Ivan Raikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6331387/publications.pdf Version: 2024-02-01

IVAN RAIKOV

#	Article	IF	CITATIONS
1	Entorhinal mismatch: A model of self-supervised learning in the hippocampus. IScience, 2021, 24, 102364.	4.1	3
2	Epistemic Autonomy: Self-supervised Learning in the Mammalian Hippocampus. Trends in Cognitive Sciences, 2021, 25, 582-595.	7.8	2
3	Maximally selective single-cell target for circuit control in epilepsy models. Neuron, 2021, 109, 2556-2572.e6.	8.1	31
4	Regulation of gammaâ€frequency oscillation by feedforward inhibition: A computational modeling study. Hippocampus, 2019, 29, 957-970.	1.9	9
5	Resolving the Micro-Macro Disconnect to Address Core Features of Seizure Networks. Neuron, 2019, 101, 1016-1028.	8.1	43
6	Data-Driven Modeling of Normal and Pathological Oscillations in the Hippocampus. Springer Series in Cognitive and Neural Systems, 2019, , 185-192.	0.1	0
7	Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science, 2018, 359, 787-790.	12.6	195
8	Single Bursts of Individual Granule Cells Functionally Rearrange Feedforward Inhibition. Journal of Neuroscience, 2018, 38, 1711-1724.	3.6	25
9	CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus. Nature Neuroscience, 2018, 21, 484-493.	14.8	221
10	Extended Interneuronal Network of the Dentate Gyrus. Cell Reports, 2017, 20, 1262-1268.	6.4	43
11	Network Models of Epilepsy-Related Pathological Structural and Functional Alterations in the Dentate Gyrus. , 2017, , 485-503.		0
12	Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS Computational Biology, 2017, 13, e1005754.	3.2	37
13	Hippocampal In Silico Models of Seizures and Epilepsy. , 2017, , 219-232.		0
14	Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. ELife, 2016, 5, .	6.0	171
15	Targetâ€selectivity of parvalbuminâ€positive interneurons in layer II of medial entorhinal cortex in normal and epileptic animals. Hippocampus, 2016, 26, 779-793.	1.9	28
16	Future of Seizure Prediction and Intervention. Journal of Clinical Neurophysiology, 2015, 32, 194-206.	1.7	67
17	A Master Plan for the Epilepsies? toward a General Theory of Seizure Dynamics. Epilepsy Currents, 2015, 15, 133-135.	0.8	1
18	Resolution revolution: epilepsy dynamics at the microscale. Current Opinion in Neurobiology, 2015, 31, 239-243.	4.2	6

Ινάν Καικον

#	Article	IF	CITATIONS
19	Beyond the hammer and the scalpel: selective circuit control for the epilepsies. Nature Neuroscience, 2015, 18, 331-338.	14.8	97
20	Multiple Forms of Endocannabinoid and Endovanilloid Signaling Regulate the Tonic Control of GABA Release. Journal of Neuroscience, 2015, 35, 10039-10057.	3.6	113
21	Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nature Reviews Neuroscience, 2015, 16, 264-277.	10.2	124
22	Neuroelectronics and Biooptics. JAMA Neurology, 2015, 72, 823.	9.0	84
23	<i>In vivo</i> evaluation of the dentate gate theory in epilepsy. Journal of Physiology, 2015, 593, 2379-2388.	2.9	187
24	Microcircuits in Epilepsy: Heterogeneity and Hub Cells in Network Synchronization. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a022855.	6.2	19
25	Brain State Is a Major Factor in Preseizure Hippocampal Network Activity and Influences Success of Seizure Intervention. Journal of Neuroscience, 2015, 35, 15635-15648.	3.6	49
26	Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nature Neuroscience, 2015, 18, 75-86.	14.8	205
27	Cerebellar Directed Optogenetic Intervention Inhibits Spontaneous Hippocampal Seizures in a Mouse Model of Temporal Lobe Epilepsy. ENeuro, 2014, 1, ENEURO.0005-14.2014.	1.9	183
28	Linking Macroscopic with Microscopic Neuroanatomy Using Synthetic Neuronal Populations. PLoS Computational Biology, 2014, 10, e1003921.	3.2	22
29	Parvalbumin-Positive Basket Cells Differentiate among Hippocampal Pyramidal Cells. Neuron, 2014, 82, 1129-1144.	8.1	279
30	A NineML-based domain-specific language for computational exploration of connectivity in the cerebellar granular layer. BMC Neuroscience, 2014, 15, .	1.9	2
31	Evidence for Functional Diversity between the Voltage-Gated Proton Channel Hv1 and Its Closest Related Protein HVRP1. PLoS ONE, 2014, 9, e105926.	2.5	14
32	Functional fission of parvalbumin interneuron classes during fast network events. ELife, 2014, 3, .	6.0	100
33	Closed-loop optogenetic intervention in mice. Nature Protocols, 2013, 8, 1475-1493.	12.0	122
34	On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nature Communications, 2013, 4, 1376.	12.8	516
35	Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3567-3572.	7.1	159
36	Quantitative assessment of CA1 local circuits: Knowledge base for interneuron-pyramidal cell connectivity. Hippocampus, 2013, 23, 751-785.	1.9	310

Ινάν Καικον

#	Article	IF	CITATIONS
37	The Layer-Oriented Approach to Declarative Languages for Biological Modeling. PLoS Computational Biology, 2012, 8, e1002521.	3.2	9
38	Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2726-34.	7.1	217
39	Toward a full-scale computational model of the rat dentate gyrus. Frontiers in Neural Circuits, 2012, 6, 83.	2.8	52
40	Basket cell dichotomy in microcircuit function. Journal of Physiology, 2012, 590, 683-694.	2.9	118
41	The Promise and Shortcomings of XML as an Interchange Format for Computational Models of Biology. Neuroinformatics, 2012, 10, 1-3.	2.8	3
42	The Brain Prize 2011. Trends in Neurosciences, 2011, 34, 501-503.	8.6	1
43	Neurogliaform cells in the molecular layer of the dentate gyrus as feedâ€forward γâ€aminobutyric acidergic modulators of entorhinal–hippocampal interplay. Journal of Comparative Neurology, 2011, 519, 1476-1491.	1.6	83
44	lvy and Neurogliaform Interneurons Are a Major Target of μ-Opioid Receptor Modulation. Journal of Neuroscience, 2011, 31, 14861-14870.	3.6	70
45	Computer modeling of epilepsy. Epilepsia, 2010, 51, 29-29.	5.1	3
46	Target-selective GABAergic control of entorhinal cortex output. Nature Neuroscience, 2010, 13, 822-824.	14.8	182
47	Distinct Endocannabinoid Control of GABA Release at Perisomatic and Dendritic Synapses in the Hippocampus. Journal of Neuroscience, 2010, 30, 7993-8000.	3.6	98
48	Functional Specificity of Mossy Fiber Innervation of GABAergic Cells in the Hippocampus. Journal of Neuroscience, 2009, 29, 4239-4251.	3.6	74
49	Sensor for Stiffness Measurements Within the Adult Rat Hippocampus. IEEE Sensors Journal, 2008, 8, 1894-1899.	4.7	4
50	Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6179-6184.	7.1	308
51	Topological Determinants of Epileptogenesis in Large-Scale Structural and Functional Models of the Dentate Gyrus Derived From Experimental Data. Journal of Neurophysiology, 2007, 97, 1566-1587.	1.8	206
52	Different transmitter transients underlie presynaptic cell type specificity of GABA _{A,slow} and GABA _{A,fast} . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14831-14836.	7.1	150
53	High times for memory: cannabis disrupts temporal coordination among hippocampal neurons. Nature Neuroscience, 2006, 9, 1461-1463.	14.8	7
54	Role of Mossy Fiber Sprouting and Mossy Cell Loss in Hyperexcitability: A Network Model of the Dentate Gyrus Incorporating Cell Types and Axonal Topography. Journal of Neurophysiology, 2005, 93, 437-453.	1.8	240

Ινάν Καικον

#	Article	IF	CITATIONS
55	Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Hippocampus, 2005, 15, 691-696.	1.9	54
56	Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nature Medicine, 2001, 7, 331-337.	30.7	395
57	Differential expression of cytoskeletal proteins in the dendrites of parvalbumin-positive interneurons versus granule cells in the adult rat dentate gyrus. Hippocampus, 2000, 10, 162-168.	1.9	46
58	Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Annals of Neurology, 2000, 47, 336-344.	5.3	336
59	Granule cell hyperexcitability in the early postâ€traumatic rat dentate gyrus: the â€~irritable mossy cell' hypothesis. Journal of Physiology, 2000, 524, 117-134.	2.9	181
60	Selective Depolarization of Interneurons in the Early Posttraumatic Dentate Gyrus: Involvement of the Na ⁺ /K ⁺ -ATPase. Journal of Neurophysiology, 2000, 83, 2916-2930.	1.8	119
61	Differential expression of cytoskeletal proteins in the dendrites of parvalbumin-positive interneurons versus granule cells in the adult rat dentate gyrus. Hippocampus, 2000, 10, 162.	1.9	1
62	Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Annals of Neurology, 2000, 47, 336-344.	5.3	18
63	Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nature Medicine, 1999, 5, 888-894.	30.7	286
64	Enhanced bursts of IPSCs in dentate granule cells in mice with regionally inhibited long–term potentiation. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 63-69.	2.6	25
65	Temporal Patterns and Depolarizing Actions of Spontaneous GABA _A Receptor Activation in Granule Cells of the Early Postnatal Dentate Gyrus. Journal of Neurophysiology, 1998, 80, 2340-2351.	1.8	49
66	Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus, 1995, 5, 78-90.	1.9	362
67	The direct perforant path input to CA1: Excitatory or inhibitory?. Hippocampus, 1995, 5, 101-103.	1.9	33
68	Brief history of cortico-hippocampal time with a special reference to the direct entorhinal input to CA1. Hippocampus, 1995, 5, 120-124.	1.9	25