.	1.4	62
232	Effect of broad- and narrow-spectrum antimicrobials on <i>Clostridium difficile</i> and microbial diversity in a model of the distal colon. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4639-4644.	3.3	313
233	Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4586-4591.	3.3	1,418
234	Flagging flora: help from bacteriocins?. Nature, 2011, 477, 162-162.	13.7	6

#	Article	lF	Citations
235	Human Neutrophil Clearance of Bacterial Pathogens Triggers Anti-Microbial γδT Cell Responses in Early Infection. PLoS Pathogens, 2011, 7, e1002040.	2.1	106
236	Salmonella spp. survival strategies within the host gastrointestinal tract. Microbiology (United) Tj ETQq0 0 0 rgB	T /8.yerloc	k 10 Tf 50 70
237	Host Specific Diversity in Lactobacillus johnsonii as Evidenced by a Major Chromosomal Inversion and Phage Resistance Mechanisms. PLoS ONE, 2011, 6, e18740.	1.1	41
238	In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria. BMC Genomics, 2010, 11, 679.	1.2	74
239	Directed evolution and targeted mutagenesis to murinize listeria monocytogenes internalin A for enhanced infectivity in the murine oral infection model. BMC Microbiology, 2010, 10, 318.	1.3	36
240	Manipulation of charged residues within the twoâ€peptide lantibiotic lacticin 3147. Microbial Biotechnology, 2010, 3, 222-234.	2.0	19
241	Studies with bioengineered Nisin peptides highlight the broadâ€spectrum potency of Nisin V. Microbial Biotechnology, 2010, 3, 473-486.	2.0	84
242	Effect of Bioengineering Lacticin 3147 Lanthionine Bridges on Specific Activity and Resistance to Heat and Proteases. Chemistry and Biology, 2010, 17, 1151-1160.	6.2	31
243	Compatible solutes: the key to Listeria's success as a versatile gastrointestinal pathogen?. Gut Pathogens, 2010, 2, 20.	1.6	14
244	The changing face of dairy starter culture research: From genomics to economics. International Journal of Dairy Technology, 2010, 63, 149-170.	1.3	50
245	The dawning of a â€~Golden era' in lantibiotic bioengineering. Molecular Microbiology, 2010, 78, 1077-1087.	1.2	70
246	Production of the Bsa Lantibiotic by Community-Acquired <i>Staphylococcus aureus</i> Journal of Bacteriology, 2010, 192, 1131-1142.	1.0	60
247	Synthesis of Trypsin-Resistant Variants of the Listeria-Active Bacteriocin Salivaricin P. Applied and Environmental Microbiology, 2010, 76, 5356-5362.	1.4	30
248	TelA Contributes to the Innate Resistance of <i>Listeria monocytogenes</i> to Nisin and Other Cell Wall-Acting Antibiotics. Antimicrobial Agents and Chemotherapy, 2010, 54, 4658-4663.	1.4	58
249	The ABC Transporter AnrAB Contributes to the Innate Resistance of $\langle i \rangle$ Listeria monocytogenes $\langle i \rangle$ to Nisin, Bacitracin, and Various \hat{I}^2 -Lactam Antibiotics. Antimicrobial Agents and Chemotherapy, 2010, 54, 4416-4423.	1.4	139
250	Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against <i>Clostridium difficile</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9352-9357.	3.3	434
251	Glutamate Decarboxylase-Mediated Nisin Resistance in <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2010, 76, 6541-6546.	1.4	48
252	Efficacy of a teat dip containing the bacteriocin lacticin 3147 to eliminate Gram-positive pathogens associated with bovine mastitis. Journal of Dairy Research, 2010, 77, 231-238.	0.7	52

#	Article	IF	Citations
253	The gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs. Bioengineered Bugs, 2010, 1, 408-412.	2.0	49
254	Probiotics and pharmabiotics. Bioengineered Bugs, 2010, 1, 79-84.	2.0	18
255	Investigating the importance of charged residues in lantibiotics. Bioengineered Bugs, 2010, 1, 345-351.	2.0	8
256	Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. International Journal of Antimicrobial Agents, 2010, 36, 132-136.	1.1	79
257	The truncated phage lysin CHAP _k eliminates <i>Staphylococcusaureus</i> ii>in the nares of mice. Bioengineered Bugs, 2010, 1, 404-407.	2.0	73
258	Food Safety: What Can We Learn From Genomics?. Annual Review of Food Science and Technology, 2010, 1, 341-361.	5.1	11
259	Identification of a Novel Two-Peptide Lantibiotic, Lichenicidin, following Rational Genome Mining for LanM Proteins. Applied and Environmental Microbiology, 2009, 75, 5451-5460.	1.4	224
260	The Vexed Relationship Between Clostridium Difficile and Inflammatory Bowel Disease: An Assessment of Carriage in an Outpatient Setting Among Patients in Remission. American Journal of Gastroenterology, 2009, 104, 1162-1169.	0.2	177
261	Rational Design of Improved Pharmabiotics. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-7.	3.0	16
262	Specific Osmolyte Transporters Mediate Bile Tolerance in <i>Listeria monocytogenes</i> lmmunity, 2009, 77, 4895-4904.	1.0	44
263	The presence of pMRCO1 promotes greater cell permeability and autolysis in lactococcal starter cultures. International Journal of Food Microbiology, 2009, 133, 217-224.	2.1	11
264	Isolation and Analysis of Bacteria with Antimicrobial Activities from the Marine Sponge Haliclona simulans Collected from Irish Waters. Marine Biotechnology, 2009, 11, 384-396.	1.1	168
265	Exposure to bile influences biofilm formation by Listeria monocytogenes. Gut Pathogens, 2009, 1, 11.	1.6	46
266	Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathogens, 2009, 1, 19.	1.6	134
267	Penicillin-binding Proteins (PBP) and Lmo0441 (a PBP-like protein) play a role in Beta-lactam sensitivity of Listeria monocytogenes. Gut Pathogens, 2009, 1, 23.	1.6	10
268	AgrDâ€dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in <i>Listeria monocytogenes</i>). Molecular Microbiology, 2009, 71, 1177-1189.	1.2	158
269	Crossâ€immunity and immune mimicry as mechanisms of resistance to the lantibiotic lacticin 3147. Molecular Microbiology, 2009, 71, 1043-1054.	1.2	58
270	Characterization of enterocin- and salivaricin-producing lactic acid bacteria from the mammalian gastrointestinal tract. FEMS Microbiology Letters, 2009, 291, 24-34.	0.7	57

#	Article	IF	CITATIONS
271	Evaluation of colostrum-derived human mammary-associated serum amyloid A3 (M-SAA3) protein and peptide derivatives for the prevention of enteric infection: <i>in vitro</i> and in murine models of intestinal disease. FEMS Immunology and Medical Microbiology, 2009, 55, 404-413.	2.7	13
272	Molecular characterization of the arginine deiminase system in <i>Listeria monocytogenes</i> regulation and role in acid tolerance. Environmental Microbiology, 2009, 11, 432-445.	1.8	174
273	Administration of a live culture of <i>Lactococcus lactis </i> DPC 3147 into the bovine mammary gland stimulates the local host immune response, particularly <i>IL-1 </i> \hat{I}^2 and <i>IL-8 </i> \hat{I}^2 gene expression. Journal of Dairy Research, 2009, 76, 340-348.	0.7	64
274	Chapter 1 Understanding the Mechanisms by Which Probiotics Inhibit Gastrointestinal Pathogens. Advances in Food and Nutrition Research, 2009, 56, 1-15.	1.5	129
275	A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. Journal of Antimicrobial Chemotherapy, 2009, 64, 546-551.	1.3	147
276	The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology (United Kingdom), 2009, 155, 2463-2475.	0.7	103
277	Screening of rationally designed oligopeptides for Listeria monocytogenes detection by means of a high density colorimetric microarray. Mikrochimica Acta, 2008, 163, 227-235.	2.5	9
278	High-pressure processing – effects on microbial food safety and food quality. FEMS Microbiology Letters, 2008, 281, 1-9.	0.7	298
279	Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiology Ecology, 2008, 64, 317-327.	1.3	91
280	M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunology and Medical Microbiology, 2008, 52, 2-12.	2.7	254
281	The generation of nisin variants with enhanced activity against specific Gramâ€positive pathogens. Molecular Microbiology, 2008, 69, 218-230.	1.2	206
282	Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice. BMC Microbiology, 2008, 8, 161.	1.3	64
283	Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract. BMC Microbiology, 2008, 8, 176.	1.3	58
284	Development of multiple strain competitive index assays for Listeria monocytogenes using pIMC; a new site-specific integrative vector. BMC Microbiology, 2008, 8, 96.	1.3	37
285	Listeriolysin S, a Novel Peptide Haemolysin Associated with a Subset of Lineage I Listeria monocytogenes. PLoS Pathogens, 2008, 4, e1000144.	2.1	201
286	â€~Bioengineered Bugs' – A patho-biotechnology approach to probiotic research and applications. Medical Hypotheses, 2008, 70, 167-169.	0.8	27
287	Why appendectomies may lead to an increased risk of functional gastrointestinal disorders. Medical Hypotheses, 2008, 71, 814-816.	0.8	7
288	Analysis of the Isoprenoid Biosynthesis Pathways in <i>Listeria monocytogenes</i> Reveals a Role for the Alternative 2-C-Methyl- <scp>d</scp> -Erythritol 4-Phosphate Pathway in Murine Infection. Infection and Immunity, 2008, 76, 5392-5401.	1.0	28

#	Article	IF	Citations
289	Intramammary infusion of a live culture of <i>Lactococcus lactis </i> for treatment of bovine mastitis: comparison with antibiotic treatment in field trials. Journal of Dairy Research, 2008, 75, 365-373.	0.7	91
290	Molecular Analysis of the Microbial Food Safety Implications of Food Reformulations for Improved Health. Foodborne Pathogens and Disease, 2008, 5, 499-504.	0.8	6
291	Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13580-13585.	3.3	797
292	Designer probiotics: a potential therapeutic for Clostridium difficile?. Journal of Medical Microbiology, 2008, 57, 793-794.	0.7	23
293	<i>Pseudomonas aeruginosa</i> RsmA Plays an Important Role during Murine Infection by Influencing Colonization, Virulence, Persistence, and Pulmonary Inflammation. Infection and Immunity, 2008, 76, 632-638.	1.0	92
294	Tools for Functional Postgenomic Analysis of <i>Listeria monocytogenes </i> . Applied and Environmental Microbiology, 2008, 74, 3921-3934.	1.4	205
295	Intramammary infusion of a live culture for treatment of bovine mastitis: effect of live lactococci on the mammary immune response. Journal of Dairy Research, 2008, 75, 374-384.	0.7	72
296	Acid Stress Responses in Listeria monocytogenes. Advances in Applied Microbiology, 2008, 65, 67-91.	1.3	56
297	Insertional Mutagenesis To Generate Lantibiotic Resistance in Lactococcus lactis. Applied and Environmental Microbiology, 2007, 73, 4677-4680.	1.4	4
298	Improved Luciferase Tagging System for Listeria monocytogenes Allows Real-Time Monitoring In Vivo and In Vitro. Applied and Environmental Microbiology, 2007, 73, 3091-3094.	1.4	101
299	Two-Peptide Lantibiotics: A Medical Perspective. Mini-Reviews in Medicinal Chemistry, 2007, 7, 1236-1247.	1.1	84
300	Antimicrobial activity of lacticin 3147 against clinical Clostridium difficile strains. Journal of Medical Microbiology, 2007, 56, 940-946.	0.7	167
301	Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiology (United Kingdom), 2007, 153, 3563-3571.	0.7	105
302	Salivaricin P, One of a Family of Two-Component Antilisterial Bacteriocins Produced by Intestinal Isolates of Lactobacillus salivarius. Applied and Environmental Microbiology, 2007, 73, 3719-3723.	1.4	61
303	A Five-Strain Probiotic Combination Reduces Pathogen Shedding and Alleviates Disease Signs in Pigs Challenged with Salmonella enterica Serovar Typhimurium. Applied and Environmental Microbiology, 2007, 73, 1858-1863.	1.4	190
304	Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7617-7621.	3.3	690
305	Fate of the Two-Component Lantibiotic Lacticin 3147 in the Gastrointestinal Tract. Applied and Environmental Microbiology, 2007, 73, 7103-7109.	1.4	38
306	Construction of p16S $\langle i \rangle lux \langle i \rangle$, a Novel Vector for Improved Bioluminescent Labeling of Gram-Negative Bacteria. Applied and Environmental Microbiology, 2007, 73, 7092-7095.	1.4	84

#	Article	IF	CITATIONS
307	Patho-Biotechnology; Using Bad Bugs to Make Good Bugs Better. Science Progress, 2007, 90, 1-14.	1.0	36
308	Gut osmolarity: A key environmental cue initiating the gastrointestinal phase of Listeria monocytogenes infection?. Medical Hypotheses, 2007, 69, 1090-1092.	0.8	27
309	Food reformulations for improved health: A potential risk for microbial food safety?. Medical Hypotheses, 2007, 69, 1323-1324.	0.8	25
310	Impact of selectedLactobacillusandBifidobacteriumspecies onListeria monocytogenesinfection and the mucosal immune response. FEMS Immunology and Medical Microbiology, 2007, 50, 380-388.	2.7	91
311	Identification of a novel two-peptide lantibiotic, Haloduracin, produced by the alkaliphileBacillus haloduransC-125. FEMS Microbiology Letters, 2007, 267, 64-71.	0.7	99
312	A novel promoter trap identifiesListeria monocytogenespromoters expressed at a low pH within the macrophage phagosome. FEMS Microbiology Letters, 2007, 274, 139-147.	0.7	4
313	Relatedness between the two-component lantibiotics lacticin 3147 and staphylococcin C55 based on structure, genetics and biological activity. BMC Microbiology, 2007, 7, 24.	1.3	23
314	Enterococcus and Lactobacillus contamination of raw milk in a farm dairy environment. International Journal of Food Microbiology, 2007, 114, 243-251.	2.1	57
315	A System for the Random Mutagenesis of the Two-Peptide Lantibiotic Lacticin 3147: Analysis of Mutants Producing Reduced Antibacterial Activities. Journal of Molecular Microbiology and Biotechnology, 2007, 13, 226-234.	1.0	30
316	Bile Salt Hydrolase Activity in Probiotics. Applied and Environmental Microbiology, 2006, 72, 1729-1738.	1.4	900
317	An in vitro cell-culture model demonstrates internalin- and hemolysin-independent translocation of Listeria monocytogenes across M cells. Microbial Pathogenesis, 2006, 41, 241-250.	1.3	47
318	Bacteriocins: Biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 2006, 16, 1058-1071.	1.5	539
319	Spontaneous resistance inLactococcus lactislL1403 to the lantibiotic lacticin 3147. FEMS Microbiology Letters, 2006, 260, 77-83.	0.7	38
320	The mode of action of the lantibiotic lacticin 3147 - a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Molecular Microbiology, 2006, 61, 285-296.	1.2	202
321	Complete alanine scanning of the twoâ€component lantibiotic lacticin 3147: generating a blueprint for rational drug design. Molecular Microbiology, 2006, 62, 735-747.	1.2	135
322	Patho-biotechnology: using bad bugs to do good things. Current Opinion in Biotechnology, 2006, 17, 211-216.	3.3	47
323	Kluyveromyces lactis and Saccharomyces cerevisiae, two potent deacidifying and volatile-sulphur-aroma-producing microorganisms of the cheese ecosystem. Applied Microbiology and Biotechnology, 2006, 73, 434-442.	1.7	31
324	High pressure-induced inactivation of $Q\hat{l}^2$ coliphage and c2 phage in oysters and in culture media. International Journal of Food Microbiology, 2006, 106, 105-110.	2.1	17

#	Article	IF	CITATIONS
325	Heterologous Expression of BetL, a Betaine Uptake System, Enhances the Stress Tolerance of Lactobacillus salivarius UCC118. Applied and Environmental Microbiology, 2006, 72, 2170-2177.	1.4	126
326	Overproduction of Wild-Type and Bioengineered Derivatives of the Lantibiotic Lacticin 3147. Applied and Environmental Microbiology, 2006, 72, 4492-4496.	1.4	37
327	Novel Luciferase Reporter System for In Vitro and Organ-Specific Monitoring of Differential Gene Expression in Listeria monocytogenes. Applied and Environmental Microbiology, 2006, 72, 2876-2884.	1.4	69
328	Contribution of Penicillin-Binding Protein Homologs to Antibiotic Resistance, Cell Morphology, and Virulence of Listeria monocytogenes EGDe. Antimicrobial Agents and Chemotherapy, 2006, 50, 2824-2828.	1.4	80
329	Tolerance of Listeria monocytogenes to Cell Envelope-Acting Antimicrobial Agents Is Dependent on SigB. Applied and Environmental Microbiology, 2006, 72, 2231-2234.	1.4	72
330	The interaction between bacteria and bile. FEMS Microbiology Reviews, 2005, 29, 625-651.	3.9	1,331
331	Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 2005, 3, 777-788.	13.6	1,884
332	Presence of GadD1 Glutamate Decarboxylase in Selected Listeria monocytogenes Strains Is Associated with an Ability To Grow at Low pH. Applied and Environmental Microbiology, 2005, 71, 2832-2839.	1.4	134
333	Insertional Inactivation of Determinants for Mg 2+ and Co 2+ Transport as a Tool for Screening Recombinant Lactococcus Species Clones. Applied and Environmental Microbiology, 2005, 71, 4897-4901.	1.4	2
334	Bacterial Lantibiotics: Strategies to Improve Therapeutic Potential. Current Protein and Peptide Science, 2005, 6, 61-75.	0.7	237
335	The Dps-like protein Fri of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells. Microbiology (United Kingdom), 2005, 151, 925-933.	0.7	93
336	Posttranslational conversion of L-serines to D-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18584-18589.	3.3	116
337	Contribution of Three Bile-Associated Loci, bsh , pva , and btlB , to Gastrointestinal Persistence and Bile Tolerance of Listeria monocytogenes. Infection and Immunity, 2005, 73, 894-904.	1.0	232
338	The lantibiotic lacticin 3147 produced in a milk-based medium improves the efficacy of a bismuth-based teat seal in cattle deliberately infected with Staphylococcus aureus. Journal of Dairy Research, 2005, 72, 159-167.	0.7	33
339	Listeria monocytogenes PerR Mutants Display a Small-Colony Phenotype, Increased Sensitivity to Hydrogen Peroxide, and Significantly Reduced Murine Virulence. Applied and Environmental Microbiology, 2005, 71, 8314-8322.	1.4	90
340	Role for HtrA in Stress Induction and Virulence Potential in Listeria monocytogenes. Applied and Environmental Microbiology, 2005, 71, 4241-4247.	1.4	90
341	Sequential Actions of the Two Component Peptides of the Lantibiotic Lacticin 3147 Explain Its Antimicrobial Activity at Nanomolar Concentrations. Antimicrobial Agents and Chemotherapy, 2005, 49, 2606-2611.	1.4	106
342	Greater high-pressure resistance of bacteria in oysters than in buffer. Innovative Food Science and Emerging Technologies, 2005, 6, 83-90.	2.7	53

#	Article	IF	CITATIONS
343	Molecular and Physiological Analysis of the Role of Osmolyte Transporters BetL, Gbu, and OpuC in Growth of Listeria monocytogenes at Low Temperatures. Applied and Environmental Microbiology, 2004, 70, 2912-2918.	1.4	105
344	Variable Bacteriocin Production in the Commercial Starter Lactococcus lactis DPC4275 Is Linked to the Formation of the Cointegrate Plasmid pMRC02. Applied and Environmental Microbiology, 2004, 70, 34-42.	1.4	15
345	Rapid Real-Time PCR Assay for Detection and Quantitation of Mycobacterium avium subsp. paratuberculosis DNA in Artificially Contaminated Milk. Applied and Environmental Microbiology, 2004, 70, 4561-4568.	1.4	49
346	Role for Compatible Solutes Glycine Betaine and I-Carnitine in Listerial Barotolerance. Applied and Environmental Microbiology, 2004, 70, 7555-7557.	1.4	61
347	Controlled Autolysis and Enzyme Release in a Recombinant Lactococcal Strain Expressing the Metalloendopeptidase Enterolysin A. Applied and Environmental Microbiology, 2004, 70, 1744-1748.	1.4	28
348	Disruption of Putative Regulatory Loci in Listeria monocytogenes Demonstrates a Significant Role for Fur and PerR in Virulence. Infection and Immunity, 2004, 72, 717-727.	1.0	107
349	A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes. Molecular Microbiology, 2004, 55, 1183-1195.	1.2	141
350	Control of food spoiling bacteria in cooked meat products with nisin, lacticin 3147, and a lacticin 3147-producing starter culture. European Food Research and Technology, 2004, 219, 6-13.	1.6	14
351	Relative Ability of Orally Administered Lactobacillus murinus To Predominate and Persist in the Porcine Gastrointestinal Tract. Applied and Environmental Microbiology, 2004, 70, 1895-1906.	1.4	95
352	Structural Characterization of Lacticin 3147, a Two-Peptide Lantibiotic with Synergistic Activityâ€. Biochemistry, 2004, 43, 3049-3056.	1.2	150
353	The interplay between classical and alternative isoprenoid biosynthesis controls î³Î´T cell bioactivity ofListeria monocytogenes. FEBS Letters, 2004, 561, 99-104.	1.3	74
354	The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Molecular Microbiology, 2003, 49, 1227-1238.	1.2	88
355	Identification and disruption ofbtlA, a locus involved in bile tolerance and general stress resistance inListeria monocytogenes. FEMS Microbiology Letters, 2003, 218, 31-38.	0.7	31
356	Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Microbiology and Molecular Biology Reviews, 2003, 67, 429-453.	2.9	953
357	A Postgenomic Appraisal of Osmotolerance in Listeria monocytogenes. Applied and Environmental Microbiology, 2003, 69, 1-9.	1.4	145
358	Production of enterolysin A by a raw milk enterococcal isolate exhibiting multiple virulence factors. Microbiology (United Kingdom), 2003, 149, 655-664.	0.7	54
359	CesRK, a Two-Component Signal Transduction System in Listeria monocytogenes, Responds to the Presence of Cell Wall-Acting Antibiotics and Affects β-Lactam Resistance. Antimicrobial Agents and Chemotherapy, 2003, 47, 3421-3429.	1.4	77
360	Generation of Food-Grade Lactococcal Starters Which Produce the Lantibiotics Lacticin 3147 and Lacticin 481. Applied and Environmental Microbiology, 2003, 69, 3681-3685.	1.4	52

#	Article	IF	CITATIONS
361	Transcriptional Regulation and PosttranslationalActivity of the Betaine Transporter BetL in Listeriamonocytogenes Are Controlled by EnvironmentalSalinity. Journal of Bacteriology, 2003, 185, 7140-7144.	1.0	30
362	A Food-Grade Approach for Functional Analysis and Modification of Native Plasmids in Lactococcus lactis. Applied and Environmental Microbiology, 2003, 69, 702-706.	1.4	41
363	Multiple Deletions of the Osmolyte Transporters BetL, Gbu, and OpuC of Listeria monocytogenes Affect Virulence and Growth at High Osmolarity. Applied and Environmental Microbiology, 2002, 68, 4710-4716.	1.4	91
364	The LisRK Signal Transduction System Determines the Sensitivity of Listeria monocytogenes to Nisin and Cephalosporins. Antimicrobial Agents and Chemotherapy, 2002, 46, 2784-2790.	1.4	117
365	Bile Stress Response in Listeria monocytogenes LO28: Adaptation, Cross-Protection, and Identification of Genetic Loci Involved in Bile Resistance. Applied and Environmental Microbiology, 2002, 68, 6005-6012.	1.4	189
366	A real time PCR assay for the detection and quantitation of Mycobacterium avium subsp. paratuberculosis using SYBR Green and the Light Cycler. Journal of Microbiological Methods, 2002, 51, 283-293.	0.7	75
367	Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews, 2002, 26, 49-71.	3.9	649
368	Regulation of immunity to the two-component lantibiotic, lacticin 3147, by the transcriptional repressor LtnR. Molecular Microbiology, 2001, 39, 982-993.	1.2	50
369	A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Molecular Microbiology, 2001, 40, 465-475.	1.2	334
370	Molecular detection and sequencing of ?Norwalk-like viruses? in outbreaks and sporadic cases of gastroenteritis in Ireland. Journal of Medical Virology, 2001, 65, 388-394.	2.5	24
371	Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 2001, 25, 285-308.	3.9	528
372	Pre-inoculation enrichment procedure enhances the performance of bacteriocinogenic Lactococcus lactis meat starter culture. International Journal of Food Microbiology, 2001, 64, 151-159.	2.1	24
373	Naturally Occurring Lactococcal Plasmid pAH90 Links Bacteriophage Resistance and Mobility Functions to a Food-Grade Selectable Marker. Applied and Environmental Microbiology, 2001, 67, 929-937.	1.4	51
374	Identification and Disruption of the proBA Locus in Listeria monocytogenes: Role of Proline Biosynthesis in Salt Tolerance and Murine Infection. Applied and Environmental Microbiology, 2001, 67, 2571-2577.	1.4	59
375	Mutations in the Listerial proB Gene Leading to Proline Overproduction: Effects on Salt Tolerance and Murine Infection. Applied and Environmental Microbiology, 2001, 67, 4560-4565.	1.4	39
376	Strategy for Manipulation of Cheese Flora Using Combinations of Lacticin 3147-Producing and -Resistant Cultures. Applied and Environmental Microbiology, 2001, 67, 2699-2704.	1.4	38
377	Analysis of the Role of OpuC, an Osmolyte Transport System, in Salt Tolerance and Virulence Potential of Listeria monocytogenes. Applied and Environmental Microbiology, 2001, 67, 2692-2698.	1.4	151
378	Characterization of the groESL Operon inListeria monocytogenes: Utilization of Two Reporter Systems (gfp and hly) for Evaluating In Vivo Expression. Infection and Immunity, 2001, 69, 3924-3932.	1.0	66

#	Article	IF	CITATIONS
379	Exploitation of Plasmid pMRC01 To Direct Transfer of Mobilizable Plasmids into Commercial Lactococcal Starter Strains. Applied and Environmental Microbiology, 2001, 67, 2853-2858.	1.4	14
380	The use of listeriolysin to identify in vivo induced genes in the Gram-positive intracellular pathogen Listeria monocytogenes. Molecular Microbiology, 2000, 36, 498-507.	1.2	54
381	Novel type I restriction specificities through domain shuffling of HsdS subunits in Lactococcus lactis. Molecular Microbiology, 2000, 36, 866-875.	1.2	71
382	Analysis of the role of the Listeria monocytogenes F0F1-ATPase operon in the acid tolerance response. International Journal of Food Microbiology, 2000, 60, 137-146.	2.1	111
383	Analysis of the role of betL in contributing to the growth and survival of Listeria monocytogenes LO28. International Journal of Food Microbiology, 2000, 60, 261-268.	2.1	56
384	Rotavirus survival and stability in foods as determined by an optimised plaque assay procedure. International Journal of Food Microbiology, 2000, 61, 177-185.	2.1	32
385	Novel cultures for cheese improvement. Trends in Food Science and Technology, 2000, 11, 96-104.	7.8	48
386	Detection of sporadic cases of Norwalk-like virus (NLV) and astrovirus infection in a single Irish hospital from 1996 to 1998. Journal of Clinical Virology, 2000, 17, 109-117.	1.6	34
387	Extensive Post-translational Modification, Including Serine to d-Alanine Conversion, in the Two-component Lantibiotic, Lacticin 3147. Journal of Biological Chemistry, 1999, 274, 37544-37550.	1.6	113
388	Developing applications for lactococcal bacteriocins. Antonie Van Leeuwenhoek, 1999, 76, 337-346.	0.7	106
389	The relationship between acid stress responses and virulence in Salmonella typhimurium and Listeria monocytogenes. International Journal of Food Microbiology, 1999, 50, 93-100.	2.1	120
390	Sequence and analysis of the 60â€fkb conjugative, bacteriocin-producing plasmid pMRC01 fromLactococcus lactisDPC3147. Molecular Microbiology, 1998, 29, 1029-1038.	1.2	171
391	Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. International Journal of Food Microbiology, 1995, 28, 169-185.	2.1	352
392	Antisense RNA: A modern solution to a traditional problem?. Trends in Food Science and Technology, 1993, 4, 12-16.	7.8	2
393	The bacteriophage resistance plasmid pTR2030 forms high-molecular-weight multimers in lactococci. Plasmid, 1991, 25, 105-112.	0.4	8
394	Isolation of chromosomal mutations of Lactococcus lactissubsp. lactisbiovar. diacetylactis 18-16 after introduction of Tn919. FEMS Microbiology Letters, 1991, 81, 135-140.	0.7	15
395	Bacteriophage and bacteriophage resistance in lactic acid bacteria. , 0, .		3