Guzel Ziyatdinova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6328708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Voltammetric determination of curcumin in spices. Journal of Analytical Chemistry, 2012, 67, 591-594.	0.9	62
2	Selective electrochemical sensor based on the electropolymerized p-coumaric acid for the direct determination of l-cysteine. Electrochimica Acta, 2018, 270, 369-377.	5.2	61
3	Disposable Electrochemical Biosensor with Multiwalled Carbon Nanotubes-Chitosan Composite Layer for the Detection of Deep DNA Damage. Analytical Sciences, 2008, 24, 711-716.	1.6	57
4	Natural phenolic antioxidants in bioanalytical chemistry: state of the art and prospects of development. Russian Chemical Reviews, 2015, 84, 194-224.	6.5	54
5	Electrooxidation of morin on glassy carbon electrode modified by carboxylated single-walled carbon nanotubes and surfactants. Electrochimica Acta, 2014, 145, 209-216.	5.2	50
6	Differential Pulse Voltammetric Assay of Coffee Antioxidant Capacity with MWNT-Modified Electrode. Food Analytical Methods, 2013, 6, 1629-1638.	2.6	42
7	Electrochemical oxidation of sulfur-containing amino acids on an electrode modified with multi-walled carbon nanotubes. Mikrochimica Acta, 2009, 165, 353-359.	5.0	41
8	Cyclic voltammetry of natural flavonoids on MWNT-modified electrode and their determination in pharmaceuticals. Collection of Czechoslovak Chemical Communications, 2011, 76, 1619-1631.	1.0	38
9	Voltammetric detection of synthetic water-soluble phenolic antioxidants using carbon nanotube based electrodes. Journal of Solid State Electrochemistry, 2012, 16, 127-134.	2.5	37
10	Electroanalysis of antioxidants in pharmaceutical dosage forms: state-of-the-art and perspectives. Monatshefte Für Chemie, 2015, 146, 741-753.	1.8	36
11	Poly(gallic acid)/MWNT-modified electrode for the selective and sensitive voltammetric determination of quercetin in medicinal herbs. Journal of Electroanalytical Chemistry, 2018, 821, 73-81.	3.8	36
12	The application of coulometry for total antioxidant capacity determination of human blood. Talanta, 2006, 68, 800-805.	5.5	34
13	Determination of captopril in pharmaceutical forms by stripping voltammetry. Journal of Analytical Chemistry, 2006, 61, 798-800.	0.9	34
14	Application of surfactants in voltammetric analysis. Journal of Analytical Chemistry, 2012, 67, 869-879.	0.9	34
15	Cyclic Voltammetry of Retinol in Surfactant Media and Its Application for the Analysis of Real Samples. Electroanalysis, 2010, 22, 2708-2713.	2.9	32
16	Complex electrochemical and impedimetric evaluation of DNA damage by using DNA biosensor based on a carbon screen-printed electrode. Analytical Methods, 2011, 3, 2777.	2.7	32
17	Hydrogen Sulfide Alleviates Anxiety, Motor, and Cognitive Dysfunctions in Rats with Maternal Hyperhomocysteinemia via Mitigation of Oxidative Stress. Biomolecules, 2020, 10, 995.	4.0	32
18	Electrochemical Sensors Based on the Electropolymerized Natural Phenolic Antioxidants and Their Analytical Application. Sensors, 2021, 21, 8385.	3.8	31

#	Article	IF	CITATIONS
19	Reactions of superoxide anion radical with antioxidants and their use in voltammetry. Journal of Analytical Chemistry, 2005, 60, 49-52.	0.9	30
20	Simultaneous voltammetric determination of phenolic antioxidants with chemometric approaches. Electrochimica Acta, 2014, 137, 114-120.	5.2	29
21	Chronocoulometry of wine on multi-walled carbon nanotube modified electrode: Antioxidant capacity assay. Food Chemistry, 2016, 196, 405-410.	8.2	29
22	Voltammetric sensing and quantification of eugenol using nonionic surfactant self-organized media. Analytical Methods, 2013, 5, 4750.	2.7	28
23	Surfactant/carbon nanofibers-modified electrode for the determination of vanillin. Monatshefte Für Chemie, 2016, 147, 191-200.	1.8	28
24	Electrochemical determination of the total antioxidant capacity of human plasma. Analytical and Bioanalytical Chemistry, 2005, 381, 1546-1551.	3.7	27
25	Novel Coulometric Approach to Evaluation of Total Free Polyphenols in Tea and Coffee Beverages in Presence of Milk Proteins. Food Analytical Methods, 2011, 4, 334-340.	2.6	27
26	Voltammetric evaluation of the antioxidant capacity of tea on electrodes modified with multi-walled carbon nanotubes. Journal of Analytical Chemistry, 2013, 68, 132-139.	0.9	27
27	Evaluation of the antioxidant properties of spices by cyclic voltammetry. Journal of Analytical Chemistry, 2014, 69, 990-997.	0.9	27
28	Chronoamperometric estimation of cognac and brandy antioxidant capacity using MWNT modified glassy carbon electrode. Talanta, 2014, 125, 378-384.	5.5	27
29	Highly Sensitive Amperometric Sensor for Eugenol Quantification Based on CeO ₂ Nanoparticles and Surfactants. Electroanalysis, 2017, 29, 1197-1204.	2.9	27
30	Polyquercetin/MWNTâ€modified Electrode for the Determination of Natural Phenolic Antioxidants. Electroanalysis, 2017, 29, 2610-2619.	2.9	27
31	Voltammetric Determination of Thymol in Oregano Using CeO2-Modified Electrode in Brij® 35 Micellar Medium. Food Analytical Methods, 2017, 10, 129-136.	2.6	25
32	Electrochemical Determination of Lipoic Acid. Journal of Analytical Chemistry, 2004, 59, 288-290.	0.9	24
33	Voltammetric determination of β-carotene in raw vegetables and berries in Triton X100 media. Talanta, 2012, 99, 1024-1029.	5.5	24
34	Amperometric sensor based on MWNT and electropolymerized carminic acid for the simultaneous quantification of TBHQ and BHA. Journal of Electroanalytical Chemistry, 2020, 859, 113885.	3.8	23
35	Electrochemical determination of unithiol and lipoic acid at electrodes modified with carbon nanotubes. Journal of Analytical Chemistry, 2009, 64, 185-188.	0.9	22
36	Ultrasound-assisted micellar extraction of phenolic antioxidants from spices and antioxidant properties of the extracts based on coulometric titration data. Analytical Methods, 2016, 8, 7150-7157.	2.7	22

#	Article	IF	CITATIONS
37	Simultaneous voltammetric determination of gallic and ellagic acids in cognac and brandy using electrode modified with functionalized SWNT and poly(pyrocatechol violet). Food Analytical Methods, 2019, 12, 2250-2261.	2.6	22
38	Coulometric titration with electrogenerated oxidants as a tool for evaluation of cognac and brandy antioxidant properties. Food Chemistry, 2014, 150, 80-86.	8.2	21
39	Hydrogen Sulfide Ameliorates Developmental Impairments of Rat Offspring with Prenatal Hyperhomocysteinemia. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	4.0	21
40	Voltammetric determination of capsaicin using CeO2-surfactant/SWNT-modified electrode. Arabian Journal of Chemistry, 2020, 13, 1624-1632.	4.9	21
41	Simultaneous Voltammetric Determination of Flavanones Using an Electrode Based on Functionalized Single-Walled Carbon Nanotubes and Polyaluminon. Analytical Letters, 2020, 53, 2170-2189.	1.8	21
42	Simultaneous determination of TBHQ and BHA on a MWNT-Brij® 35 modified electrode in micellar media. Analytical Methods, 2015, 7, 8344-8351.	2.7	20
43	Surfactant media for constant-current coulometry. Application for the determination of antioxidants in pharmaceuticals. Analytica Chimica Acta, 2012, 744, 23-28.	5.4	18
44	MWNT-modified electrodes for voltammetric determination of lipophilic vitamins. Journal of Solid State Electrochemistry, 2012, 16, 2441-2447.	2.5	17
45	Novel approach for the voltammetric evaluation of antioxidant activity using DPPH -modified electrode. Electrochimica Acta, 2017, 247, 97-106.	5.2	17
46	Selective Determination of Total Capsaicinoids in Plant Material Using Poly(Gallic Acid)â€nodified Electrode. Electroanalysis, 2019, 31, 222-230.	2.9	17
47	Selective voltammetric determination of α-lipoic acid on the electrode modified with SnO2 nanoparticles and cetyltriphenylphosphonium bromide. Monatshefte Für Chemie, 2019, 150, 401-410.	1.8	17
48	Voltammetric determination of papaverine and drotaverine. Journal of Analytical Chemistry, 2007, 62, 773-776.	0.9	16
49	Electrogenerated bromine as a coulometric reagent for the estimation of the bioavailability of polyphenols. Journal of Analytical Chemistry, 2011, 66, 301-309.	0.9	16
50	Voltammetric Determination of Flavonoids in Medicinal Plant Materials Using Electrodes Modified by Cerium Dioxide Nanoparticles and Surfactants. Journal of Analytical Chemistry, 2019, 74, 816-824.	0.9	16
51	Voltammetric Determination of Quercetin and Rutin on Their Simultaneous Presence on an Electrode Modified with Polythymolphthalein. Journal of Analytical Chemistry, 2020, 75, 526-535.	0.9	16
52	Biosensor with Protective Membrane for the Detection of DNA Damage and Antioxidant Properties of Fruit Juices. Electroanalysis, 2012, 24, 2333-2340.	2.9	15
53	Voltammetric determination of α-tocopherol in the presence of surfactants. Journal of Analytical Chemistry, 2012, 67, 467-473.	0.9	15
54	Electropolymerized Eugenolâ€MWNTâ€Based Electrode for Voltammetric Evaluation of Wine Antioxidant Capacity. Electroanalysis, 2015, 27, 1660-1668.	2.9	15

#	Article	IF	CITATIONS
55	Chronocoulometric method for the evaluation of antioxidant capacity of medicinal plant tinctures. Analytical Methods, 2018, 10, 4995-5003.	2.7	15
56	First Order Derivative Voltammetry on the <i>inâ€situ</i> Surfactant Modified Electrode for Naringin Quantification. Electroanalysis, 2019, 31, 2130-2137.	2.9	15
57	Electrochemical determination of synthetic antioxidants of bisdithiophosphonic acids. Journal of Analytical Chemistry, 2010, 65, 1273-1279.	0.9	14
58	Electrochemical reduction and quantification of menadione in sodium dodecyl sulfate micellar media. Journal of Solid State Electrochemistry, 2013, 17, 2679-2685.	2.5	14
59	Effects of Maternal Hyperhomocysteinemia on the Early Physical Development and Neurobehavioral Maturation of Rat Offspring. BioNanoScience, 2017, 7, 155-158.	3.5	14
60	Voltammetric Determination of Hesperidin on the Electrode Modified with SnO ₂ Nanoparticles and Surfactants. Electroanalysis, 2021, 33, 2417-2427.	2.9	14
61	Title is missing!. Journal of Analytical Chemistry, 2002, 57, 353-355.	0.9	13
62	Determination of Some Liposoluble Antioxidants by Coulometry and Voltammetry. Journal of Analytical Chemistry, 2004, 59, 654-658.	0.9	13
63	Voltammetric determination of sterically hindered phenols in surfactant-based self-organized media. Journal of Analytical Chemistry, 2014, 69, 750-757.	0.9	13
64	New Electrochemistry-Based Approaches to Brandy Quality Evaluation Using Antioxidant Parameters. Food Analytical Methods, 2015, 8, 1794-1803.	2.6	13
65	An Amperometric Sensor Based on Tin Dioxide and Cetylpyridinium Bromide Nanoparticles for the Determination of Vanillin. Journal of Analytical Chemistry, 2018, 73, 801-808.	0.9	13
66	Antioxidants As Analytes in Analytical Chemistry. Journal of Analytical Chemistry, 2005, 60, 600-613.	0.9	12
67	Galvanostatic coulometry in the analysis of natural polyphenols and its use in pharmacy. Journal of Analytical Chemistry, 2010, 65, 1176-1180.	0.9	12
68	Analytical Capabilities of Coulometric Sensor Systems in the Antioxidants Analysis. Chemosensors, 2021, 9, 91.	3.6	12
69	Simultaneous Determination of Ferulic Acid and Vanillin in Vanilla Extracts Using Voltammetric Sensor Based on Electropolymerized Bromocresol Purple. Sensors, 2022, 22, 288.	3.8	12
70	Electrochemical Determination of Glutathione. Journal of Analytical Chemistry, 2004, 59, 573-576.	0.9	11
71	Voltammetric determination of flavonols in parmaceuticals. Pharmaceutical Chemistry Journal, 2005, 39, 561-563.	0.8	11
72	Application of constant-current coulometry for estimation of plasma total antioxidant capacity and its relationship with transition metal contents. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40, 958-963.	2.8	11

#	Article	IF	CITATIONS
73	Reactions of synthetic phenolic antioxidants with electrogenerated titrants and their analytical applications. Journal of Analytical Chemistry, 2010, 65, 929-934.	0.9	11
74	Determination of Sterically Hindered Phenols and α-Tocopherol by Cyclic Voltammetry. Analytical Letters, 2012, 45, 1670-1685.	1.8	11
75	Probiotics for plants: NO-producing lactobacilli protect plants from drought. Applied Biochemistry and Microbiology, 2014, 50, 166-168.	0.9	11
76	An Electrode Based on Electropolymerized Sunset Yellow for the Simultaneous Voltammetric Determination of Chlorogenic and Ferulic Acids. Journal of Analytical Chemistry, 2021, 76, 371-380.	0.9	11
77	Electrochemical Sensors for the Simultaneous Detection of Phenolic Antioxidants. Journal of Analytical Chemistry, 2022, 77, 155-172.	0.9	11
78	Title is missing!. Journal of Analytical Chemistry, 2002, 57, 730-732.	0.9	10
79	Determination of the antioxidant capacity of the micellar extracts of spices in Brij® 35 medium by differential pulse voltammetry. Journal of Analytical Chemistry, 2016, 71, 573-580.	0.9	10
80	Voltammetric Determinations of Thymol on an Electrode Modified by Coimmobilized Carboxylated Multiwalled Carbon Nanotubes and Surfactants. Journal of Analytical Chemistry, 2018, 73, 63-70.	0.9	10
81	Cerium(IV) and Iron(III) Oxides Nanoparticles Based Voltammetric Sensor for the Sensitive and Selective Determination of Lipoic Acid. Sensors, 2021, 21, 7639.	3.8	10
82	Voltammetric Determination of Tartrazine on an Electrode Modified with Cerium Dioxide Nanoparticles and Cetyltriphenylphosphonium Bromide. Journal of Analytical Chemistry, 2022, 77, 664-670.	0.9	10
83	Spice Antioxidants as Objects of Analytical Chemistry. Journal of Analytical Chemistry, 2018, 73, 946-965.	0.9	9
84	Discrimination of Tea by the Electrochemical Determination of its Antioxidant Properties by a Polyaniline – DNA – Polyphenazine Dye Modified Glassy Carbon Electrode. Analytical Letters, 2019, 52, 2562-2582.	1.8	9
85	The Selective Electrochemical Sensing of Naringin Using Electropolymerized Ellagic Acid Film. Journal of the Electrochemical Society, 2020, 167, 107502.	2.9	9
86	Determination of Some Catecholamines by Coulometric Titration and Cyclic Voltammetry. Journal of Analytical Chemistry, 2005, 60, 673-677.	0.9	8
87	Assessment of the antioxidant properties of micellar spice extracts by galvanostatic coulometry with electrogenerated hexacyanoferrate(III) ions. Journal of Analytical Chemistry, 2015, 70, 974-982.	0.9	8
88	Chronoamperometric evaluation of the antioxidant capacity of tea on a polyquercetin-modified electrode. Journal of Analytical Chemistry, 2017, 72, 382-389.	0.9	8
89	7. Carbon Nanomaterials and Surfactants as Electrode Surface Modifiers in Organic Electroanalysis. , 2018, , 223-252.		8
90	Novel modified electrode with immobilized galvinoxyl radical for the voltammetric determination of antioxidant activity. Journal of Electroanalytical Chemistry, 2020, 856, 113677.	3.8	8

#	Article	IF	CITATIONS
91	Voltammetric Sensor Based on SeO2 Nanoparticles and Surfactants for Indigo Carmine Determination. Sensors, 2022, 22, 3224.	3.8	8
92	Prenatal hyperhomocysteinemia induces oxidative stress and accelerates â€~aging' of mammalian neuromuscular synapses. International Journal of Developmental Neuroscience, 2019, 75, 1-12.	1.6	7
93	MWNT-Based Electrode for the Voltammetric Quantification of Carvacrol. Food Analytical Methods, 2021, 14, 401-410.	2.6	7
94	Use of galvanostatic coulometry for determining nitroxoline. Journal of Analytical Chemistry, 2007, 62, 957-959.	0.9	6
95	Coulometric determination of sulfur-containing amino acids using halogens as oxidizing titrants. Journal of Analytical Chemistry, 2007, 62, 1176-1179.	0.9	6
96	Ammoniumâ€Charged Sterically Hindered Phenols with Antioxidant and Selective Antiâ€Gramâ€Positive Bacterial Activity. Chemistry and Biodiversity, 2020, 17, e2000147.	2.1	6
97	Sensitive voltammetric quantification of carminic acid in candies using selenium dioxide nanoparticles based electrode. Food Chemistry, 2022, 386, 132851.	8.2	5
98	Direct determination of hypoxen and its analogs by galvanostatic coulometry. Journal of Analytical Chemistry, 2007, 62, 260-262.	0.9	4
99	Evaluation of the antioxidant capacity of cognacs and brandies by differential pulse voltammetry. Journal of Analytical Chemistry, 2014, 69, 1165-1170.	0.9	4
100	Synthesis and Antioxidant Activity of Sterically Hindered Phenol Derivatives of Carboxy- and Sulfobetaines. Russian Journal of General Chemistry, 2018, 88, 68-72.	0.8	4
101	Determination of Serum Albumin in Blood by Constant-Current Coulometry Using Electrochemically Generated Oxidizers. Journal of Analytical Chemistry, 2004, 59, 659-661.	0.9	3
102	Quantitative estimation of benzylisoquinoline derivatives by coulometric titration. Pharmaceutical Chemistry Journal, 2008, 42, 98-101.	0.8	3
103	Study of the composition of biologically active compounds in chaga meal. Perspectives of application of chaga meal in pharmaceutical industry. Russian Journal of General Chemistry, 2012, 82, 586-594.	0.8	3
104	Reactions of phenolic antioxidants with electrogenerated hexacyanoferrate(III) ions and their use in vegetable oils analysis. Journal of Analytical Chemistry, 2013, 68, 80-85.	0.9	3
105	Voltammetric Evaluation of Polyphenol–Protein Interactions and Their Influence on the Antioxidant Capacity of Tea. Journal of Analytical Chemistry, 2020, 75, 685-690.	0.9	3
106	An Electrode Based on Electropolymerized Naringin for Voltammetry. UÄenye Zapiski Kazanskogo Gosudarstvennogo Universiteta: Seriâ Estestvennye Nauki, 2019, 161, 5-19.	0.3	3
107	Use of galvanostatic coulometry in the analysis of arbidol drug. Journal of Analytical Chemistry, 2012, 67, 269-272.	0.9	2
108	Chronoamperometric determination of synthetic phenolic antioxidants in Brij® 35 micellar medium. Journal of Analytical Chemistry, 2015, 70, 1501-1506.	0.9	2

#	Article	IF	CITATIONS
109	Micellar Extraction of Active Components from Spices and Evaluation of the Ce(IV)-Based Reducing Capacity of the Extracts. Journal of Analytical Chemistry, 2021, 76, 1065-1070.	0.9	2
110	Determination of Total Antioxidant Capacity of Human Plasma from Patients with Lung Diseases Using Constant-Current Coulometry. Eurasian Journal of Analytical Chemistry, 2006, 1, 19-30.	0.4	2
111	Polyelectrolyte Polyethylenimine–DNA Complexes in the Composition of Voltammetric Sensors for Detecting DNA Damage. Journal of Analytical Chemistry, 2022, 77, 185-194.	0.9	2
112	Clastogenesis and Aneugenesis in Children with Cerebral Palsy. Bulletin of Experimental Biology and Medicine, 2005, 139, 596-599.	0.8	1
113	Voltammetric Determination of Mexidol. Pharmaceutical Chemistry Journal, 2005, 39, 447-448.	0.8	1
114	Controlled-potential coulometry for the analysis of carboxylic acids. Pharmaceutical Chemistry Journal, 2009, 43, 360-362.	0.8	1
115	Chaga Extracts and Melanins After Plasma Treatment of Raw Material. UÄenye Zapiski Kazanskogo Gosudarstvennogo Universiteta: Seriâ Estestvennye Nauki, 2019, 161, 211-221.	0.3	1
116	Comparison of the antioxidant activity of aqueous and ethanolic extracts from chaga (Inonotus) Tj ETQq0 0 0 rgl	BT /Qverlo 1.0	ck ₀ 10 Tf 50 4

117	Sensitive and Selective Voltammetric Sensors for the Simultaneous Quantification of Natural Phenolic Antioxidants in Cognac and Brandy. Chemistry Proceedings, 2021, 5, 1.	0.1	0
118	Poly(bromocresol purple)-Based Voltammetric Sensor for the Simultaneous Quantification of Ferulic Acid and Vanillin. Chemistry Proceedings, 2021, 5, .	0.1	0
119	Electrode Modified with Tin(IV) Oxide Nanoparticles and Surfactants as Sensitive Sensor for Hesperidin. , 2021, 5, .		0
120	Novel Electrodes Based on the Electropolymerized Nanocoatings for the Selective Voltammetric Quantification of Flavanones. , 0, , .		0