Corrine K. Welt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6328840/publications.pdf

Version: 2024-02-01

80 papers

7,585 citations

38 h-index 77 77 g-index

87 all docs 87 docs citations

87 times ranked

7348 citing authors

#	Article	IF	CITATIONS
1	Causal and Candidate Gene Variants in a Large Cohort of Women With Primary Ovarian Insufficiency. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 685-714.	1.8	13
2	Increased Burden of Rare Sequence Variants in GnRH-Associated Genes in Women With Hypothalamic Amenorrhea. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e1441-e1452.	1.8	13
3	<i>PRL</i> Mutation Causing Alactogenesis: Insights Into Prolactin Structure and Function Relationships. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3021-e3026.	1.8	6
4	Genetics of Polycystic Ovary Syndrome. Endocrinology and Metabolism Clinics of North America, 2021, 50, 71-82.	1.2	11
5	Single nucleus multi-omics regulatory landscape of the murine pituitary. Nature Communications, 2021, 12, 2677.	5.8	38
6	Shared genetics between nonobstructive azoospermia and primary ovarian insufficiency. F&S Reviews, 2021, 2, 204-213.	0.7	2
7	Identifying susceptibility genes for primary ovarian insufficiency on the high-risk genetic background of a fragile X premutation. Fertility and Sterility, 2021, 116, 843-854.	0.5	5
8	Practical Approach to Hyperandrogenism in Women. Medical Clinics of North America, 2021, 105, 1099-1116.	1.1	8
9	What Is the Male Polycystic Ovary Syndrome Phenotype?. Journal of Clinical Endocrinology and Metabolism, 2021, , .	1.8	О
10	A Polygenic and Phenotypic Risk Prediction for Polycystic Ovary Syndrome Evaluated by Phenome-Wide Association Studies. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1918-1936.	1.8	40
11	Healthy Post-Menarchal Adolescent Girls Demonstrate Multi-Level Reproductive Axis Immaturity. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 613-623.	1.8	31
12	Inhibin, Activin, and Follistatin in Ovarian Physiology. , 2019, , 95-105.		3
13	Primary Ovarian Insufficiency and Azoospermia in Carriers of a Homozygous PSMC3IP Stop Gain Mutation. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 555-563.	1.8	45
14	Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genetics, 2018, 14, e1007813.	1.5	341
15	POLR2C Mutations Are Associated With Primary Ovarian Insufficiency in Women. Journal of the Endocrine Society, 2017, 1, 162-173.	0.1	22
16	Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis. Nature Genetics, 2017, 49, 801-805.	9.4	75
17	Polycystic ovary morphology: age-based ultrasound criteria. Fertility and Sterility, 2017, 108, 548-553.	0.5	20
18	Phenotype and Tissue Expression as a Function of Genetic Risk in Polycystic Ovary Syndrome. PLoS ONE, 2017, 12, e0168870.	1.1	43

#	Article	IF	Citations
19	Relationship between polycystic ovary syndrome and ancestry in European Americans. Fertility and Sterility, 2016, 106, 1772-1777.	0.5	9
20	The role of variants regulating metformin transport and action in women with polycystic ovary syndrome. Pharmacogenomics, 2016, 17, 1765-1773.	0.6	8
21	Identification of subjects with polycystic ovary syndrome using electronic health records. Reproductive Biology and Endocrinology, 2015, 13, 116.	1.4	36
22	Gene variants associated with age at menopause are also associated with polycystic ovary syndrome, gonadotrophins and ovarian volume. Human Reproduction, 2015, 30, 1697-1703.	0.4	19
23	Han Chinese polycystic ovary syndrome risk variants in women of European ancestry: relationship to FSH levels and glucose tolerance. Human Reproduction, 2015, 30, 1454-1459.	0.4	31
24	Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nature Communications, 2015, 6, 8464.	5.8	304
25	Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nature Communications, 2015, 6, 7502.	5 . 8	314
26	Genetics of Polycystic Ovary Syndrome. Seminars in Reproductive Medicine, 2014, 32, 177-182.	0.5	34
27	Metformin Improves Glucose Effectiveness, Not Insulin Sensitivity: Predicting Treatment Response in Women With Polycystic Ovary Syndrome in an Open-Label, Interventional Study. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1870-1878.	1.8	43
28	A PATIENT'S GUIDE: Polycystic Ovary Syndrome (PCOS). Journal of Clinical Endocrinology and Metabolism, 2014, 99, 35A-36A.	1.8	4
29	Simultaneous Measurement of Thirteen Steroid Hormones in Women with Polycystic Ovary Syndrome and Control Women Using Liquid Chromatography-Tandem Mass Spectrometry. PLoS ONE, 2014, 9, e93805.	1.1	87
30	Fertility preservation in female classic galactosemia patients. Orphanet Journal of Rare Diseases, 2013, 8, 107.	1.2	34
31	The male reproductive system in classic galactosemia: cryptorchidism and low semen volume. Journal of Inherited Metabolic Disease, 2013, 36, 779-786.	1.7	24
32	Evaluating reported candidate gene associations with polycystic ovary syndrome. Fertility and Sterility, 2013, 99, 1774-1778.	0.5	22
33	Diagnosis and Treatment of Polycystic Ovary Syndrome: An Endocrine Society Clinical Practice Guideline. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4565-4592.	1.8	1,380
34	Lifecycle of Polycystic Ovary Syndrome (PCOS): From In Utero to Menopause. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4629-4638.	1.8	105
35	Adverse Effects of the Common Treatments for Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4646-4654.	1.8	72
36	Cigarette smoking, nicotine levels and increased risk for metabolic syndrome in women with polycystic ovary syndrome. Gynecological Endocrinology, 2013, 29, 551-555.	0.7	17

#	Article	IF	CITATIONS
37	Responsiveness to a Physiological Regimen of GnRH Therapy and Relation to Genotype in Women With Isolated Hypogonadotropic Hypogonadism. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E206-E216.	1.8	24
38	Mutations in <i>elF4ENIF1 </i> Are Associated With Primary Ovarian Insufficiency. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1534-E1539.	1.8	51
39	Isolated Prolactin Deficiency Associated With Serum Autoantibodies Against Prolactin-Secreting Cells. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 3920-3925.	1.8	49
40	Environmental and genetic factors influence age at menarche in women with polycystic ovary syndrome. Journal of Pediatric Endocrinology and Metabolism, 2012, 25, 459-66.	0.4	33
41	Variants in <i>DENND1A</i> Are Associated with Polycystic Ovary Syndrome in Women of European Ancestry. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1342-E1347.	1.8	142
42	The adult galactosemic phenotype. Journal of Inherited Metabolic Disease, 2012, 35, 279-286.	1.7	151
43	A Genetic Basis for Functional Hypothalamic Amenorrhea. New England Journal of Medicine, 2011, 364, 215-225.	13.9	219
44	A Genetic Basis for Functional Hypothalamic Amenorrhea. Obstetrical and Gynecological Survey, 2011, 66, 618-619.	0.2	0
45	Ovarian histopathological and ubiquitinâ€immunophenotypic features in fragile Xâ€associated primary ovarian insufficiency: a study of five cases and selected controls. Histopathology, 2011, 59, 1018-1023.	1.6	18
46	FMR1 and the Continuum of Primary Ovarian Insufficiency. Seminars in Reproductive Medicine, 2011, 29, 299-307.	0.5	135
47	Effects of Recombinant Human Prolactin on Breast Milk Composition. Pediatrics, 2011, 127, e359-e366.	1.0	27
48	Expanding the Phenotype and Genotype of Female GnRH Deficiency. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E566-E576.	1.8	97
49	Recombinant human prolactin for the treatment of lactation insufficiency. Clinical Endocrinology, 2010, 73, 645-653.	1.2	34
50	<i>Autoimmune Oophoritis in the Adolescent Annals of the New York Academy of Sciences, 2008, 1135, 118-122.</i>	1.8	38
51	Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clinical Endocrinology, 2008, 68, 499-509.	1.2	391
52	Will leptin become the treatment of choice for functional hypothalamic amenorrhea?. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 556-557.	2.9	17
53	Sequence variation at the human FOXO3 locus: a study of premature ovarian failure and primary amenorrhea. Human Reproduction, 2007, 23, 216-221.	0.4	49
54	The FMR1 premutation and reproduction. Fertility and Sterility, 2007, 87, 456-465.	0.5	360

#	Article	IF	CITATIONS
55	Short-term prolactin administration causes expressible galactorrhea but does not affect bone turnover: pilot data for a new lactation agent. International Breastfeeding Journal, 2007, 2, 10.	0.9	5
56	Coding sequence analysis of GNRHR and GPR54 in patients with congenital and adult-onset forms of hypogonadotropic hypogonadism. European Journal of Endocrinology, 2006, 155, S3-S10.	1.9	72
57	Recombinant Human Leptin in Women With Hypothalamic Amenorrhea. Obstetrical and Gynecological Survey, 2005, 60, 104-105.	0.2	7
58	Selective Theca Cell Dysfunction in Autoimmune Oophoritis Results in Multifollicular Development, Decreased Estradiol, and Elevated Inhibin B Levels. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 3069-3076.	1.8	52
59	Follicular Arrest in Polycystic Ovary Syndrome Is Associated with Deficient Inhibin A and B Biosynthesis. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 5582-5587.	1.8	78
60	Relationship of Estradiol and Inhibin to the Follicle-Stimulating Hormone Variability in Hypergonadotropic Hypogonadism or Premature Ovarian Failure. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 826-830.	1.8	51
61	Regulation and Function of Inhibins in the Normal Menstrual Cycle. Seminars in Reproductive Medicine, 2004, 22, 187-193.	0.5	48
62	Recombinant Human Leptin in Women with Hypothalamic Amenorrhea. New England Journal of Medicine, 2004, 351, 987-997.	13.9	821
63	Leptin and Soluble Leptin Receptor in Follicular Fluid. Journal of Assisted Reproduction and Genetics, 2003, 20, 495-501.	1.2	29
64	Control of Follicle-Stimulating Hormone by Estradiol and the Inhibins: Critical Role of Estradiol at the Hypothalamus during the Luteal-Follicular Transition. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1766-1771.	1.8	81
65	Serum Inhibin B in Polycystic Ovary Syndrome: Regulation by Insulin and Luteinizing Hormone. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5559-5565.	1.8	55
66	The physiology and pathophysiology of inhibin, activin and follistatin in female reproduction. Current Opinion in Obstetrics and Gynecology, 2002, 14, 317-323.	0.9	55
67	Activins, Inhibins, and Follistatins: From Endocrinology to Signaling. A Paradigm for the New Millennium. Experimental Biology and Medicine, 2002, 227, 724-752.	1.1	283
68	Differential Regulation of Inhibin A and Inhibin B by Luteinizing Hormone, Follicle-Stimulating Hormone, and Stage of Follicle Development1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2531-2537.	1.8	54
69	Dynamics of Inhibin Subunit and Follistatin mRNA during Development of Normal and Polycystic Ovary Syndrome Follicles. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4206-4215.	1.8	45
70	Specific Factors Predict the Response to Pulsatile Gonadotropin-Releasing Hormone Therapy in Polycystic Ovarian Syndrome1. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 2428-2436.	1.8	13
71	Dynamic Changes in the Intrafollicular Inhibin/Activin/Follistatin Axis during Human Follicular Development: Relationship to Circulating Hormone Concentrations*. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 3319-3330.	1.8	84
72	The Physiology of the Human Midcycle Gonadotropin Surge. , 2000, , 79-97.		0

#	Article	IF	CITATION
73	Inhibin A and Inhibin B Responses to Gonadotropin Withdrawal Depends on Stage of Follicle Development1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 2163-2169.	1.8	63
74	Female Reproductive Aging Is Marked by Decreased Secretion of Dimeric Inhibin (sup) $1 < \sup 1 $ Sup). Journal of Clinical Endocrinology and Metabolism, 1999, 84, 105-111.	1.8	281
75	Imbalanced Expression of Inhibin and Activin Subunits in Primary Epithelial Ovarian Cancer. Gynecologic Oncology, 1998, 69, 23-31.	0.6	67
76	Recurrent hypoglycemia does not impair the cortisol response to adrenocorticotropin infusion in healthy humans. Metabolism: Clinical and Experimental, 1998, 47, 1252-1257.	1.5	3
77	Is GnRH Reduced at the Midcycle Surge in the Human?. Neuroendocrinology, 1998, 67, 363-369.	1.2	22
78	Presence of Activin, Inhibin, and Follistatin in Epithelial Ovarian Carcinoma ¹ . Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3720-3727.	1.8	65
79	Frequency Modulation of Follicle-Stimulating Hormone (FSH) during the Luteal-Follicular Transition: Evidence for FSH Control of Inhibin B in Normal Women1. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 2645-2652.	1.8	105
80	Activin Regulates \hat{I}^2 A-Subunit and Activin Receptor Messenger Ribonucleic Acid and Cellular Proliferation in Activin-Responsive Testicular Tumor Cells. , 0 , .		11