Marian E Berryhill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6328403/publications.pdf

Version: 2024-02-01

82 papers 3,259 citations

147801 31 h-index 55 g-index

84 all docs 84 docs citations

times ranked

84

3195 citing authors

#	Article	IF	CITATIONS
1	Individual predictors and electrophysiological signatures of working memory enhancement in aging. Neurolmage, 2022, 250, 118939.	4.2	13
2	Caught in the ACTS: Defining Abstract Cognitive Task Sequences as an Independent Process. Journal of Cognitive Neuroscience, 2022, 34, 1103-1113.	2.3	4
3	Impaired visual working memory and reduced connectivity in undergraduates with a history of mild traumatic brain injury. Scientific Reports, 2021, 11, 2789.	3.3	13
4	Smooth Pursuit and Saccades after Sport-Related Concussion. Journal of Neurotrauma, 2020, 37, 340-346.	3.4	23
5	Predicting Working Memory Training Benefits From Transcranial Direct Current Stimulation Using Resting-State fMRI. Frontiers in Psychology, 2020, 11, 570030.	2.1	11
6	No tDCS augmented working memory training benefit in undergraduates rewarded with course credit. Brain Stimulation, 2020, 13, 1524-1526.	1.6	9
7	Frontoparietal theta-gamma interactions track working memory enhancement with training and tDCS. Neurolmage, 2020, 211, 116615.	4.2	68
8	Replacing tDCS with theta tACS provides selective, but not general WM benefits. Brain Research, 2019, 1720, 146324.	2.2	23
9	Visual working memory deficits in undergraduates with a history of mild traumatic brain injury. Attention, Perception, and Psychophysics, 2019, 81, 2597-2603.	1.3	7
10	Individual differences reveal limited mixed-category effects during a visual working memory task. Neuropsychologia, 2019, 122, 1-10.	1.6	1
11	Examining the relationship between eye movement kinematics and schizotypy in the normal population. Journal of Vision, 2019, 19, 126b.	0.3	0
12	Electrophysiological correlates of encoding processes in a full-report visual working memory paradigm. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 353-365.	2.0	7
13	Tasks determine what is learned in visual statistical learning. Psychonomic Bulletin and Review, 2018, 25, 1847-1854.	2.8	7
14	Visual statistical learning deficits in memory-impaired individuals. Neurocase, 2018, 24, 259-265.	0.6	2
15	Cognitive Effects of Transcranial Direct Current Stimulation in Healthy and Clinical Populations. Journal of ECT, 2018, 34, e25-e35.	0.6	59
16	Frontoparietal tDCS Benefits Visual Working Memory in Older Adults With Low Working Memory Capacity. Frontiers in Aging Neuroscience, 2018, 10, 57.	3.4	38
17	Task-relevant category differences strongly influence temporal visual statistical learning. Journal of Vision, 2018, 18, 1308.	0.3	0
18	Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization. Brain Research, 2017, 1667, 28-40.	2.2	44

#	Article	IF	Citations
19	Task demands, tDCS intensity, and the COMT val158met polymorphism impact tDCS-linked working memory training gains. Scientific Reports, 2017, 7, 13463.	3.3	37
20	Editorial: Revisiting the Effectiveness of Transcranial Direct Current Brain Stimulation for Cognition: Evidence, Challenges, and Open Questions. Frontiers in Human Neuroscience, 2017, 11, 448.	2.0	36
21	Longitudinal tDCS: Consistency across Working Memory Training Studies. AIMS Neuroscience, 2017, 4, 71-86.	2.3	30
22	Visual statistical learning faces interference from response and executive demands. Journal of Vision, 2017, 17, 959.	0.3	0
23	Evidence of limited cross-category visual statistical learning in amnesia. Journal of Vision, 2017, 17, 353.	0.3	0
24	Frequency domain analyses of EEG reveal neural correlates of visual working memory capacity limitations observed during encoding using a full report paradigm Journal of Vision, 2017, 17, 123.	0.3	0
25	Induced and Evoked Human Electrophysiological Correlates of Visual Working Memory Set-Size Effects at Encoding. PLoS ONE, 2016, 11, e0167022.	2.5	9
26	Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task. Neuroscience Letters, 2016, 629, 105-109.	2.1	47
27	Older Adults Improve on Everyday Tasks after Working Memory Training and Neurostimulation. Brain Stimulation, 2016, 9, 553-559.	1.6	107
28	Enhancing Everyday Cognition in Older Adults via Working Memory Training and Transcranial Direct Current Stimulation. American Journal of Occupational Therapy, 2016, 70, 7011520298p1-7011520298p1.	0.3	0
29	A stimulus biased contralateral bias in intraparietal sulcus Journal of Vision, 2016, 16, 1064.	0.3	0
30	Visual working memory training with non-invasive neurostimulation increases low frequency phase synchrony. Journal of Vision, 2016, 16, 760.	0.3	0
31	Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations. Attention, Perception, and Psychophysics, 2015, 77, 2270-2283.	1.3	36
32	Cognitive Rehabilitation After Traumatic Brain Injury. OTJR Occupation, Participation and Health, 2015, 35, 5-22.	0.8	25
33	Longitudinal Neurostimulation in Older Adults Improves Working Memory. PLoS ONE, 2015, 10, e0121904.	2.5	126
34	Intraparietal regions play a material general role in working memory: Evidence supporting an internal attentional role. Neuropsychologia, 2015, 73, 12-24.	1.6	10
35	The strategy and motivational influences on the beneficial effect of neurostimulation: A tDCS and fNIRS study. Neurolmage, 2015, 105, 238-247.	4.2	84
36	Can Noninvasive Neurostimulation and Working Memory Training Facilitate Transfer Gains in Healthy Older Adults?. American Journal of Occupational Therapy, 2015, 69, 6911520073p1-6911520073p1.	0.3	0

#	Article	IF	Citations
37	Encoding-related neural correlates of set-size limitations of working memory. Journal of Vision, 2015, 15, 298.	0.3	0
38	Non-linear neural interactions at the time of encoding underlie grouping benefits in working memory. Journal of Vision, 2015, 15, 299.	0.3	0
39	Hits and misses: leveraging tDCS to advance cognitive research. Frontiers in Psychology, 2014, 5, 800.	2.1	108
40	Real-world objects are more memorable than photographs of objects. Frontiers in Human Neuroscience, 2014, 8, 837.	2.0	71
41	Enhanced long-term memory encoding after parietal neurostimulation. Experimental Brain Research, 2014, 232, 4043-4054.	1.5	33
42	Invalid retro-cues can eliminate the retro-cue benefit: Evidence for a hybridized account Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 1748-1754.	0.9	26
43	Influences on the beneficial effect of neurostimulation. Visual Cognition, 2014, 22, 1034-1038.	1.6	1
44	The steady-state visual evoked potential reveals neural correlates of the items encoded into visual working memory. Neuropsychologia, 2014, 63, 145-153.	1.6	23
45	Impaired perception of mnemonic oldness, but not mnemonic newness, after parietal lobe damage. Neuropsychologia, 2014, 56, 409-417.	1.6	55
46	Orienting attention in visual working memory requires central capacity: Decreased retro-cue effects under dual-task conditions. Attention, Perception, and Psychophysics, 2014, 76, 715-724.	1.3	28
47	Individual differences in autistic trait load in the general population predict visual working memory performance. Quarterly Journal of Experimental Psychology, 2013, 66, 1182-1195.	1.1	24
48	Synesthetic grapheme-color percepts exist for newly encountered Hebrew, Devanagari, Armenian and Cyrillic graphemes. Consciousness and Cognition, 2013, 22, 944-954.	1.5	9
49	Differential Frontal Involvement in Shifts of Internal and Perceptual Attention. Brain Stimulation, 2013, 6, 675-682.	1.6	28
50	The Gestalt principle of similarity benefits visual working memory. Psychonomic Bulletin and Review, 2013, 20, 1282-1289.	2.8	87
51	The neural fate of individual item representations in visual working memory. Visual Cognition, 2013, 21, 708-711.	1.6	1
52	The locus of color sensation: Cortical color loss and the chromatic visual evoked potential. Journal of Vision, 2013, 13, 15-15.	0.3	17
53	COMT and ANKK1-Taq-la Genetic Polymorphisms Influence Visual Working Memory. PLoS ONE, 2013, 8, e55862.	2.5	41
54	tDCS selectively improves working memory in older adults with more education. Neuroscience Letters, 2012, 521, 148-151.	2.1	253

#	Article	IF	Citations
55	The mental wormhole: Internal attention shifts without regard for distance. Attention, Perception, and Psychophysics, 2012, 74, 1199-1215.	1.3	40
56	Shifting Attention among Working Memory Representations: Testing Cue Type, Awareness, and Strategic Control. Quarterly Journal of Experimental Psychology, 2012, 65, 426-438.	1.1	67
57	Parietal Contributions to Visual Working Memory Depend on Task Difficulty. Frontiers in Psychiatry, 2012, 3, 81.	2.6	96
58	Insights from neuropsychology: pinpointing the role of the posterior parietal cortex in episodic and working memory. Frontiers in Integrative Neuroscience, 2012, 6, 31.	2.1	75
59	At the intersection of attention and memory: The mechanistic role of the posterior parietal lobe in working memory. Neuropsychologia, 2011, 49, 1306-1315.	1.6	54
60	True memory, false memory, and subjective recollection deficits after focal parietal lobe lesions Neuropsychology, 2010, 24, 465-475.	1.3	51
61	Similarities and differences between parietal and frontal patients in autobiographical and constructed experience tasks. Neuropsychologia, 2010, 48, 1385-1393.	1.6	72
62	Dissociation Between Memory Accuracy and Memory Confidence Following Bilateral Parietal Lesions. Cerebral Cortex, 2010, 20, 479-485.	2.9	204
63	A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neuroscience Letters, 2010, 479, 312-316.	2.1	117
64	A calendar savant with episodic memory impairments. Neurocase, 2010, 16, 208-218.	0.6	4
65	Latency of smooth pursuit under conditions of stimulus-response uncertainty. Journal of Vision, 2010, 2, 179-179.	0.3	0
66	The representation of object distance: evidence from neuroimaging and neuropsychology. Frontiers in Human Neuroscience, 2009, 3, 43.	2.0	16
67	Bilateral parietal cortex damage does not impair associative memory for paired stimuli. Cognitive Neuropsychology, 2009, 26, 606-619.	1.1	25
68	Impaired distance perception and size constancy following bilateral occipitoparietal damage. Experimental Brain Research, 2009, 194, 381-393.	1.5	26
69	On the minimization of task switch costs following long-term training. Attention, Perception, and Psychophysics, 2009, 71, 503-514.	1.3	30
70	Some surprising findings on the involvement of the parietal lobe in human memory. Neurobiology of Learning and Memory, 2009, 91, 155-165.	1.9	138
71	Serial reaction time performance following right parietal lobe damage. Journal of Neuropsychology, 2008, 2, 509-514.	1.4	2
72	The right parietal lobe is critical for visual working memory. Neuropsychologia, 2008, 46, 1767-1774.	1.6	89

#	Article	IF	CITATIONS
73	Is the posterior parietal lobe involved in working memory retrieval?. Neuropsychologia, 2008, 46, 1775-1786.	1.6	82
74	Parietal Lobe and Episodic Memory: Bilateral Damage Causes Impaired Free Recall of Autobiographical Memory. Journal of Neuroscience, 2007, 27, 14415-14423.	3.6	255
75	Multimodal access to verbal name codes. Perception & Psychophysics, 2007, 69, 628-640.	2.3	12
76	Smooth Pursuit of Nonvisual Motion. Journal of Neurophysiology, 2006, 96, 461-465.	1.8	28
77	Directional Uncertainty in Visually Guided Pointing. Perceptual and Motor Skills, 2006, 102, 125-132.	1.3	6
78	Effect of uncertainty on the time course for selection of verbal name codes. Perception & Psychophysics, 2005, 67, 1437-1445.	2.3	4
79	Effects of Directional Uncertainty on Visually-Guided Joystick Pointing. Perceptual and Motor Skills, 2005, 100, 267-274.	1.3	10
80	Smooth pursuit under stimulus–response uncertainty. Cognitive Brain Research, 2004, 19, 100-102.	3.0	8
81	Vibrotactile temporal summation: probability summation or neural integration?. Somatosensory & Motor Research, 1999, 16, 229-242.	0.9	52
82	The Effects of Concussion Can Be Long-Lasting. Frontiers for Young Minds, 0, 8, .	0.8	0