Colin Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6332332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 506-514.	17.8	5,773
2	Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488, 178-184.	27.8	2,618
3	Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 2005, 3, 777-788.	28.6	1,884
4	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	10.3	1,692
5	Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4586-4591.	7.1	1,418
6	The interaction between bacteria and bile. FEMS Microbiology Reviews, 2005, 29, 625-651.	8.6	1,331
7	Bacteriocins — a viable alternative to antibiotics?. Nature Reviews Microbiology, 2013, 11, 95-105.	28.6	1,312
8	Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Microbiology and Molecular Biology Reviews, 2003, 67, 429-453.	6.6	953
9	Bile Salt Hydrolase Activity in Probiotics. Applied and Environmental Microbiology, 2006, 72, 1729-1738.	3.1	900
10	Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13580-13585.	7.1	797
11	The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 649-667.	17.8	701
12	Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7617-7621.	7.1	690
13	Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews, 2002, 26, 49-71.	8.6	649
14	Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nature Microbiology, 2017, 2, 17057.	13.3	553
15	Bacteriocins: Biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 2006, 16, 1058-1071.	3.0	539
16	Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 2001, 25, 285-308.	8.6	528
17	Bacteriocin Production: a Probiotic Trait?. Applied and Environmental Microbiology, 2012, 78, 1-6.	3.1	505
18	Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7421-7426.	7.1	471

#	Article	IF	CITATIONS
19	The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. Cell Host and Microbe, 2019, 26, 527-541.e5.	11.0	449
20	Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against <i>Clostridium difficile</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9352-9357.	7.1	434
21	Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. International Journal of Food Microbiology, 1995, 28, 169-185.	4.7	352
22	A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Molecular Microbiology, 2001, 40, 465-475.	2.5	334
23	The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 196-208.	17.8	316
24	Effect of broad- and narrow-spectrum antimicrobials on <i>Clostridium difficile</i> and microbial diversity in a model of the distal colon. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4639-4644.	7.1	313
25	Bacteriophages and Bacterial Plant Diseases. Frontiers in Microbiology, 2017, 8, 34.	3.5	310
26	Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 2014, 38, 171-178.	4.2	303
27	High-pressure processing – effects on microbial food safety and food quality. FEMS Microbiology Letters, 2008, 281, 1-9.	1.8	298
28	Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science and Technology, 2014, 38, 113-124.	15.1	285
29	M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunology and Medical Microbiology, 2008, 52, 2-12.	2.7	254
30	Phage Therapy in the Food Industry. Annual Review of Food Science and Technology, 2014, 5, 327-349.	9.9	253
31	Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. International Journal of Food Microbiology, 2012, 152, 189-205.	4.7	252
32	Bacterial Lantibiotics: Strategies to Improve Therapeutic Potential. Current Protein and Peptide Science, 2005, 6, 61-75.	1.4	237
33	Contribution of Three Bile-Associated Loci, bsh , pva , and btlB , to Gastrointestinal Persistence and Bile Tolerance of Listeria monocytogenes. Infection and Immunity, 2005, 73, 894-904.	2.2	232
34	Identification of a Novel Two-Peptide Lantibiotic, Lichenicidin, following Rational Genome Mining for LanM Proteins. Applied and Environmental Microbiology, 2009, 75, 5451-5460.	3.1	224
35	Bacteriophages ϕMR299-2 and ϕNH-4 Can Eliminate Pseudomonas aeruginosa in the Murine Lung and on Cystic Fibrosis Lung Airway Cells. MBio, 2012, 3, e00029-12.	4.1	218
36	The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry. Frontiers in Microbiology, 2015, 6, 1418.	3.5	210

#	Article	IF	CITATIONS
37	New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Frontiers in Microbiology, 2016, 7, 1641.	3.5	210
38	The generation of nisin variants with enhanced activity against specific Gramâ€positive pathogens. Molecular Microbiology, 2008, 69, 218-230.	2.5	206
39	Tools for Functional Postgenomic Analysis of <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2008, 74, 3921-3934.	3.1	205
40	Identification of probiotic effector molecules: present state and future perspectives. Current Opinion in Biotechnology, 2018, 49, 217-223.	6.6	204
41	The mode of action of the lantibiotic lacticin 3147 – a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Molecular Microbiology, 2006, 61, 285-296.	2.5	202
42	Listeriolysin S, a Novel Peptide Haemolysin Associated with a Subset of Lineage I Listeria monocytogenes. PLoS Pathogens, 2008, 4, e1000144.	4.7	201
43	Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nature Sustainability, 2020, 3, 981-990.	23.7	195
44	A Five-Strain Probiotic Combination Reduces Pathogen Shedding and Alleviates Disease Signs in Pigs Challenged with Salmonella enterica Serovar Typhimurium. Applied and Environmental Microbiology, 2007, 73, 1858-1863.	3.1	190
45	Bile Stress Response in Listeria monocytogenes LO28: Adaptation, Cross-Protection, and Identification of Genetic Loci Involved in Bile Resistance. Applied and Environmental Microbiology, 2002, 68, 6005-6012.	3.1	189
46	Clostridium difficile Carriage in Elderly Subjects and Associated Changes in the Intestinal Microbiota. Journal of Clinical Microbiology, 2012, 50, 867-875.	3.9	184
47	The Vexed Relationship Between Clostridium Difficile and Inflammatory Bowel Disease: An Assessment of Carriage in an Outpatient Setting Among Patients in Remission. American Journal of Gastroenterology, 2009, 104, 1162-1169.	0.4	177
48	Molecular characterization of the arginine deiminase system in <i>Listeria monocytogenes</i> : regulation and role in acid tolerance. Environmental Microbiology, 2009, 11, 432-445.	3.8	174
49	The Lactobacillus casei Group: History and Health Related Applications. Frontiers in Microbiology, 2018, 9, 2107.	3.5	173
50	Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 fromLactococcus lactisDPC3147. Molecular Microbiology, 1998, 29, 1029-1038.	2.5	171
51	Sequencing-Based Analysis of the Bacterial and Fungal Composition of Kefir Grains and Milks from Multiple Sources. PLoS ONE, 2013, 8, e69371.	2.5	169
52	Isolation and Analysis of Bacteria with Antimicrobial Activities from the Marine Sponge Haliclona simulans Collected from Irish Waters. Marine Biotechnology, 2009, 11, 384-396.	2.4	168
53	Antimicrobial activity of lacticin 3147 against clinical Clostridium difficile strains. Journal of Medical Microbiology, 2007, 56, 940-946.	1.8	167
54	Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens. PLoS ONE, 2012, 7, e46884.	2.5	167

#	Article	IF	CITATIONS
55	Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome, 2018, 6, 68.	11.1	162
56	AgrDâ€dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in <i>Listeria monocytogenes</i> . Molecular Microbiology, 2009, 71, 1177-1189.	2.5	158
57	Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj Biofilms and Microbiomes, 2018, 4, 9.	6.4	154
58	Analysis of the Role of OpuC, an Osmolyte Transport System, in Salt Tolerance and Virulence Potential of Listeria monocytogenes. Applied and Environmental Microbiology, 2001, 67, 2692-2698.	3.1	151
59	Structural Characterization of Lacticin 3147, a Two-Peptide Lantibiotic with Synergistic Activity. Biochemistry, 2004, 43, 3049-3056.	2.5	150
60	A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. Journal of Antimicrobial Chemotherapy, 2009, 64, 546-551.	3.0	147
61	Exploiting gut bacteriophages for human health. Trends in Microbiology, 2014, 22, 399-405.	7.7	146
62	A Postgenomic Appraisal of Osmotolerance in Listeria monocytogenes. Applied and Environmental Microbiology, 2003, 69, 1-9.	3.1	145
63	Lantibiotic Resistance. Microbiology and Molecular Biology Reviews, 2015, 79, 171-191.	6.6	143
64	Isoprenoid biosynthesis in bacterial pathogens. Microbiology (United Kingdom), 2012, 158, 1389-1401.	1.8	142
65	A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes. Molecular Microbiology, 2004, 55, 1183-1195.	2.5	141
66	Streptolysin S-like virulence factors: the continuing sagA. Nature Reviews Microbiology, 2011, 9, 670-681.	28.6	140
67	Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Frontiers in Microbiology, 2017, 8, 1205.	3.5	140
68	The ABC Transporter AnrAB Contributes to the Innate Resistance of <i>Listeria monocytogenes</i> to Nisin, Bacitracin, and Various β-Lactam Antibiotics. Antimicrobial Agents and Chemotherapy, 2010, 54, 4416-4423.	3.2	139
69	Complete alanine scanning of the two omponent lantibiotic lacticin 3147: generating a blueprint for rational drug design. Molecular Microbiology, 2006, 62, 735-747.	2.5	135
70	Presence of GadD1 Glutamate Decarboxylase in Selected Listeria monocytogenes Strains Is Associated with an Ability To Grow at Low pH. Applied and Environmental Microbiology, 2005, 71, 2832-2839.	3.1	134
71	Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathogens, 2009, 1, 19.	3.4	134
72	Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Frontiers in Cellular and Infection Microbiology, 2014, 4, 9.	3.9	131

#	Article	IF	CITATIONS
73	Chapter 1 Understanding the Mechanisms by Which Probiotics Inhibit Gastrointestinal Pathogens. Advances in Food and Nutrition Research, 2009, 56, 1-15.	3.0	129
74	Heterologous Expression of BetL, a Betaine Uptake System, Enhances the Stress Tolerance of Lactobacillus salivarius UCC118. Applied and Environmental Microbiology, 2006, 72, 2170-2177.	3.1	126
75	The relationship between acid stress responses and virulence in Salmonella typhimurium and Listeria monocytogenes. International Journal of Food Microbiology, 1999, 50, 93-100.	4.7	120
76	Bioengineering Lantibiotics for Therapeutic Success. Frontiers in Microbiology, 2015, 6, 1363.	3.5	120
77	The LisRK Signal Transduction System Determines the Sensitivity of Listeria monocytogenes to Nisin and Cephalosporins. Antimicrobial Agents and Chemotherapy, 2002, 46, 2784-2790.	3.2	117
78	Posttranslational conversion of <scp>l</scp> -serines to <scp>d</scp> -alanines is vital for optimal production and activity of the lantibiotic lacticin 3147. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18584-18589.	7.1	116
79	Extensive Post-translational Modification, Including Serine to d-Alanine Conversion, in the Two-component Lantibiotic, Lacticin 3147. Journal of Biological Chemistry, 1999, 274, 37544-37550.	3.4	113
80	Probiotics, Enteric and Diarrheal Diseases, and Global Health. Gastroenterology, 2011, 140, 8-14.e9.	1.3	113
81	Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese. International Journal of Food Microbiology, 2012, 153, 58-65.	4.7	113
82	In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project's reference genome database. BMC Microbiology, 2015, 15, 183.	3.3	112
83	Analysis of the role of the Listeria monocytogenes F0F1-ATPase operon in the acid tolerance response. International Journal of Food Microbiology, 2000, 60, 137-146.	4.7	111
84	Disruption of Putative Regulatory Loci in <i>Listeria monocytogenes</i> Demonstrates a Significant Role for Fur and PerR in Virulence. Infection and Immunity, 2004, 72, 717-727.	2.2	107
85	Developing applications for lactococcal bacteriocins. Antonie Van Leeuwenhoek, 1999, 76, 337-346.	1.7	106
86	Sequential Actions of the Two Component Peptides of the Lantibiotic Lacticin 3147 Explain Its Antimicrobial Activity at Nanomolar Concentrations. Antimicrobial Agents and Chemotherapy, 2005, 49, 2606-2611.	3.2	106
87	Human Neutrophil Clearance of Bacterial Pathogens Triggers Anti-Microbial γδT Cell Responses in Early Infection. PLoS Pathogens, 2011, 7, e1002040.	4.7	106
88	Molecular and Physiological Analysis of the Role of Osmolyte Transporters BetL, Gbu, and OpuC in Growth of Listeria monocytogenes at Low Temperatures. Applied and Environmental Microbiology, 2004, 70, 2912-2918.	3.1	105
89	Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiology (United Kingdom), 2007, 153, 3563-3571.	1.8	105
90	Stress Adaptation in Foodborne Pathogens. Annual Review of Food Science and Technology, 2015, 6, 191-210.	9.9	105

#	Article	IF	CITATIONS
91	Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?. Frontiers in Microbiology, 2016, 7, 461.	3.5	105
92	Metagenomics and novel gene discovery. Virulence, 2014, 5, 399-412.	4.4	103
93	The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology (United Kingdom), 2009, 155, 2463-2475.	1.8	103
94	Viromes of one year old infants reveal the impact of birth mode on microbiome diversity. PeerJ, 2018, 6, e4694.	2.0	103
95	Improved Luciferase Tagging System for Listeria monocytogenes Allows Real-Time Monitoring In Vivo and In Vitro. Applied and Environmental Microbiology, 2007, 73, 3091-3094.	3.1	101
96	The Advantages and Challenges of Using Endolysins in a Clinical Setting. Viruses, 2021, 13, 680.	3.3	100
97	Identification of a novel two-peptide lantibiotic, Haloduracin, produced by the alkaliphileBacillus haloduransC-125. FEMS Microbiology Letters, 2007, 267, 64-71.	1.8	99
98	Bacterial bile salt hydrolase in host metabolism: Potential for influencing gastrointestinal microbe-host crosstalk. Gut Microbes, 2014, 5, 669-674.	9.8	99
99	Salmonella spp. survival strategies within the host gastrointestinal tract. Microbiology (United) Tj ETQq1 1 0.784	4314 rgBT 1.8	/Oygrlock I(
100	Relative Ability of Orally Administered Lactobacillus murinus To Predominate and Persist in the Porcine Gastrointestinal Tract. Applied and Environmental Microbiology, 2004, 70, 1895-1906.	3.1	95
101	Bioengineering of the model lantibiotic nisin. Bioengineered, 2015, 6, 187-192.	3.2	94
102	The Dps-like protein Fri of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells. Microbiology (United Kingdom), 2005, 151, 925-933.	1.8	93
103	Determinants of Reduced Genetic Capacity for Butyrate Synthesis by the Gut Microbiome in Crohn's Disease and Ulcerative Colitis. Journal of Crohn's and Colitis, 2018, 12, 204-216.	1.3	93
104	<i>Pseudomonas aeruginosa</i> RsmA Plays an Important Role during Murine Infection by Influencing Colonization, Virulence, Persistence, and Pulmonary Inflammation. Infection and Immunity, 2008, 76, 632-638.	2.2	92
105	The Acid Tolerance Response of Salmonella spp.: An adaptive strategy to survive in stressful environments prevailing in foods and the host. Food Research International, 2012, 45, 482-492.	6.2	92
106	The microbiology and treatment of human mastitis. Medical Microbiology and Immunology, 2018, 207, 83-94.	4.8	92
107	Multiple Deletions of the Osmolyte Transporters BetL, Gbu, and OpuC of Listeria monocytogenes Affect Virulence and Growth at High Osmolarity. Applied and Environmental Microbiology, 2002, 68, 4710-4716.	3.1	91
108	Impact of selectedLactobacillusandBifidobacteriumspecies onListeria monocytogenesinfection and the mucosal immune response. FEMS Immunology and Medical Microbiology, 2007, 50, 380-388.	2.7	91

#	Article	IF	CITATIONS
109	Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiology Ecology, 2008, 64, 317-327.	2.7	91
110	Intramammary infusion of a live culture of <i>Lactococcus lactis</i> for treatment of bovine mastitis: comparison with antibiotic treatment in field trials. Journal of Dairy Research, 2008, 75, 365-373.	1.4	91
111	Listeria monocytogenes PerR Mutants Display a Small-Colony Phenotype, Increased Sensitivity to Hydrogen Peroxide, and Significantly Reduced Murine Virulence. Applied and Environmental Microbiology, 2005, 71, 8314-8322.	3.1	90
112	Role for HtrA in Stress Induction and Virulence Potential in Listeria monocytogenes. Applied and Environmental Microbiology, 2005, 71, 4241-4247.	3.1	90
113	The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Molecular Microbiology, 2003, 49, 1227-1238.	2.5	88
114	In Vitro Activities of Nisin and Nisin Derivatives Alone and In Combination with Antibiotics against Staphylococcus Biofilms. Frontiers in Microbiology, 2016, 7, 508.	3.5	86
115	Two-Peptide Lantibiotics: A Medical Perspective. Mini-Reviews in Medicinal Chemistry, 2007, 7, 1236-1247.	2.4	84
116	Construction of p16S <i>lux</i> , a Novel Vector for Improved Bioluminescent Labeling of Gram-Negative Bacteria. Applied and Environmental Microbiology, 2007, 73, 7092-7095.	3.1	84
117	Studies with bioengineered Nisin peptides highlight the broadâ€spectrum potency of Nisin V. Microbial Biotechnology, 2010, 3, 473-486.	4.2	84
118	Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Frontiers in Microbiology, 2015, 6, 672.	3.5	83
119	Bioengineering of a Nisin Aâ€producing <i>Lactococcus lactis</i> to create isogenic strains producing the natural variants Nisin F, Q and Z. Microbial Biotechnology, 2011, 4, 375-382.	4.2	82
120	Contribution of Penicillin-Binding Protein Homologs to Antibiotic Resistance, Cell Morphology, and Virulence of Listeria monocytogenes EGDe. Antimicrobial Agents and Chemotherapy, 2006, 50, 2824-2828.	3.2	80
121	Exopolysaccharide-Producing Probiotic Lactobacilli Reduce Serum Cholesterol and Modify Enteric Microbiota in ApoE-Deficient Mice. Journal of Nutrition, 2014, 144, 1956-1962.	2.9	80
122	Comparison of the activities of the lantibiotics nisin and lacticin 3147 against clinically significant mycobacteria. International Journal of Antimicrobial Agents, 2010, 36, 132-136.	2.5	79
123	CesRK, a Two-Component Signal Transduction System in Listeria monocytogenes, Responds to the Presence of Cell Wall-Acting Antibiotics and Affects β-Lactam Resistance. Antimicrobial Agents and Chemotherapy, 2003, 47, 3421-3429.	3.2	77
124	Altered FXR signalling is associated with bile acid dysmetabolism in short bowel syndrome-associated liver disease. Journal of Hepatology, 2014, 61, 1115-1125.	3.7	76
125	A real time PCR assay for the detection and quantitation of Mycobacterium avium subsp. paratuberculosis using SYBR Green and the Light Cycler. Journal of Microbiological Methods, 2002, 51, 283-293.	1.6	75
126	Bacteriocin Gene-Trait matching across the complete Lactobacillus Pan-genome. Scientific Reports, 2017, 7, 3481.	3.3	75

#	Article	IF	CITATIONS
127	The interplay between classical and alternative isoprenoid biosynthesis controls γδT cell bioactivity ofListeria monocytogenes. FEBS Letters, 2004, 561, 99-104.	2.8	74
128	In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria. BMC Genomics, 2010, 11, 679.	2.8	74
129	Assessing the Contributions of the LiaS Histidine Kinase to the Innate Resistance of Listeria monocytogenes to Nisin, Cephalosporins, and Disinfectants. Applied and Environmental Microbiology, 2012, 78, 2923-2929.	3.1	74
130	Nisin H Is a New Nisin Variant Produced by the Gut-Derived Strain Streptococcus hyointestinalis DPC6484. Applied and Environmental Microbiology, 2015, 81, 3953-3960.	3.1	74
131	Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews, 2017, 41, S129-S153.	8.6	74
132	The truncated phage lysin CHAP _k eliminates <i>Staphylococcusaureus</i> in the nares of mice. Bioengineered Bugs, 2010, 1, 404-407.	1.7	73
133	Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese. Microbial Cell Factories, 2011, 10, S7.	4.0	73
134	Genomic Characterization of Listeria monocytogenes Isolates Associated with Clinical Listeriosis and the Food Production Environment in Ireland. Genes, 2018, 9, 171.	2.4	73
135	Tolerance of Listeria monocytogenes to Cell Envelope-Acting Antimicrobial Agents Is Dependent on SigB. Applied and Environmental Microbiology, 2006, 72, 2231-2234.	3.1	72
136	Intramammary infusion of a live culture for treatment of bovine mastitis: effect of live lactococci on the mammary immune response. Journal of Dairy Research, 2008, 75, 374-384.	1.4	72
137	Novel type I restriction specificities through domain shuffling of HsdS subunits in <i>Lactococcus lactis</i> . Molecular Microbiology, 2000, 36, 866-875.	2.5	71
138	Cronobacter spp. in Powdered Infant Formula. Journal of Food Protection, 2012, 75, 607-620.	1.7	71
139	Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Current Opinion in Food Science, 2015, 2, 51-57.	8.0	71
140	The dawning of a â€~Golden era' in lantibiotic bioengineering. Molecular Microbiology, 2010, 78, 1077-1087.	2.5	70
141	Classification of Bacteriocins from Gram-Positive Bacteria. , 2011, , 29-53.		70
142	Sequence-based analysis of the microbial composition of water kefir from multiple sources. FEMS Microbiology Letters, 2013, 348, 79-85.	1.8	70
143	Novel Luciferase Reporter System for In Vitro and Organ-Specific Monitoring of Differential Gene Expression in Listeria monocytogenes. Applied and Environmental Microbiology, 2006, 72, 2876-2884.	3.1	69
144	A Bioengineered Nisin Derivative to Control Biofilms of Staphylococcus pseudintermedius. PLoS ONE, 2015, 10, e0119684.	2.5	69

#	Article	IF	CITATIONS
145	Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. International Dairy Journal, 2017, 73, 1-9.	3.0	69
146	Recent advances in microbial fermentation for dairy and health. F1000Research, 2017, 6, 751.	1.6	69
147	Genome Mining for Radical SAM Protein Determinants Reveals Multiple Sactibiotic-Like Gene Clusters. PLoS ONE, 2011, 6, e20852.	2.5	68
148	Factors affecting survival of Listeria monocytogenes and Listeria innocua in soil samples. Archives of Microbiology, 2011, 193, 775-785.	2.2	68
149	Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome. ISME Journal, 2012, 6, 1916-1925.	9.8	67
150	Characterization of the groESL Operon inListeria monocytogenes: Utilization of Two Reporter Systems (gfp and hly) for Evaluating In Vivo Expression. Infection and Immunity, 2001, 69, 3924-3932.	2.2	66
151	Real-Time PCR Assay To Differentiate Listeriolysin S-Positive and -Negative Strains of <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2011, 77, 163-171.	3.1	66
152	Synergistic Nisin-Polymyxin Combinations for the Control of Pseudomonas Biofilm Formation. Frontiers in Microbiology, 2016, 7, 1713.	3.5	66
153	Three New Escherichia coli Phages from the Human Gut Show Promising Potential for Phage Therapy. PLoS ONE, 2016, 11, e0156773.	2.5	66
154	Novel Approaches to Improve the Intrinsic Microbiological Safety of Powdered Infant Milk Formula. Nutrients, 2015, 7, 1217-1244.	4.1	65
155	Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice. BMC Microbiology, 2008, 8, 161.	3.3	64
156	Administration of a live culture of <i>Lactococcus lactis</i> DPC 3147 into the bovine mammary gland stimulates the local host immune response, particularly <i>IL-1</i> β and <i>IL-8</i> gene expression. Journal of Dairy Research, 2009, 76, 340-348.	1.4	64
157	Investigation of the Mechanisms by Which <i>Listeria monocytogenes</i> Grows in Porcine Gallbladder Bile. Infection and Immunity, 2011, 79, 369-379.	2.2	63
158	Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Current Opinion in Food Science, 2018, 20, 1-6.	8.0	63
159	Stress Survival Islet 1 (SSI-1) Survey in <i>Listeria monocytogenes</i> Reveals an Insert Common to <i>Listeria innocua</i> in Sequence Type 121 <i>L. monocytogenes</i> Strains. Applied and Environmental Microbiology, 2011, 77, 2169-2173.	3.1	62
160	Intensive Mutagenesis of the Nisin Hinge Leads to the Rational Design of Enhanced Derivatives. PLoS ONE, 2013, 8, e79563.	2.5	62
161	Role for Compatible Solutes Glycine Betaine and l -Carnitine in Listerial Barotolerance. Applied and Environmental Microbiology, 2004, 70, 7555-7557.	3.1	61
162	Salivaricin P, One of a Family of Two-Component Antilisterial Bacteriocins Produced by Intestinal Isolates of Lactobacillus salivarius. Applied and Environmental Microbiology, 2007, 73, 3719-3723.	3.1	61

#	Article	IF	CITATIONS
163	Virulence or Niche Factors: What's in a Name?. Journal of Bacteriology, 2012, 194, 5725-5727.	2.2	61
164	Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms. PLoS ONE, 2015, 10, e0138651.	2.5	61
165	Production of the Bsa Lantibiotic by Community-Acquired <i>Staphylococcus aureus</i> Strains. Journal of Bacteriology, 2010, 192, 1131-1142.	2.2	60
166	Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Microbiome, 2019, 7, 7.	11.1	60
167	Identification and Disruption of the proBA Locus in Listeria monocytogenes : Role of Proline Biosynthesis in Salt Tolerance and Murine Infection. Applied and Environmental Microbiology, 2001, 67, 2571-2577.	3.1	59
168	Gut solutions to a gut problem: bacteriocins, probiotics and bacteriophage for control of Clostridium difficile infection. Journal of Medical Microbiology, 2013, 62, 1369-1378.	1.8	59
169	Use of enhanced nisin derivatives in combination with food-grade oils or citric acid to control Cronobacter sakazakii and Escherichia coli O157:H7. Food Microbiology, 2017, 65, 254-263.	4.2	59
170	Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract. BMC Microbiology, 2008, 8, 176.	3.3	58
171	Crossâ€immunity and immune mimicry as mechanisms of resistance to the lantibiotic lacticin 3147. Molecular Microbiology, 2009, 71, 1043-1054.	2.5	58
172	TelA Contributes to the Innate Resistance of <i>Listeria monocytogenes</i> to Nisin and Other Cell Wall-Acting Antibiotics. Antimicrobial Agents and Chemotherapy, 2010, 54, 4658-4663.	3.2	58
173	Production of Multiple Bacteriocins from a Single Locus by Gastrointestinal Strains of Lactobacillus salivarius. Journal of Bacteriology, 2011, 193, 6973-6982.	2.2	58
174	The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit Gram negative bacteria. BMC Microbiology, 2013, 13, 212.	3.3	58
175	Enterococcus and Lactobacillus contamination of raw milk in a farm dairy environment. International Journal of Food Microbiology, 2007, 114, 243-251.	4.7	57
176	Characterization of enterocin- and salivaricin-producing lactic acid bacteria from the mammalian gastrointestinal tract. FEMS Microbiology Letters, 2009, 291, 24-34.	1.8	57
177	In vivo activity of Nisin A and Nisin V against Listeria monocytogenesin mice. BMC Microbiology, 2013, 13, 23.	3.3	57
178	Analysis of the role of betL in contributing to the growth and survival of Listeria monocytogenes LO28. International Journal of Food Microbiology, 2000, 60, 261-268.	4.7	56
179	Acid Stress Responses in Listeria monocytogenes. Advances in Applied Microbiology, 2008, 65, 67-91.	2.4	56
180	Understanding mode of action can drive the translational pipeline towards more reliable health benefits for probiotics. Current Opinion in Biotechnology, 2019, 56, 55-60.	6.6	55

#	Article	IF	CITATIONS
181	The use of listeriolysin to identify in vivo induced genes in the Gram-positive intracellular pathogen Listeria monocytogenes. Molecular Microbiology, 2000, 36, 498-507.	2.5	54
182	Production of enterolysin A by a raw milk enterococcal isolate exhibiting multiple virulence factors. Microbiology (United Kingdom), 2003, 149, 655-664.	1.8	54
183	Saturation Mutagenesis of Lysine 12 Leads to the Identification of Derivatives of Nisin A with Enhanced Antimicrobial Activity. PLoS ONE, 2013, 8, e58530.	2.5	54
184	Detection and Enumeration of Spore-Forming Bacteria in Powdered Dairy Products. Frontiers in Microbiology, 2017, 8, 109.	3.5	54
185	Overcoming barriers to phage application in food and feed. Current Opinion in Biotechnology, 2020, 61, 38-44.	6.6	54
186	Greater high-pressure resistance of bacteria in oysters than in buffer. Innovative Food Science and Emerging Technologies, 2005, 6, 83-90.	5.6	53
187	Inactivation of the <scp>SecA</scp> 2 protein export pathway in <i><scp>L</scp>isteria monocytogenes</i> promotes cell aggregation, impacts biofilm architecture and induces biofilm formation in environmental condition. Environmental Microbiology, 2014, 16, 1176-1192.	3.8	53
188	Generation of Food-Grade Lactococcal Starters Which Produce the Lantibiotics Lacticin 3147 and Lacticin 481. Applied and Environmental Microbiology, 2003, 69, 3681-3685.	3.1	52
189	Efficacy of a teat dip containing the bacteriocin lacticin 3147 to eliminate Gram-positive pathogens associated with bovine mastitis. Journal of Dairy Research, 2010, 77, 231-238.	1.4	52
190	The 3D Structure of Thuricin CD, a Two-Component Bacteriocin with Cysteine Sulfur to α-Carbon Cross-links. Journal of the American Chemical Society, 2011, 133, 7680-7683.	13.7	52
191	Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Current Opinion in Biotechnology, 2013, 24, 130-134.	6.6	52
192	Naturally Occurring Lactococcal Plasmid pAH90 Links Bacteriophage Resistance and Mobility Functions to a Food-Grade Selectable Marker. Applied and Environmental Microbiology, 2001, 67, 929-937.	3.1	51
193	The Sactibiotic Subclass of Bacteriocins: An Update. Current Protein and Peptide Science, 2015, 16, 549-558.	1.4	51
194	Regulation of immunity to the two omponent lantibiotic, lacticin 3147, by the transcriptional repressor LtnR. Molecular Microbiology, 2001, 39, 982-993.	2.5	50
195	The changing face of dairy starter culture research: From genomics to economics. International Journal of Dairy Technology, 2010, 63, 149-170.	2.8	50
196	Fate and efficacy of lacticin 3147-producing Lactococcus lactis in the mammalian gastrointestinal tract. FEMS Microbiology Ecology, 2011, 76, 602-614.	2.7	50
197	Bioengineered nisin derivatives with enhanced activity in complex matrices. Microbial Biotechnology, 2012, 5, 501-508.	4.2	50
198	Heterologous Expression of Biopreservative Bacteriocins With a View to Low Cost Production. Frontiers in Microbiology, 2018, 9, 1654.	3.5	50

#	Article	IF	CITATIONS
199	Rapid Real-Time PCR Assay for Detection and Quantitation of Mycobacterium avium subsp. paratuberculosis DNA in Artificially Contaminated Milk. Applied and Environmental Microbiology, 2004, 70, 4561-4568.	3.1	49
200	The gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs. Bioengineered Bugs, 2010, 1, 408-412.	1.7	49
201	Novel cultures for cheese improvement. Trends in Food Science and Technology, 2000, 11, 96-104.	15.1	48
202	Glutamate Decarboxylase-Mediated Nisin Resistance in <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2010, 76, 6541-6546.	3.1	48
203	An in vitro cell-culture model demonstrates internalin- and hemolysin-independent translocation of Listeria monocytogenes across M cells. Microbial Pathogenesis, 2006, 41, 241-250.	2.9	47
204	Patho-biotechnology: using bad bugs to do good things. Current Opinion in Biotechnology, 2006, 17, 211-216.	6.6	47
205	Controlled functional expression of the bacteriocins pediocin PA-1 and bactofencin A in Escherichia coli. Scientific Reports, 2017, 7, 3069.	3.3	47
206	Mutualistic interplay between bacteriophages and bacteria in the human gut. Nature Reviews Microbiology, 2022, 20, 737-749.	28.6	47
207	Exposure to bile influences biofilm formation by Listeria monocytogenes. Gut Pathogens, 2009, 1, 11.	3.4	46
208	Bactofencin A, a New Type of Cationic Bacteriocin with Unusual Immunity. MBio, 2013, 4, e00498-13.	4.1	46
209	Acid stress management by Cronobacter sakazakii. International Journal of Food Microbiology, 2014, 178, 21-28.	4.7	45
210	Bioengineering nisin to overcome the nisin resistance protein. Molecular Microbiology, 2019, 111, 717-731.	2.5	45
211	RNA Phage Biology in a Metagenomic Era. Viruses, 2018, 10, 386.	3.3	45
212	Phage-mediated horizontal gene transfer and its implications for the human gut microbiome. Gastroenterology Report, 2022, 10, goac012.	1.3	45
213	Specific Osmolyte Transporters Mediate Bile Tolerance in <i>Listeria monocytogenes</i> . Infection and Immunity, 2009, 77, 4895-4904.	2.2	44
214	Lacticin 3147 - Biosynthesis, Molecular Analysis, Immunity, Bioengineering and Applications. Current Protein and Peptide Science, 2012, 13, 193-204.	1.4	43
215	The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells. Gut Pathogens, 2016, 8, 20.	3.4	43
216	Polymorphisms in <i>rpoS</i> and Stress Tolerance Heterogeneity in Natural Isolates of Cronobacter sakazakii. Applied and Environmental Microbiology, 2012, 78, 3975-3984.	3.1	42

#	Article	IF	CITATIONS
217	Efficacies of Nisin A and Nisin V Semipurified Preparations Alone and in Combination with Plant Essential Oils for Controlling Listeria monocytogenes. Applied and Environmental Microbiology, 2015, 81, 2762-2769.	3.1	42
218	A Food-Grade Approach for Functional Analysis and Modification of Native Plasmids in <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 2003, 69, 702-706.	3.1	41
219	A review of the systematic review process and its applicability for use in evaluating evidence for health claims on probiotic foods in the European Union. Nutrition Journal, 2015, 14, 16.	3.4	41
220	Host Specific Diversity in Lactobacillus johnsonii as Evidenced by a Major Chromosomal Inversion and Phage Resistance Mechanisms. PLoS ONE, 2011, 6, e18740.	2.5	41
221	Analysis of Anti-Clostridium difficile Activity of Thuricin CD, Vancomycin, Metronidazole, Ramoplanin, and Actagardine, both Singly and in Paired Combinations. Antimicrobial Agents and Chemotherapy, 2013, 57, 2882-2886.	3.2	40
222	Things Are Getting Hairy: Enterobacteria Bacteriophage vB_PcaM_CBB. Frontiers in Microbiology, 2017, 8, 44.	3.5	40
223	Insights into the Mode of Action of the Sactibiotic Thuricin CD. Frontiers in Microbiology, 2017, 8, 696.	3.5	40
224	Divergent Evolution of the Activity and Regulation of the Glutamate Decarboxylase Systems in Listeria monocytogenes EGD-e and 10403S: Roles in Virulence and Acid Tolerance. PLoS ONE, 2014, 9, e112649.	2.5	40
225	Mutations in the Listerial proB Gene Leading to Proline Overproduction: Effects on Salt Tolerance and Murine Infection. Applied and Environmental Microbiology, 2001, 67, 4560-4565.	3.1	39
226	A Putative P-Type ATPase Required for Virulence and Resistance to Haem Toxicity in Listeria monocytogenes. PLoS ONE, 2012, 7, e30928.	2.5	39
227	Functional Environmental Screening of a Metagenomic Library Identifies stlA; A Unique Salt Tolerance Locus from the Human Gut Microbiome. PLoS ONE, 2013, 8, e82985.	2.5	39
228	Atypical Listeria innocua strains possess an intact LIPI-3. BMC Microbiology, 2014, 14, 58.	3.3	39
229	Non-antibiotic microbial solutions for bovine mastitis – live biotherapeutics, bacteriophage, and phage lysins. Critical Reviews in Microbiology, 2019, 45, 564-580.	6.1	39
230	Strategy for Manipulation of Cheese Flora Using Combinations of Lacticin 3147-Producing and -Resistant Cultures. Applied and Environmental Microbiology, 2001, 67, 2699-2704.	3.1	38
231	Spontaneous resistance inLactococcus lactisIL1403 to the lantibiotic lacticin 3147. FEMS Microbiology Letters, 2006, 260, 77-83.	1.8	38
232	Fate of the Two-Component Lantibiotic Lacticin 3147 in the Gastrointestinal Tract. Applied and Environmental Microbiology, 2007, 73, 7103-7109.	3.1	38
233	Bioavailability of the anti-clostridial bacteriocin thuricin CD in gastrointestinal tract. Microbiology (United Kingdom), 2014, 160, 439-445.	1.8	38
234	Phage therapy targeting <i>Escherichia coli—</i> a story with no end?. FEMS Microbiology Letters, 2016, 363, fnw256.	1.8	38

#	Article	IF	CITATIONS
235	Raw donkey milk as a source of Enterococcus diversity: Assessment of their technological properties and safety characteristics. Food Control, 2017, 73, 81-90.	5.5	38
236	Overproduction of Wild-Type and Bioengineered Derivatives of the Lantibiotic Lacticin 3147. Applied and Environmental Microbiology, 2006, 72, 4492-4496.	3.1	37
237	Development of multiple strain competitive index assays for Listeria monocytogenes using pIMC; a new site-specific integrative vector. BMC Microbiology, 2008, 8, 96.	3.3	37
238	The Effect of Dietary Supplementation with Spent Cider Yeast on the Swine Distal Gut Microbiome. PLoS ONE, 2013, 8, e75714.	2.5	37
239	A Bioengineered Nisin Derivative, M21A, in Combination with Food Grade Additives Eradicates Biofilms of Listeria monocytogenes. Frontiers in Microbiology, 2016, 7, 1939.	3.5	37
240	Patho-Biotechnology; Using Bad Bugs to Make Good Bugs Better. Science Progress, 2007, 90, 1-14.	1.9	36
241	Directed evolution and targeted mutagenesis to murinize listeria monocytogenes internalin A for enhanced infectivity in the murine oral infection model. BMC Microbiology, 2010, 10, 318.	3.3	36
242	HmgR, a key enzyme in the mevalonate pathway for isoprenoid biosynthesis, is essential for growth of Listeria monocytogenes EGDe. Microbiology (United Kingdom), 2012, 158, 1684-1693.	1.8	36
243	Metagenomic Identification of a Novel Salt Tolerance Gene from the Human Gut Microbiome Which Encodes a Membrane Protein with Homology to a brp/blh-Family β-Carotene 15,15′-Monooxygenase. PLoS ONE, 2014, 9, e103318.	2.5	36
244	Oral Delivery of Nisin in Resistant Starch Based Matrices Alters the Gut Microbiota in Mice. Frontiers in Microbiology, 2018, 9, 1186.	3.5	36
245	Transposon mutagenesis reveals genes involved in osmotic stress and drying in Cronobacter sakazakii. Food Research International, 2014, 55, 45-54.	6.2	35
246	Detection of sporadic cases of Norwalk-like virus (NLV) and astrovirus infection in a single Irish hospital from 1996 to 1998. Journal of Clinical Virology, 2000, 17, 109-117.	3.1	34
247	The bacteriocin bactofencin A subtly modulates gut microbial populations. Anaerobe, 2016, 40, 41-49.	2.1	34
248	The lantibiotic lacticin 3147 produced in a milk-based medium improves the efficacy of a bismuth-based teat seal in cattle deliberately infected with Staphylococcus aureus. Journal of Dairy Research, 2005, 72, 159-167.	1.4	33
249	Probiotics in Transition. Clinical Gastroenterology and Hepatology, 2012, 10, 1220-1224.	4.4	33
250	Structure-Activity Relationship of Synthetic Variants of the Milk-Derived Antimicrobial Peptide α _{s2} -Casein f(183–207). Applied and Environmental Microbiology, 2013, 79, 5179-5185.	3.1	33
251	The potential for emerging therapeutic options for <i>Clostridium difficile</i> infection. Gut Microbes, 2014, 5, 696-710.	9.8	33
252	Rotavirus survival and stability in foods as determined by an optimised plaque assay procedure. International Journal of Food Microbiology, 2000, 61, 177-185.	4.7	32

#	Article	IF	CITATIONS
253	Identification and disruption ofbtlA, a locus involved in bile tolerance and general stress resistance inListeria monocytogenes. FEMS Microbiology Letters, 2003, 218, 31-38.	1.8	31
254	Kluyveromyces lactis and Saccharomyces cerevisiae, two potent deacidifying and volatile-sulphur-aroma-producing microorganisms of the cheese ecosystem. Applied Microbiology and Biotechnology, 2006, 73, 434-442.	3.6	31
255	Effect of Bioengineering Lacticin 3147 Lanthionine Bridges on Specific Activity and Resistance to Heat and Proteases. Chemistry and Biology, 2010, 17, 1151-1160.	6.0	31
256	Formicin – a novel broad-spectrum two-component lantibiotic produced by Bacillus paralicheniformis APC 1576. Microbiology (United Kingdom), 2016, 162, 1662-1671.	1.8	31
257	Transcriptional Regulation and PosttranslationalActivity of the Betaine Transporter BetL in Listeriamonocytogenes Are Controlled by EnvironmentalSalinity. Journal of Bacteriology, 2003, 185, 7140-7144.	2.2	30
258	Synthesis of Trypsin-Resistant Variants of the Listeria-Active Bacteriocin Salivaricin P. Applied and Environmental Microbiology, 2010, 76, 5356-5362.	3.1	30
259	The impact of iron on Listeria monocytogenes; inside and outside the host. Current Opinion in Biotechnology, 2011, 22, 194-199.	6.6	30
260	A System for the Random Mutagenesis of the Two-Peptide Lantibiotic Lacticin 3147: Analysis of Mutants Producing Reduced Antibacterial Activities. Journal of Molecular Microbiology and Biotechnology, 2007, 13, 226-234.	1.0	30
261	Subspecies diversity in bacteriocin production by intestinal <i>Lactobacillus salivarius</i> strains. Gut Microbes, 2012, 3, 468-473.	9.8	29
262	Combined metagenomic and phenomic approaches identify a novel salt tolerance gene from the human gut microbiome. Frontiers in Microbiology, 2014, 5, 189.	3.5	29
263	Phages & antibiotic resistance: are the most abundant entities on earth ready for a comeback?. Future Microbiology, 2018, 13, 711-726.	2.0	29
264	Controlled Autolysis and Enzyme Release in a Recombinant Lactococcal Strain Expressing the Metalloendopeptidase Enterolysin A. Applied and Environmental Microbiology, 2004, 70, 1744-1748.	3.1	28
265	Analysis of the Isoprenoid Biosynthesis Pathways in <i>Listeria monocytogenes</i> Reveals a Role for the Alternative 2-C-Methyl- <scp>d</scp> -Erythritol 4-Phosphate Pathway in Murine Infection. Infection and Immunity, 2008, 76, 5392-5401.	2.2	28
266	Gut osmolarity: A key environmental cue initiating the gastrointestinal phase of Listeria monocytogenes infection?. Medical Hypotheses, 2007, 69, 1090-1092.	1.5	27
267	â€ [~] Bioengineered Bugs' – A patho-biotechnology approach to probiotic research and applications. Medical Hypotheses, 2008, 70, 167-169.	1.5	27
268	Food reformulations for improved health: A potential risk for microbial food safety?. Medical Hypotheses, 2007, 69, 1323-1324.	1.5	25
269	Comparison of the Potency of the Lipid II Targeting Antimicrobials Nisin, Lacticin 3147 and Vancomycin Against Gram-Positive Bacteria. Probiotics and Antimicrobial Proteins, 2012, 4, 108-115.	3.9	25
270	Investigation of the role of ZurR in the physiology and pathogenesis of Listeria monocytogenes. FEMS Microbiology Letters, 2012, 327, 118-125.	1.8	25

#	Article	IF	CITATIONS
271	Phages of life – the path to pharma. British Journal of Pharmacology, 2018, 175, 412-418.	5.4	25
272	Bacteriophage endolysins as a potential weapon to combat <i>Clostridioides difficile</i> infection. Gut Microbes, 2020, 12, 1813533.	9.8	25
273	A Classification System for Defining and Estimating Dietary Intake of Live Microbes in US Adults and Children. Journal of Nutrition, 2022, 152, 1729-1736.	2.9	25
274	Molecular detection and sequencing of ?Norwalk-like viruses? in outbreaks and sporadic cases of gastroenteritis in Ireland. Journal of Medical Virology, 2001, 65, 388-394.	5.0	24
275	Pre-inoculation enrichment procedure enhances the performance of bacteriocinogenic Lactococcus lactis meat starter culture. International Journal of Food Microbiology, 2001, 64, 151-159.	4.7	24
276	Antimicrobials. Gut Microbes, 2013, 4, 48-53.	9.8	24
277	<i>In Vivo</i> Assessment of Growth and Virulence Gene Expression during Commensal and Pathogenic Lifestyles of <i>luxABCDE</i> -Tagged Enterococcus faecalis Strains in Murine Gastrointestinal and Intravenous Infection Models. Applied and Environmental Microbiology, 2013, 79, 3986-3997.	3.1	24
278	Heat resistance of Cronobacter sakazakii DPC 6529 and its behavior in reconstituted powdered infant formula. Food Research International, 2015, 69, 401-409.	6.2	24
279	Impact of Environmental Factors on Bacteriocin Promoter Activity in Gut-Derived Lactobacillus salivarius. Applied and Environmental Microbiology, 2015, 81, 7851-7859.	3.1	24
280	Bacteriophage Endolysins and their Applications. Science Progress, 2016, 99, 183-199.	1.9	24
281	Simulated gastrointestinal digestion of nisin and interaction between nisin and bile. LWT - Food Science and Technology, 2017, 86, 530-537.	5.2	24
282	In silico Prediction and Exploration of Potential Bacteriocin Gene Clusters Within the Bacterial Genus Geobacillus. Frontiers in Microbiology, 2018, 9, 2116.	3.5	24
283	Identification and characterisation of capidermicin, a novel bacteriocin produced by Staphylococcus capitis. PLoS ONE, 2019, 14, e0223541.	2.5	24
284	Reply to: Postbiotics — when simplification fails to clarify. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 827-828.	17.8	24
285	Relatedness between the two-component lantibiotics lacticin 3147 and staphylococcin C55 based on structure, genetics and biological activity. BMC Microbiology, 2007, 7, 24.	3.3	23
286	Designer probiotics: a potential therapeutic for Clostridium difficile?. Journal of Medical Microbiology, 2008, 57, 793-794.	1.8	23
287	Probiotic and prebiotic claims in Europe: seeking a clear roadmap. British Journal of Nutrition, 2011, 106, 1765-1767.	2.3	23
288	A Simple Method for the Purification of Nisin. Probiotics and Antimicrobial Proteins, 2017, 9, 363-369.	3.9	23

#	Article	IF	CITATIONS
289	Giant oversights in the human gut virome. Gut, 2020, 69, 1357-1358.	12.1	23
290	The proceedings of the Tenth Symposium on Lactic Acid Bacteria. Microbial Cell Factories, 2011, 10, S1.	4.0	22
291	Efficacy of Organic Acids, Bacteriocins, and the Lactoperoxidase System in Inhibiting the Growth of Cronobacter spp. in Rehydrated Infant Formula. Journal of Food Protection, 2012, 75, 1734-1742.	1.7	22
292	Homologues and Bioengineered Derivatives of LtnJ Vary in Ability to Form <scp>d</scp> -Alanine in the Lantibiotic Lacticin 3147. Journal of Bacteriology, 2012, 194, 708-714.	2.2	22
293	Saturation mutagenesis of selected residues of the αâ€peptide of the lantibiotic lacticin 3147 yields a derivative with enhanced antimicrobial activity. Microbial Biotechnology, 2013, 6, 564-575.	4.2	22
294	The Genus Macrococcus. Advances in Applied Microbiology, 2018, 105, 1-50.	2.4	22
295	â€~Bac' to the future: bioengineering lantibiotics for designer purposes. Biochemical Society Transactions, 2012, 40, 1492-1497.	3.4	21
296	A single point mutation in the listerial <i>betL</i> l̃ƒ ^A -dependent promoter leads to improved osmo- and chill-tolerance and a morphological shift at elevated osmolarity. Bioengineered, 2013, 4, 401-407.	3.2	21
297	Nisin in Combination with Cinnamaldehyde and EDTA to Control Growth of Escherichia coli Strains of Swine Origin. Antibiotics, 2017, 6, 35.	3.7	21
298	Occurrence, Persistence, and Virulence Potential of <i>Listeria ivanovii</i> in Foods and Food Processing Environments in the Republic of Ireland. BioMed Research International, 2015, 2015, 1-10.	1.9	20
299	Proteomics as the final step in the functional metagenomics study of antimicrobial resistance. Frontiers in Microbiology, 2015, 6, 172.	3.5	20
300	The potency of the broadÂspectrum bacteriocin, bactofencin A, against staphylococci is highly dependent on primary structure, N-terminal charge and disulphide formation. Scientific Reports, 2018, 8, 11833.	3.3	20
301	Characterization of a Bacteriophage-Derived Murein Peptidase for Elimination of Antibiotic-Resistant Staphylococcus aureus. Current Protein and Peptide Science, 2016, 17, 183-190.	1.4	20
302	Manipulation of charged residues within the twoâ€peptide lantibiotic lacticin 3147. Microbial Biotechnology, 2010, 3, 222-234.	4.2	19
303	Residual Antibiotics Disrupt Meat Fermentation and Increase Risk of Infection. MBio, 2012, 3, e00190-12.	4.1	19
304	A mutant in the Listeria monocytogenes Fur-regulated virulence locus (frvA) induces cellular immunity and confers protection against listeriosis in mice. Journal of Medical Microbiology, 2013, 62, 185-190.	1.8	19
305	A Live Bio-Therapeutic for Mastitis, Containing Lactococcus lactis DPC3147 With Comparable Efficacy to Antibiotic Treatment. Frontiers in Microbiology, 2019, 10, 2220.	3.5	19
306	Probiotics and pharmabiotics. Bioengineered Bugs, 2010, 1, 79-84.	1.7	18

#	Article	IF	CITATIONS
307	Improving the Stress Tolerance of Probiotic Cultures: Recent Trends and Future Directions. , 2011, , 395-438.		18
308	Altering the Composition of Caseicins A and B as a Means of Determining the Contribution of Specific Residues to Antimicrobial Activity. Applied and Environmental Microbiology, 2011, 77, 2496-2501.	3.1	18
309	Shining light on food microbiology; applications of Lux-tagged microorganisms in the food industry. Trends in Food Science and Technology, 2013, 32, 4-15.	15.1	18
310	Reincarnation of Bacteriocins From the Lactobacillus Pangenomic Graveyard. Frontiers in Microbiology, 2018, 9, 1298.	3.5	18
311	Prostate-Specimen Antigen (PSA) Screening and Shared Decision Making Among Deaf and Hearing Male Patients. Journal of Cancer Education, 2020, 35, 28-35.	1.3	18
312	Microbiome-based environmental monitoring of a dairy processing facility highlights the challenges associated with low microbial-load samples. Npj Science of Food, 2021, 5, 4.	5.5	18
313	Biases in Viral Metagenomics-Based Detection, Cataloguing and Quantification of Bacteriophage Genomes in Human Faeces, a Review. Microorganisms, 2021, 9, 524.	3.6	18
314	Leviviricetes: expanding and restructuring the taxonomy of bacteria-infecting single-stranded RNA viruses. Microbial Genomics, 2021, 7, .	2.0	18
315	High pressure-induced inactivation of Qβ coliphage and c2 phage in oysters and in culture media. International Journal of Food Microbiology, 2006, 106, 105-110.	4.7	17
316	Generation of the antimicrobial peptide caseicin A from casein byÂhydrolysis with thermolysin enzymes. International Dairy Journal, 2015, 49, 1-7.	3.0	17
317	Bio-Engineered Nisin with Increased Anti-Staphylococcus and Selectively Reduced Anti-Lactococcus Activity for Treatment of Bovine Mastitis. International Journal of Molecular Sciences, 2021, 22, 3480.	4.1	17
318	A Postbiotic Consisting of Heat-Treated Lactobacilli Has a Bifidogenic Effect in Pure Culture and in Human Fermented Fecal Communities. Applied and Environmental Microbiology, 2021, 87, .	3.1	17
319	Rational Design of Improved Pharmabiotics. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-7.	3.0	16
320	Rethinking "probiotics― Gut Microbes, 2013, 4, 269-270.	9.8	16
321	Contribution of the novel sulfur-producing adjunct Lactobacillus nodensis to flavor development in Gouda cheese. Journal of Dairy Science, 2017, 100, 4322-4334.	3.4	16
322	Development of a Click Beetle Luciferase Reporter System for Enhanced Bioluminescence Imaging of Listeria monocytogenes: Analysis in Cell Culture and Murine Infection Models. Frontiers in Microbiology, 2017, 8, 1797.	3.5	16
323	The Effect of a Commercially Available Bacteriophage and Bacteriocin on Listeria monocytogenes in Coleslaw. Viruses, 2019, 11, 977.	3.3	16
324	Isolation of chromosomal mutations ofLactococcus lactissubsp.lactisbiovar.diacetylactis18-16 after introduction of Tn919. FEMS Microbiology Letters, 1991, 81, 135-140.	1.8	15

#	Article	IF	CITATIONS
325	Variable Bacteriocin Production in the Commercial Starter Lactococcus lactis DPC4275 Is Linked to the Formation of the Cointegrate Plasmid pMRC02. Applied and Environmental Microbiology, 2004, 70, 34-42.	3.1	15
326	Carriage of Clostridium difficile in outpatients with irritable bowel syndrome. Journal of Medical Microbiology, 2012, 61, 1290-1294.	1.8	15
327	Selection for Loss of RpoS in Cronobacter sakazakii by Growth in the Presence of Acetate as a Carbon Source. Applied and Environmental Microbiology, 2013, 79, 2099-2102.	3.1	15
328	Genome analysis of the staphylococcal temperate phage DW2 and functional studies on the endolysin and tail hydrolase. Bacteriophage, 2014, 4, e28451.	1.9	15
329	Mesophilic Sporeformers Identified in Whey Powder by Using Shotgun Metagenomic Sequencing. Applied and Environmental Microbiology, 2018, 84, .	3.1	15
330	Exploitation of Plasmid pMRC01 To Direct Transfer of Mobilizable Plasmids into Commercial Lactococcal Starter Strains. Applied and Environmental Microbiology, 2001, 67, 2853-2858.	3.1	14
331	Control of food spoiling bacteria in cooked meat products with nisin, lacticin 3147, and a lacticin 3147 and a Bacticin 3147-producing starter culture. European Food Research and Technology, 2004, 219, 6-13.	3.3	14
332	Compatible solutes: the key to Listeria's success as a versatile gastrointestinal pathogen?. Gut Pathogens, 2010, 2, 20.	3.4	14
333	Characterization of an Endolysin Targeting Clostridioides difficile That Affects Spore Outgrowth. International Journal of Molecular Sciences, 2021, 22, 5690.	4.1	14
334	Recipe for Success: Suggestions and Recommendations for the Isolation and Characterisation of Bacteriocins. International Journal of Microbiology, 2021, 2021, 1-19.	2.3	14
335	Generation of Nonpolar Deletion Mutants in Listeria monocytogenes Using the "SOEing―Method. Methods in Molecular Biology, 2014, 1157, 187-200.	0.9	14
336	Evaluation of colostrum-derived human mammary-associated serum amyloid A3 (M-SAA3) protein and peptide derivatives for the prevention of enteric infection: <i>in vitro</i> and in murine models of intestinal disease. FEMS Immunology and Medical Microbiology, 2009, 55, 404-413.	2.7	13
337	A rapid PCR-based method to discriminate Macrococcus caseolyticus and Macrococcus canis from closely-related Staphylococcus species based on the ctaC gene sequence. Journal of Microbiological Methods, 2018, 152, 36-38.	1.6	13
338	Investigation of the Antimicrobial Activity of Bacillus licheniformis Strains Isolated from Retail Powdered Infant Milk Formulae. Probiotics and Antimicrobial Proteins, 2014, 6, 32-40.	3.9	12
339	Balancing the risks and rewards of live biotherapeutics. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 133-134.	17.8	12
340	Characterizing Phage-Host Interactions in a Simplified Human Intestinal Barrier Model. Microorganisms, 2020, 8, 1374.	3.6	12
341	A Bioengineered Nisin Derivative To Control Streptococcus uberis Biofilms. Applied and Environmental Microbiology, 2021, 87, e0039121.	3.1	12
342	The presence of pMRC01 promotes greater cell permeability and autolysis in lactococcal starter cultures. International Journal of Food Microbiology, 2009, 133, 217-224.	4.7	11

#	Article	IF	CITATIONS
343	Food Safety: What Can We Learn From Genomics?. Annual Review of Food Science and Technology, 2010, 1, 341-361.	9.9	11
344	Real-Time Monitoring of Luciferase-Tagged Cronobacter sakazakii in Reconstituted Infant Milk Formula. Journal of Food Protection, 2011, 74, 573-579.	1.7	11
345	Bovine mastitis is a polymicrobial disease requiring a polydiagnostic approach. International Dairy Journal, 2019, 99, 104539.	3.0	11
346	A New Phage Lysin Isolated from the Oral Microbiome Targeting Streptococcus pneumoniae. Pharmaceuticals, 2020, 13, 478.	3.8	11
347	An oxidation resistant pediocin PA-1 derivative and penocin A display effective anti- <i>Listeria</i> activity in a model human gut environment. Gut Microbes, 2022, 14, 2004071.	9.8	11
348	High local failure rates despite high marginâ€negative resection rates in a cohort of borderline resectable and locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy following multiâ€agent chemotherapy. Cancer Medicine, 2022, , .	2.8	11
349	Penicillin-binding Proteins (PBP) and Lmo0441 (a PBP-like protein) play a role in Beta-lactam sensitivity of Listeria monocytogenes. Gut Pathogens, 2009, 1, 23.	3.4	10
350	Genome Sequence of Jumbo Phage vB_AbaM_ME3 of <i>Acinetobacter baumanni</i> . Genome Announcements, 2016, 4, .	0.8	10
351	<i>Listeria monocytogenes</i> mutants defective in gallbladder replication represent safety-enhanced vaccine delivery platforms. Human Vaccines and Immunotherapeutics, 2016, 12, 2059-2063.	3.3	10
352	Assessing and Providing Culturally Competent Care in Radiation Oncology for Deaf Cancer Patients. Advances in Radiation Oncology, 2020, 5, 333-344.	1.2	10
353	Screening of rationally designed oligopeptides for Listeria monocytogenes detection by means of a high density colorimetric microarray. Mikrochimica Acta, 2008, 163, 227-235.	5.0	9
354	<i>E. coli</i> O104:H4: Social media and the characterization of an emerging pathogen. Bioengineered Bugs, 2011, 2, 189-193.	1.7	9
355	The <i>spiFEG</i> Locus in Streptococcus infantarius subsp. infantarius BAA-102 Confers Protection against Nisin U. Antimicrobial Agents and Chemotherapy, 2012, 56, 573-578.	3.2	9
356	Characterisation of the antibacterial properties of a bacterial derived peptidoglycan hydrolase (LysCs4), active against C. sakazakii and other Gram-negative food-related pathogens. International Journal of Food Microbiology, 2015, 215, 79-85.	4.7	9
357	Selective Isolation of Eggerthella lenta from Human Faeces and Characterisation of the Species Prophage Diversity. Microorganisms, 2022, 10, 195.	3.6	9
358	The bacteriophage resistance plasmid pTR2030 forms high-molecular-weight multimers in lactococci. Plasmid, 1991, 25, 105-112.	1.4	8
359	Investigating the importance of charged residues in lantibiotics. Bioengineered Bugs, 2010, 1, 345-351.	1.7	8
360	Lantibiotic Production by Pathogenic Microorganisms. Current Protein and Peptide Science, 2012, 13, 509-523.	1.4	8

#	Article	IF	CITATIONS
361	Virulence aspects of Listeria monocytogenes LO28 high pressure-resistant variants. Microbial Pathogenesis, 2013, 59-60, 48-51.	2.9	8
362	Detection of Mycobacterium avium subspecies paratuberculosis in patients with Crohn's disease is unrelated to the presence of single nucleotide polymorphisms rs2241880 (ATG16L1) and rs10045431 (IL12B). Medical Microbiology and Immunology, 2014, 203, 195-205.	4.8	8
363	Genome Sequence of Geobacillus stearothermophilus DSM 458, an Antimicrobial-Producing Thermophilic Bacterium, Isolated from a Sugar Beet Factory. Genome Announcements, 2017, 5, .	0.8	8
364	Bioengineered Nisin Derivative M17Q Has Enhanced Activity against Staphylococcus epidermidis. Antibiotics, 2020, 9, 305.	3.7	8
365	Why appendectomies may lead to an increased risk of functional gastrointestinal disorders. Medical Hypotheses, 2008, 71, 814-816.	1.5	7
366	Further Identification of Novel Lantibiotic Operons Using LanM-Based Genome Mining. Probiotics and Antimicrobial Proteins, 2011, 3, 27-40.	3.9	7
367	Molecular Analysis of the Microbial Food Safety Implications of Food Reformulations for Improved Health. Foodborne Pathogens and Disease, 2008, 5, 499-504.	1.8	6
368	Flagging flora: help from bacteriocins?. Nature, 2011, 477, 162-162.	27.8	6
369	Insights into Lantibiotic Immunity Provided by Bioengineering of Ltnl. Antimicrobial Agents and Chemotherapy, 2012, 56, 5122-5133.	3.2	6
370	Alpha-synuclein alters the faecal viromes of rats in a gut-initiated model of Parkinson's disease. Communications Biology, 2021, 4, 1140.	4.4	6
371	Location, Location, Location: What Should be Targeted Beyond Gross Disease for Localized Pancreatic Ductal Adenocarcinoma? Proposal of a Standardized Clinical Tumor Volume for Pancreatic Ductal Adenocarcinoma of the Head: The "Triangle Volume― Practical Radiation Oncology, 2022, 12, 215-225.	2.1	6
372	You have the microbiome you deserve. Gut Microbiome, 2020, 1, .	3.2	5
373	Microbiome and Infection: A Case for "Selective Depletion― Annals of Nutrition and Metabolism, 2021, 77, 4-9.	1.9	5
374	Multiagent Chemotherapy and Stereotactic Body Radiation Therapy in Patients with Unresectable Pancreatic Adenocarcinoma: A Prospective Nonrandomized Controlled Trial. Practical Radiation Oncology, 2022, 12, 511-523.	2.1	5
375	Insertional Mutagenesis To Generate Lantibiotic Resistance in Lactococcus lactis. Applied and Environmental Microbiology, 2007, 73, 4677-4680.	3.1	4
376	A novel promoter trap identifiesListeria monocytogenespromoters expressed at a low pH within the macrophage phagosome. FEMS Microbiology Letters, 2007, 274, 139-147.	1.8	4
377	Extensive Manipulation of Caseicins A and B Highlights the Tolerance of These Antimicrobial Peptides to Change. Applied and Environmental Microbiology, 2012, 78, 2353-2358.	3.1	4
378	Heterologous Expression of Thuricin CD Immunity Genes in Listeria monocytogenes. Antimicrobial Agents and Chemotherapy, 2014, 58, 3421-3428.	3.2	4

#	Article	IF	CITATIONS
379	Insights into Gene Transcriptional Regulation of Kayvirus Bacteriophages Obtained from Therapeutic Mixtures. Viruses, 2022, 14, 626.	3.3	4
380	Investigation of the Use of a Cocktail of Lux-Tagged Cronobacter Strains for Monitoring Growth in Infant Milk Formulae. Journal of Food Protection, 2013, 76, 1359-1365.	1.7	3
381	Two-tiered biological containment strategy for <i>Lactococcus lactis</i> -based vaccine or immunotherapy vectors. Human Vaccines and Immunotherapeutics, 2014, 10, 333-337.	3.3	3
382	Bacteriophage and bacteriophage resistance in lactic acid bacteria. FEMS Microbiology Reviews, 1993, 12, 87-108.	8.6	3
383	Antisense RNA: A modern solution to a traditional problem?. Trends in Food Science and Technology, 1993, 4, 12-16.	15.1	2
384	Insertional Inactivation of Determinants for Mg 2+ and Co 2+ Transport as a Tool for Screening Recombinant Lactococcus Species Clones. Applied and Environmental Microbiology, 2005, 71, 4897-4901.	3.1	2
385	RpoS loss in Cronobacter sakazakii by propagation in the presence of non-preferred carbon sources. International Dairy Journal, 2016, 57, 29-33.	3.0	2
386	Draft Genome Sequences of 25 Listeria monocytogenes Isolates Associated with Human Clinical Listeriosis in Ireland. Genome Announcements, 2017, 5, .	0.8	2
387	Survival outcomes in the modern era for localized pancreatic cancer with multi-agent chemotherapy and stereotactic body radiation therapy Journal of Clinical Oncology, 2021, 39, 444-444.	1.6	2
388	Patient-Reported Outcome Measures and Dosimetric Correlates for Early Detection of Acute Radiation Therapy–Related Esophagitis. Practical Radiation Oncology, 2021, 11, 185-192.	2.1	2
389	Establishing a Deaf and American Sign Language Inclusive Residency Program. Academic Medicine, 2022, 97, 357-363.	1.6	2
390	Shedding light onbetL*: pPL2-luxmediated real-time analysis ofbetL* expression inListeria monocytogenes. Bioengineered, 2016, 7, 116-119.	3.2	1
391	Complete Genome Sequence of Escherichia coli Phage APC_JM3.2 Isolated from a Chicken Cecum. Genome Announcements, 2018, 6, .	0.8	1
392	Long-term outcomes with neoadjuvant chemotherapy with or without stereotactic body radiation therapy in patients with borderline resectable and locally advanced pancreatic adenocarcinoma Journal of Clinical Oncology, 2021, 39, 443-443.	1.6	1
393	Use of Microbes to Fight Microbes. World Review of Nutrition and Dietetics, 2013, , 178-185.	0.3	0
394	Long-term outcomes of a prospective single institution study with multiagent chemotherapy and stereotactic body radiation therapy in locally advanced or recurrent pancreatic adenocarcinoma Journal of Clinical Oncology, 2021, 39, 440-440.	1.6	0
395	Poles Apart: Where and How Cells Construct Nisin. MBio, 2020, 11, .	4.1	0