
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6332323/publications.pdf Version: 2024-02-01

ANCELO OUATTRINI

#	Article	IF	CITATIONS
1	Phosphorylated TDP-43 aggregates in peripheral motor nerves of patients with amyotrophic lateral sclerosis. Brain, 2022, 145, 276-284.	7.6	22
2	Neurovascular signals in amyotrophic lateral sclerosis. Current Opinion in Biotechnology, 2022, 74, 75-83.	6.6	6
3	ADAM17 Regulates p75 ^{NTR} -Mediated Fibrinolysis and Nerve Remyelination. Journal of Neuroscience, 2022, 42, 2433-2447.	3.6	2
4	Neutrophils predominate the immune signature of cerebral thrombi in COVID-19 stroke patients. Acta Neuropathologica Communications, 2022, 10, 14.	5.2	27
5	JAB1 deletion in oligodendrocytes causes senescence-induced inflammation and neurodegeneration in mice. Journal of Clinical Investigation, 2022, 132, .	8.2	12
6	Primary Lateral Sclerosis Presenting With Focal Onset Spreading Through Contiguous Neuroanatomic Regions. Neurology, 2022, , 10.1212/WNL.000000000000011.	1.1	1
7	Neurofilament light chain as a biological marker for amyotrophic lateral sclerosis: a meta-analysis study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 446-457.	1.7	8
8	Corneal and Epidermal Nerve Quantification in Chemotherapy Induced Peripheral Neuropathy. Frontiers in Medicine, 2022, 9, 832344.	2.6	7
9	Integrated evaluation of a panel of neurochemical biomarkers to optimize diagnosis and prognosis in amyotrophic lateral sclerosis. European Journal of Neurology, 2022, 29, 1930-1939.	3.3	25
10	NEK1 Variants in a Cohort of Italian Patients With Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2022, 16, 833051.	2.8	9
11	Current application of neurofilaments in amyotrophic lateral sclerosis and future perspectives. Neural Regeneration Research, 2021, 16, 1985.	3.0	17
12	Selective loss of microvesicles is a major issue of the differential centrifugation isolation protocols. Scientific Reports, 2021, 11, 3589.	3.3	19
13	Loss of function <scp>MPZ</scp> mutation causes milder <scp>CMT1B</scp> neuropathy. Journal of the Peripheral Nervous System, 2021, 26, 177-183.	3.1	15
14	Nerve pathology in animal models of neuropathies. Journal of the Peripheral Nervous System, 2021, 26 Suppl 2, S61-S68.	3.1	0
15	Thermosensitive chitosan-based hydrogels supporting motor neuron-like NSC-34 cell differentiation. Biomaterials Science, 2021, 9, 7492-7503.	5.4	14
16	Normal structure and pathological features in peripheral neuropathies. Journal of the Peripheral Nervous System, 2021, 26, S11-S20.	3.1	1
17	Prostaglandin D2 synthase modulates macrophage activity and accumulation in injured peripheral nerves. Glia, 2020, 68, 95-110.	4.9	13
18	Impaired turnover of hyperfused mitochondria in severe axonal neuropathy due to a novel DRP1 mutation. Human Molecular Genetics, 2020, 29, 177-188.	2.9	30

#	Article	IF	CITATIONS
19	Ablation of neuronal ADAM17 impairs oligodendrocyte differentiation and myelination. Glia, 2020, 68, 1148-1164.	4.9	2
20	Diet, Microbiota and Brain Health: Unraveling the Network Intersecting Metabolism and Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 7471.	4.1	32
21	Development of Injectable Thermosensitive Chitosan-Based Hydrogels for Cell Encapsulation. Applied Sciences (Switzerland), 2020, 10, 6550.	2.5	11
22	Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia. EBioMedicine, 2020, 61, 103050.	6.1	28
23	From pathogenesis to personalized treatments of neuropathies in hematological malignancies. Journal of the Peripheral Nervous System, 2020, 25, 212-221.	3.1	7
24	Clinical features and outcomes of the flail arm and flail leg and pure lower motor neuron MND variants: a multicentre Italian study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1001-1003.	1.9	14
25	Retromer stabilization results in neuroprotection in a model of Amyotrophic Lateral Sclerosis. Nature Communications, 2020, 11, 3848.	12.8	44
26	Burden of Rare Variants in ALS and Axonal Hereditary Neuropathy Genes Influence Survival in ALS: Insights from a Next Generation Sequencing Study of an Italian ALS Cohort. International Journal of Molecular Sciences, 2020, 21, 3346.	4.1	11
27	Neonatal combination therapy improves some of the clinical manifestations in the Mucopolysaccharidosis type I murine model. Molecular Genetics and Metabolism, 2020, 130, 197-208.	1.1	10
28	Serum phosphorylated neurofilament heavy-chain levels reflect phenotypic heterogeneity and are an independent predictor of survival in motor neuron disease. Journal of Neurology, 2020, 267, 2272-2280.	3.6	26
29	X-ray phase contrast tomography for the investigation of amyotrophic lateral sclerosis. Journal of Synchrotron Radiation, 2020, 27, 1042-1048.	2.4	11
30	Limitations in daily activities and general perception of quality of life: Long term followâ€up in patients with antiâ€myelinâ€glycoprotein antibody polyneuropathy. Journal of the Peripheral Nervous System, 2019, 24, 276-282.	3.1	5
31	The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Frontiers in Neuroscience, 2019, 13, 601.	2.8	28
32	Distinct Protein Expression Networks are Activated in Microglia Cells after Stimulation with IFN-γ and IL-4. Cells, 2019, 8, 580.	4.1	15
33	Neural Stem Cells of the Subventricular Zone Contribute to Neuroprotection of the Corpus Callosum after Cuprizone-Induced Demyelination. Journal of Neuroscience, 2019, 39, 5481-5492.	3.6	42
34	Concurrence of NMOSD and ALS in a patient with hexanucleotide repeat expansions of C9orf72. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 449-452.	1.7	1
35	A nonsense mutation in myelin protein zero causes congenital hypomyelination neuropathy through altered PO membrane targeting and gain of abnormal function. Human Molecular Genetics, 2019, 28, 124-132.	2.9	12
36	An update on the diagnosis and management of the polyneuropathy of POEMS syndrome. Journal of Neurology, 2019, 266, 258-267.	3.6	21

#	Article	IF	CITATIONS
37	Proteomic expression profile of injured rat peripheral nerves revealed biological networks and processes associated with nerve regeneration. Journal of Cellular Physiology, 2018, 233, 6207-6223.	4.1	9
38	Lab-on-Chip for Exosomes and Microvesicles Detection and Characterization. Sensors, 2018, 18, 3175.	3.8	107
39	Functioning and quality of life in patients with neuropathy associated with anti-MAG antibodies. Journal of Neurology, 2018, 265, 2927-2933.	3.6	12
40	Counteracting roles of MHCI and CD8+ T cells in the peripheral and central nervous system of ALS SOD1G93A mice. Molecular Neurodegeneration, 2018, 13, 42.	10.8	40
41	A novel composite type I collagen scaffold with micropatterned porosity regulates the entrance of phagocytes in a severe model of spinal cord injury. , 2017, 105, 1040-1053.		23
42	Vocal cord paralysis in Charcot–Marie–Tooth type 4b1 disease associated with a novel mutation in the myotubularin-related protein 2 gene: A case report and review of the literature. Neuromuscular Disorders, 2017, 27, 487-491.	0.6	26
43	Two factor-based reprogramming of rodent and human fibroblasts into Schwann cells. Nature Communications, 2017, 8, 14088.	12.8	28
44	Structural and functional brain signatures of C9orf72 in motor neuron disease. Neurobiology of Aging, 2017, 57, 206-219.	3.1	54
45	A longitudinal DTI and histological study of the spinal cord reveals early pathological alterations in G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Experimental Neurology, 2017, 293, 43-52.	4.1	19
46	<i>TBK1</i> mutations in Italian patients with amyotrophic lateral sclerosis: genetic and functional characterisation. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 869-875.	1.9	38
47	Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Development (Cambridge), 2017, 144, 3114-3125.	2.5	75
48	Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve. Journal of Cell Science, 2017, 130, e1.2-e1.2.	2.0	2
49	Immune response in peripheral axons delays disease progression in SOD1G93A mice. Journal of Neuroinflammation, 2016, 13, 261.	7.2	63
50	Unraveling gene expression profiles in peripheral motor nerve from amyotrophic lateral sclerosis patients: insights into pathogenesis. Scientific Reports, 2016, 6, 39297.	3.3	24
51	Recent advances in amyotrophic lateral sclerosis. Journal of Neurology, 2016, 263, 1241-1254.	3.6	67
52	Efficacy of silver coated surgical sutures on bacterial contamination, cellular response and wound healing. Materials Science and Engineering C, 2016, 69, 884-893.	7.3	48
53	Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet, The, 2016, 388, 476-487.	13.7	393
54	MR Imaging of Brachial Plexus and Limb-Girdle Muscles in Patients with Amyotrophic Lateral Sclerosis. Radiology, 2016, 279, 553-561.	7.3	32

#	Article	IF	CITATIONS
55	Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. Journal of Clinical Investigation, 2015, 125, 263-274.	8.2	67
56	Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis. Frontiers in Aging Neuroscience, 2014, 6, 278.	3.4	66
57	Prostaglandin D2 synthase/GPR44: a signaling axis in PNS myelination. Nature Neuroscience, 2014, 17, 1682-1692.	14.8	66
58	Balance exercise in patients with chronic sensory ataxic neuropathy: a pilot study. Journal of the Peripheral Nervous System, 2014, 19, 145-151.	3.1	11
59	Defining Peripheral Nervous System Dysfunction in the SOD-1 ^{G93A} Transgenic Rat Model of Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2014, 73, 658-670.	1.7	18
60	Jab1 regulates Schwann cell proliferation and axonal sorting through p27. Journal of Experimental Medicine, 2014, 211, 29-43.	8.5	35
61	Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 99-106.	3.8	49
62	Peripheral nerve morphogenesis induced by scaffold micropatterning. Biomaterials, 2014, 35, 4035-4045.	11.4	39
63	Stiff-Man Syndrome. , 2014, , 1465-1477.		2
64	Intramuscular viral delivery of paraplegin rescues peripheral axonopathy in a model of hereditary spastic paraplegia. Journal of Clinical Investigation, 2014, 124, 871-871.	8.2	10
65	iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nature Communications, 2013, 4, 2597.	12.8	104
66	Synthesis and Preliminary Evaluation in Tumor Bearing Mice of New ¹⁸ F-Labeled Arylsulfone Matrix Metalloproteinase Inhibitors as Tracers for Positron Emission Tomography. Journal of Medicinal Chemistry, 2013, 56, 2676-2689.	6.4	17
67	α6β1 and α7β1 Integrins Are Required in Schwann Cells to Sort Axons. Journal of Neuroscience, 2013, 33, 17995-18007.	3.6	49
68	DDIT4/REDD1/RTP801 Is a Novel Negative Regulator of Schwann Cell Myelination. Journal of Neuroscience, 2013, 33, 15295-15305.	3.6	51
69	Jab1 regulates Schwann cell proliferation and axonal sorting through p27. Journal of Cell Biology, 2013, 203, 2036OIA155.	5.2	0
70	Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15018-15023.	7.1	168
71	Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity. Brain, 2012, 135, 3320-3335.	7.6	67
72	Monoclonal Antibodies Conjugated with Superparamagnetic Iron Oxide Particles Allow Magnetic Resonance Imaging Detection of Lymphocytes in the Mouse Brain. Molecular Imaging, 2012, 11, 7290.2011.00032.	1.4	13

#	Article	IF	CITATIONS
73	Vimentin regulates peripheral nerve myelination. Development (Cambridge), 2012, 139, 1359-1367.	2.5	58
74	The brachial plexus branches to the pectoral muscles in adult rats: morphological aspects and morphometric normative data. Frontiers in Neuroanatomy, 2012, 6, 41.	1.7	8
75	Urokinase Plasminogen Receptor and the Fibrinolytic Complex Play a Role in Nerve Repair after Nerve Crush in Mice, and in Human Neuropathies. PLoS ONE, 2012, 7, e32059.	2.5	16
76	Vimentin regulates peripheral nerve myelination. Journal of Cell Science, 2012, 125, e1-e1.	2.0	0
77	Chronic motor axonal neuropathy. Journal of the Peripheral Nervous System, 2011, 16, 341-346.	3.1	17
78	A fatal case of Churg–Strauss syndrome presenting with acute polyneuropathy mimicking Guillain–Barré syndrome. Neurological Sciences, 2011, 32, 937-940.	1.9	10
79	Motor nerve biopsy: Clinical usefulness and histopathological criteria. Annals of Neurology, 2011, 69, 197-201.	5.3	38
80	Non-redundant function of dystroglycan and \hat{l}^21 integrins in radial sorting of axons. Development (Cambridge), 2011, 138, 4025-4037.	2.5	55
81	TACE (ADAM17) inhibits Schwann cell myelination. Nature Neuroscience, 2011, 14, 857-865.	14.8	136
82	Genetic Interaction between MTMR2 and FIG4 Phospholipid Phosphatases Involved in Charcot-Marie-Tooth Neuropathies. PLoS Genetics, 2011, 7, e1002319.	3.5	87
83	Gene therapy augments the efficacy of hematopoietic cell transplantation and fully corrects mucopolysaccharidosis type I phenotype in the mouse model. Blood, 2010, 116, 5130-5139.	1.4	159
84	Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathologica, 2010, 120, 477-489.	7.7	125
85	Foot pad skin biopsy in mouse models of hereditary neuropathy. Glia, 2010, 58, 2005-2016.	4.9	13
86	ldentification of Hematopoietic Stem Cell–Specific miRNAs Enables Gene Therapy of Globoid Cell Leukodystrophy. Science Translational Medicine, 2010, 2, 58ra84.	12.4	180
87	Analyzing Histopathological Features of Rare Charcot-Marie-Tooth Neuropathies to Unravel Their Pathogenesis. Archives of Neurology, 2010, 67, 1498-505.	4.5	48
88	Cxcl10 enhances blood cells migration in the sub-ventricular zone of mice affected by experimental autoimmune encephalomyelitis. Molecular and Cellular Neurosciences, 2010, 43, 268-280.	2.2	34
89	Dlg1, Sec8, and Mtmr2 Regulate Membrane Homeostasis in Schwann Cell Myelination. Journal of Neuroscience, 2009, 29, 8858-8870.	3.6	101
90	Haploinsufficiency of <i>AFG3L2</i> , the Gene Responsible for Spinocerebellar Ataxia Type 28, Causes Mitochondria-Mediated Purkinje Cell Dark Degeneration. Journal of Neuroscience, 2009, 29, 9244-9254.	3.6	99

#	Article	IF	CITATIONS
91	Genetic interaction between the m -AAA protease isoenzymes reveals novel roles in cerebellar degeneration. Human Molecular Genetics, 2009, 18, 2001-2013.	2.9	55
92	Diffuse intraneural leiomyoma in a case of sensorimotor neuropathy. Acta Neuropathologica, 2009, 117, 595-597.	7.7	3
93	Churg Strauss syndrome presenting as acute neuropathy resembling Guillain Barré syndrome. Journal of Neurology, 2008, 255, 1843-1844.	3.6	17
94	Ablation of the UPR-Mediator CHOP Restores MotorÂFunction and Reduces Demyelination inÂCharcot-Marie-Tooth 1B Mice. Neuron, 2008, 57, 393-405.	8.1	245
95	Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Experimental Neurology, 2008, 214, 276-284.	4.1	158
96	The Mitochondrial Protease AFG3L2 Is Essential for Axonal Development. Journal of Neuroscience, 2008, 28, 2827-2836.	3.6	92
97	Â6Â4 Integrin and Dystroglycan Cooperate to Stabilize the Myelin Sheath. Journal of Neuroscience, 2008, 28, 6714-6719.	3.6	78
98	Charcot–Marie–Tooth type 4B demyelinating neuropathy: deciphering the role of MTMR phosphatases. Expert Reviews in Molecular Medicine, 2007, 9, 1-16.	3.9	62
99	β1 integrin activates Rac1 in Schwann cells to generate radial lamellae during axonal sorting and myelination. Journal of Cell Biology, 2007, 177, 1063-1075.	5.2	163
100	Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage. Journal of Cell Science, 2006, 119, 3981-3993.	2.0	174
101	Different Intracellular Pathomechanisms Produce Diverse <i>Myelin Protein Zero</i> Neuropathies in Transgenic Mice. Journal of Neuroscience, 2006, 26, 2358-2368.	3.6	144
102	Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. Journal of Clinical Investigation, 2006, 116, 3070-3082.	8.2	197
103	Polyneuropathy in POEMS syndrome: role of angiogenic factors in the pathogenesis. Brain, 2005, 128, 1911-1920.	7.6	216
104	Loss of Mtmr2 Phosphatase in Schwann Cells But Not in Motor Neurons Causes Charcot-Marie-Tooth Type 4B1 Neuropathy with Myelin Outfoldings. Journal of Neuroscience, 2005, 25, 8567-8577.	3.6	95
105	Schwann cell overexpression of the GPR7 receptor in inflammatory and painful neuropathies. Molecular and Cellular Neurosciences, 2005, 28, 55-63.	2.2	23
106	Intramuscular viral delivery of paraplegin rescues peripheral axonopathy in a model of hereditary spastic paraplegia. Journal of Clinical Investigation, 2005, 116, 202-208.	8.2	48
107	Disruption of <i>Mtmr2</i> produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. Journal of Cell Biology, 2004, 167, 711-721.	5.2	167
108	Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. Journal of Clinical Investigation, 2004, 113, 1118-1129.	8.2	117

ANGELO QUATTRINI

#	Article	IF	CITATIONS
109	Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. Journal of Clinical Investigation, 2004, 113, 1118-1129.	8.2	256
110	Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. Journal of Clinical Investigation, 2004, 113, 231-242.	8.2	241
111	Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. Journal of Clinical Investigation, 2004, 113, 231-242.	8.2	144
112	Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature, 2003, 422, 688-694.	27.8	1,057
113	Hypogonadotropic hypogonadism and peripheral neuropathy in <i>Ebf2</i> -null mice. Development (Cambridge), 2003, 130, 401-410.	2.5	89
114	Myotubularin-related 2 protein phosphatase and neurofilament light chain protein, both mutated in CMT neuropathies, interact in peripheral nerve. Human Molecular Genetics, 2003, 12, 1713-1723.	2.9	67
115	Expression of Laminin Receptors in Schwann Cell Differentiation: Evidence for Distinct Roles. Journal of Neuroscience, 2003, 23, 5520-5530.	3.6	100
116	Autoimmunity in the Peripheral Nervous System. Critical Reviews in Neurobiology, 2003, 15, 1-39.	3.1	15
117	Conditional disruption of $\hat{1}^21$ integrin in Schwann cells impedes interactions with axons. Journal of Cell Biology, 2002, 156, 199-210.	5.2	294
118	Antinociceptive effect of a new P2Z/P2X7 antagonist, oxidized ATP, in arthritic rats. Neuroscience Letters, 2002, 327, 87-90.	2.1	81
119	Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP. Arthritis and Rheumatism, 2002, 46, 3378-3385.	6.7	101
120	Role of integrins in the peripheral nervous system. Progress in Neurobiology, 2001, 64, 35-49.	5.7	123
121	In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nature Medicine, 2001, 7, 310-316.	30.7	198
122	Human IgM anti-GM1 autoantibodies modulate intracellular calcium homeostasis in neuroblastoma cells. Journal of Neuroimmunology, 2001, 114, 213-219.	2.3	31
123	PO Glycoprotein Overexpression Causes Congenital Hypomyelination of Peripheral Nerves. Journal of Cell Biology, 2000, 148, 1021-1034.	5.2	145
124	Epitope-Tagged POGlycoprotein Causes Charcot-Marie-Tooth–Like Neuropathy in Transgenic Mice. Journal of Cell Biology, 2000, 151, 1035-1046.	5.2	53
125	A novel POglycoprotein transgene activates expression oflacZ in myelin-forming Schwann cells. European Journal of Neuroscience, 1999, 11, 1577-1586.	2.6	57
126	Peripheral Nerve Dysmyelination Due to POGlycoprotein Overexpression Is Dose-Dependent. Annals of the New York Academy of Sciences, 1999, 883, 294-301.	3.8	5

#	Article	IF	CITATIONS
127	Docetaxel neuropathy: a distal axonopathy. Acta Neuropathologica, 1999, 98, 651-653.	7.7	35
128	Laminin receptor ?6?4 integrin is highly expressed in ENU-induced glioma in rat. Glia, 1999, 26, 55-63.	4.9	7
129	A minimal human MBP Promoter-lacZ transgene is appropriately regulated in developing brain and after optic enucleation, but not in shiverer mutant mice. Journal of Neurobiology, 1998, 34, 10-26.	3.6	37
130	Motor nerve biopsy studies in motor neuropathy and motor neuron disease. Muscle and Nerve, 1997, 20, 15-21.	2.2	42
131	α6β4 and α6β1 Integrins in Astrocytomas and Other CNS Tumors. Journal of Neuropathology and Experimental Neurology, 1996, 55, 456-465.	1.7	39
132	\hat{l}^2 4 integrin and other Schwann cell markers in axonal neuropathy. , 1996, 17, 294-306.		82
133	Evidence of peripheral axonal neuropathy in primary restless legs syndrome. Movement Disorders, 1995, 10, 2-9.	3.9	170
134	Heterogeneity of autoantibodies in stiffâ€man syndrome. Annals of Neurology, 1993, 34, 57-64.	5.3	121
135	The gp 120 glycoprotein of human immunodeficiency virus type 1 binds to sensory ganglion neurons. Annals of Neurology, 1993, 34, 855-863.	5.3	57
136	Acute presentation of Tangier polyneuropathy: a clinical and morphological study. Acta Neuropathologica, 1993, 86, 90-94.	7.7	16
137	Antibodies to sulfatide and to chondroitin sulfate C in patients with chronic sensory neuropathy. Journal of Neuroimmunology, 1993, 43, 79-85.	2.3	61
138	Effect of hypothyroidism on rat peripheral nervous system. NeuroReport, 1993, 4, 499-502.	1.2	13
139	In vivo modulation of myelin gene expression by human recombinant IL-2. Molecular Brain Research, 1992, 12, 331-334.	2.3	10
140	Anti-sulfatide antibodies in neurological disease: binding to rat dorsal root ganglia neurons. Journal of the Neurological Sciences, 1992, 112, 152-159.	0.6	52
141	IgG monoclonal proteins from patients with axonal peripheral neuropathies bind to different epitopes of the 68 kDa neurofilament protein. Journal of Neuroimmunology, 1992, 36, 97-104.	2.3	16
142	Effect of chronic treatment with recombinant interleukin-2 on the central nervous system of adult and old mice. Brain Research, 1992, 591, 248-252.	2.2	56
143	Patterns of reactivity of human antiâ€GM1 antibodies with spinal cord and motor neurons. Annals of Neurology, 1992, 32, 487-493.	5.3	71
144	Morphological and Functional Evaluation of Peripheral Nerve Regeneration in the Rat Using an Expanded Polytetrafluoroethylene (PTFE) Microprosthesis. Journal of Investigative Surgery, 1991, 4, 437-443.	1.3	6

ANGELO QUATTRINI

#	Article	IF	CITATIONS
145	Axonal neuropathy in a patient with monoclonal IgM kappa reactive with Schmidt-Lantermann incisures. Journal of Neuroimmunology, 1991, 33, 73-79.	2.3	15
146	Early detection of skin and muscular involvement in lafora disease. Journal of Neurology, 1991, 238, 217-220.	3.6	17
147	Axonal neuropathy with monoclonal IgG kappa that binds to a neurofilament protein. Annals of Neurology, 1990, 28, 361-364.	5.3	24
148	CRYOGLOBULINAEMIC NEUROPATHY. Brain, 1988, 111, 541-552.	7.6	85
149	Neuromuscular weakness. , 0, , 317-331.		0