Blagovesta Popova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/633173/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Systematic Comparison of the Effects of Alpha-synuclein Mutations on Its Oligomerization and Aggregation. PLoS Genetics, 2014, 10, e1004741.	3.5	168
3	Aggregate Clearance of α-Synuclein in Saccharomyces cerevisiae Depends More on Autophagosome and Vacuole Function Than on the Proteasome. Journal of Biological Chemistry, 2012, 287, 27567-27579.	3.4	66
4	Interplay between Sumoylation and Phosphorylation for Protection against α-Synuclein Inclusions. Journal of Biological Chemistry, 2014, 289, 31224-31240.	3.4	63
5	C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease. PLoS Genetics, 2016, 12, e1006098.	3.5	49
6	Verticillium dahliae VdTHI4, involved in thiazole biosynthesis, stress response and DNA repair functions, is required for vascular disease induction in tomato. Environmental and Experimental Botany, 2014, 108, 14-22.	4.2	40
7	The trehalose protective mechanism during thermal stress in Saccharomyces cerevisiae: the roles of Ath1 and Agt1. FEMS Yeast Research, 2018, 18, .	2.3	37
8	Posttranslational Modifications and Clearing of α-Synuclein Aggregates in Yeast. Biomolecules, 2015, 5, 617-634.	4.0	33
9	Yeast reveals similar molecular mechanisms underlying alpha- and beta-synuclein toxicity. Human Molecular Genetics, 2016, 25, 275-290.	2.9	29
10	DEAD-box RNA helicase Dbp4/DDX10 is an enhancer of α-synuclein toxicity and oligomerization. PLoS Genetics, 2021, 17, e1009407.	3.5	19
11	RNA Interference and Antisense-Mediated Gene Silencing in <i>Dictyostelium</i> ., 2006, 346, 211-226.		18
12	Mutual Cross Talk between the Regulators Hac1 of the Unfolded Protein Response and Gcn4 of the General Amino Acid Control of Saccharomyces cerevisiae. Eukaryotic Cell, 2013, 12, 1142-1154.	3.4	17
13	Sem1 links proteasome stability and specificity to multicellular development. PLoS Genetics, 2018, 14, e1007141.	3.5	15
14	HelF, a putative RNA helicase acts as a nuclear suppressor of RNAi but not antisense mediated gene silencing. Nucleic Acids Research, 2006, 34, 773-784.	14.5	14
15	Sumoylation Protects Against Î ² -Synuclein Toxicity in Yeast. Frontiers in Molecular Neuroscience, 2018, 11, 94.	2.9	11
16	Antimicrobial propensity of ultrananocrystalline diamond films with embedded silver nanodroplets. Diamond and Related Materials, 2019, 93, 168-178.	3.9	10
17	Identification of Two Novel Peptides That Inhibit α-Synuclein Toxicity and Aggregation. Frontiers in Molecular Neuroscience, 2021, 14, 659926.	2.9	8
18	A Robust and Versatile Method of Combinatorial Chemical Synthesis of Gene Libraries via Hierarchical Assembly of Partially Randomized Modules. PLoS ONE, 2015, 10, e0136778.	2.5	7

#	Article	IF	CITATIONS
19	α-Synuclein Decreases the Abundance of Proteasome Subunits and Alters Ubiquitin Conjugates in Yeast. Cells, 2021, 10, 2229.	4.1	5
20	Yeast-Based Screens to Target Alpha-Synuclein Toxicity. Methods in Molecular Biology, 2019, 1948, 145-156.	0.9	4
21	Dynamic and Reversible Aggregation of the Human CAP Superfamily Member GAPR-1 in Protein Inclusions in Saccharomyces cerevisiae. Journal of Molecular Biology, 2021, 433, 167162.	4.2	2
22	Atomic Force Microscopy on RNA-Protein Complexes related to RNAi. , 0, 2005, .		0
23	Design of typical genes for heterologous gene expression. Scientific Reports, 2022, 12, .	3.3	0