Ronald Soong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6330926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon. Science, 2021, 371, 185-189.	12.6	504
2	Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples. Journal of Magnetic Resonance, 2012, 217, 61-76.	2.1	92
3	Comprehensive multiphase NMR applied to a living organism. Chemical Science, 2016, 7, 4856-4866.	7.4	79
4	Soil Organic Matter in Its Native State: Unravelling the Most Complex Biomaterial on Earth. Environmental Science & Technology, 2016, 50, 1670-1680.	10.0	77
5	<i>In vivo</i> NMR spectroscopy: toward real time monitoring of environmental stress. Magnetic Resonance in Chemistry, 2015, 53, 774-779.	1.9	53
6	Environmental Nuclear Magnetic Resonance Spectroscopy: An Overview and a Primer. Analytical Chemistry, 2018, 90, 628-639.	6.5	53
7	Development and Application of a Low-Volume Flow System for Solution-State <i>in Vivo</i> NMR. Analytical Chemistry, 2018, 90, 7912-7921.	6.5	46
8	Lateral Diffusion of PEG-Lipid in Magnetically Aligned Bicelles Measured Using Stimulated Echo Pulsed Field Gradient 1H NMR. Biophysical Journal, 2005, 88, 255-268.	0.5	44
9	HR-MAS NMR Spectroscopy: A Practical Guide for Natural Samples. Current Organic Chemistry, 2013, 17, 3013-3031.	1.6	44
10	Interfacing digital microfluidics with high-field nuclear magnetic resonance spectroscopy. Lab on A Chip, 2016, 16, 4424-4435.	6.0	42
11	Direct Conversion of McDonald's Waste Cooking Oil into a Biodegradable High-Resolution 3D-Printing Resin. ACS Sustainable Chemistry and Engineering, 2020, 8, 1171-1177.	6.7	42
12	Development of an NMR microprobe procedure for highâ€throughput environmental metabolomics of <scp><i>Daphnia magna</i></scp> . Magnetic Resonance in Chemistry, 2015, 53, 745-753.	1.9	41
13	Identification of aquatically available carbon from algae through solution-state NMR of whole 13C-labelled cells. Analytical and Bioanalytical Chemistry, 2016, 408, 4357-4370.	3.7	40
14	Aqueous Photoreactions of Wood Smoke Brown Carbon. ACS Earth and Space Chemistry, 2020, 4, 1149-1160.	2.7	39
15	Comprehensive Multiphase NMR Spectroscopy of Intact ¹³ C-Labeled Seeds. Journal of Agricultural and Food Chemistry, 2014, 62, 107-115.	5.2	38
16	Inâ€Phase Ultra Highâ€Resolution In Vivo NMR. Angewandte Chemie - International Edition, 2017, 56, 6324-6328.	13.8	35
17	Comprehensive multiphase NMR: a promising technology to study plants in their native state. Magnetic Resonance in Chemistry, 2015, 53, 735-744.	1.9	33
18	From Spill to Sequestration: The Molecular Journey of Contamination via Comprehensive Multiphase NMR. Environmental Science & amp; Technology, 2015, 49, 13983-13991.	10.0	33

Ronald Soong

#	Article	IF	CITATIONS
19	Rapid Chemical Reaction Monitoring by Digital Microfluidicsâ€NMR: Proof of Principle Towards an Automated Synthetic Discovery Platform. Angewandte Chemie - International Edition, 2019, 58, 15372-15376.	13.8	33
20	Assessing the potential of quantitative 2D HSQC NMR in 13C enriched living organisms. Journal of Biomolecular NMR, 2019, 73, 31-42.	2.8	33
21	Aggregation of Microtubule Binding Repeats of Tau Protein is Promoted by Cu ²⁺ . ACS Omega, 2019, 4, 5356-5366.	3.5	30
22	Comprehensive Multiphase (CMP) NMR Monitoring of the Structural Changes and Molecular Flux Within a Growing Seed. Journal of Agricultural and Food Chemistry, 2017, 65, 6779-6788.	5.2	26
23	NMR assignment of the <i>in vivo</i> daphnia magna metabolome. Analyst, The, 2020, 145, 5787-5800.	3.5	26
24	Perspective: <i>in vivo</i> NMR – a potentially powerful tool for environmental research. Magnetic Resonance in Chemistry, 2015, 53, 686-690.	1.9	25
25	PEG molecular weight and lateral diffusion of PEG-ylated lipids in magnetically aligned bicelles. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1805-1814.	2.6	24
26	Selective Amino Acid-Only in Vivo NMR: A Powerful Tool To Follow Stress Processes. ACS Omega, 2019, 4, 9017-9028.	3.5	24
27	Chlorines Are Not Evenly Substituted in Chlorinated Paraffins: A Predicted NMR Pattern Matching Framework for Isomeric Discrimination in Complex Contaminant Mixtures. Environmental Science and Technology Letters, 2020, 7, 496-503.	8.7	23
28	Water Diffusion in Bicelles and the Mixed Bicelle Model. Langmuir, 2009, 25, 380-390.	3.5	21
29	In Vivo Ultraslow MAS ² H/ ¹³ C NMR Emphasizes Metabolites in Dynamic Flux. ACS Omega, 2018, 3, 17023-17035.	3.5	21
30	In vivo comprehensive multiphase NMR. Magnetic Resonance in Chemistry, 2020, 58, 427-444.	1.9	19
31	Inverse or direct detect experiments and probes: Which are "best―for in-vivo NMR research of 13C enriched organisms?. Analytica Chimica Acta, 2020, 1138, 168-180.	5.4	18
32	NMR spectroscopy of wastewater: A review, case study, and future potential. Progress in Nuclear Magnetic Resonance Spectroscopy, 2021, 126-127, 121-180.	7.5	18
33	Diffusion of PEG Confined between Lamellae of Negatively Magnetically Aligned Bicelles:  Pulsed Field Gradient ¹ H NMR Measurements. Langmuir, 2008, 24, 518-527.	3.5	17
34	Understanding the Fate of Environmental Chemicals Inside Living Organisms: NMR-Based ¹³ C Isotopic Suppression Selects Only the Molecule of Interest within ¹³ C-Enriched Organisms. Analytical Chemistry, 2019, 91, 15000-15008.	6.5	16
35	ExÂvivo Comprehensive Multiphase NMR of whole organisms: A complementary tool to inÂvivo NMR. Analytica Chimica Acta: X, 2020, 6, 100051.	1.0	16
36	Titrate over the Internet: An Open-Source Remote-Control Titration Unit for All Students. Journal of Chemical Education, 2021, 98, 1037-1042.	2.3	16

Ronald Soong

#	Article	IF	CITATIONS
37	CASE (Computer-Assisted Structure Elucidation) Study for an Undergraduate Organic Chemistry Class. Journal of Chemical Education, 2020, 97, 855-860.	2.3	15
38	Improvements in lipid suppression for ¹ H NMRâ€based metabolomics: Applications to solutionâ€state and HRâ€MAS NMR in natural and in vivo samples. Magnetic Resonance in Chemistry, 2019, 57, 69-81.	1.9	14
39	Combining the Maker Movement with Accessibility Needs in an Undergraduate Laboratory: A Cost-Effective Text-to-Speech Multipurpose, Universal Chemistry Sensor Hub (MUCSH) for Students with Disabilities. Journal of Chemical Education, 2018, 95, 2268-2272.	2.3	13
40	Rethinking a Timeless Titration Experimental Setup through Automation and Open-Source Robotic Technology: Making Titration Accessible for Students of All Abilities. Journal of Chemical Education, 2019, 96, 1497-1501.	2.3	13
41	5-Axis CNC Micromilling for Rapid, Cheap, and Background-Free NMR Microcoils. Analytical Chemistry, 2020, 92, 15454-15462.	6.5	13
42	Influence of the Long-Chain/Short-Chain Amphiphile Ratio on Lateral Diffusion of PEG-Lipid in Magnetically Aligned Lipid Bilayers as Measured via Pulsed-Field-Gradient NMR. Biophysical Journal, 2005, 89, 1850-1860.	0.5	12
43	Flowâ€based <i>in vivo</i> NMR spectroscopy of small aquatic organisms. Magnetic Resonance in Chemistry, 2020, 58, 411-426.	1.9	12
44	13C quantification in heterogeneous multiphase natural samples by CMP-NMR using stepped decoupling. Analytical and Bioanalytical Chemistry, 2018, 410, 7055-7065.	3.7	11
45	Focusing on "the important―through targeted NMR experiments: an example of selective ¹³ C– ¹² C bond detection in complex mixtures. Faraday Discussions, 2019, 218, 372-394.	3.2	10
46	Comprehensive Multiphase NMR—A Powerful Tool to Understand and Monitor Molecular Processes during Biofuel Production. ACS Sustainable Chemistry and Engineering, 2020, 8, 17551-17564.	6.7	10
47	Targeting the Lowest Concentration of a Toxin That Induces a Detectable Metabolic Response in Living Organisms: Time-Resolved <i>In Vivo</i> 2D NMR during a Concentration Ramp. Analytical Chemistry, 2020, 92, 9856-9865.	6.5	10
48	Size of Bicelle Defects Probed via Diffusion Nuclear Magnetic Resonance of PEG. Biophysical Journal, 2009, 97, 796-805.	0.5	9
49	Exploring the Applications of Carbon-Detected NMR in Living and Dead Organisms Using a ¹³ C-Optimized Comprehensive Multiphase NMR Probe. Analytical Chemistry, 2022, 94, 8756-8765.	6.5	8
50	Comprehensive Multiphase NMR Probehead with Reduced Radiofrequency Heating Improves the Analysis of Living Organisms and Heat-Sensitive Samples. Analytical Chemistry, 2021, 93, 10326-10333.	6.5	7
51	Comparing the Potential of Helmholtz and Planar NMR Microcoils for Analysis of Intact Biological Samples. Analytical Chemistry, 2022, 94, 8523-8532.	6.5	7
52	1D "Spikelet―Projections from Heteronuclear 2D NMR Data—Permitting 1D Chemometrics While Preserving 2D Dispersion. Metabolites, 2019, 9, 16.	2.9	6
53	Exploring the Maker Culture in Chemistry: Making an Affordable Thermal Imaging System for Reaction Visualization. Journal of Chemical Education, 2020, 97, 3887-3891.	2.3	6
54	Expanding current applications and permitting the analysis of larger intact samples by means of a 7 mm CMP–NMR probe. Analyst, The, 2021, 146, 4461-4472.	3.5	6

RONALD SOONG

#	Article	IF	CITATIONS
55	Evaluation of doubleâ€tuned singleâ€sided planar microcoils for the analysis of small ¹³ C enriched biological samples using ¹ Hâ€ ¹³ C 2D heteronuclear correlation NMR spectroscopy. Magnetic Resonance in Chemistry, 2022, 60, 386-397.	1.9	6
56	Rapid Chemical Reaction Monitoring by Digital Microfluidicsâ€NMR: Proof of Principle Towards an Automated Synthetic Discovery Platform. Angewandte Chemie, 2019, 131, 15516-15520.	2.0	3
57	Evidence for substantial acetate presence in cutaneous earthworm mucus. Journal of Soils and Sediments, 2020, 20, 3627-3632.	3.0	3
58	Inâ€Phase Ultra Highâ€Resolution In Vivo NMR. Angewandte Chemie, 2017, 129, 6421-6425.	2.0	3