Teng Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6327939/publications.pdf

Version: 2024-02-01

840776 888059 17 298 11 17 citations h-index g-index papers 17 17 17 380 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Development of a DC bias structure with reduced RF leakage for suppressing the multipacting effect in the high power coaxial couplers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 988, 164891.	1.6	3
2	650 MHz elliptical superconducting RF cavities for CiADS Project. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 988, 164906.	1.6	7
3	Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical–chemical vapor deposition. Superconductor Science and Technology, 2017, 30, 045001.	3.5	6
4	Hybrid Physical Chemical Vapor Deposition of Magnesium Diboride Inside 3.9 GHz Mock Cavities. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	11
5	MgB ₂ ultrathin films fabricated by hybrid physical chemical vapor deposition and ion milling. APL Materials, 2016, 4, 086114.	5.1	22
6	Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient. Scientific Reports, 2016, 6, 35879.	3.3	31
7	Enhancement of lower critical field by reducing the thickness of epitaxial and polycrystalline MgB2 thin films. APL Materials, $2015, 3, .$	5.1	15
8	Fabrication and Characterization of Ultrathin MgB ₂ Films for Hot-Electron Bolometer Applications. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	16
9	Photocatalytic Enhancements to the Reduction of 4-Nitrophenol by Resonantly Excited Triangular Gold–Copper Nanostructures. Journal of Physical Chemistry C, 2015, 119, 17308-17315.	3.1	71
10	Eutectic Combinations as a Pathway to the Formation of Substrateâ€Based Auâ€Ge Heterodimers and Hollowed Au Nanocrescents with Tunable Optical Properties. Small, 2014, 10, 3379-3388.	10.0	13
11	Near-field microwave magnetic nanoscopy of superconducting radio frequency cavity materials. Applied Physics Letters, 2014, 104, .	3.3	11
12	Substrate-based galvanic replacement reactions carried out on heteroepitaxially formed silver templates. Nano Research, 2013, 6, 418-428.	10.4	26
13	Organized Surfaces of Highly Faceted Single-Crystal Palladium Structures Seeded by Sacrificial Templates. Crystal Growth and Design, 2013, 13, 3847-3851.	3.0	11
14	Study of Components for \$hbox{MgB}_{2}\$ RSFQ Digital Circuits. IEEE Transactions on Applied Superconductivity, 2013, 23, 1700204-1700204.	1.7	7
15	MgB2 Thin Films on Metal Substrates for Superconducting RF Cavity Applications. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1563-1568.	1.8	9
16	Large-Area <jats:formula formulatype="inline"> </jats:formula> Films Fabricated by Scaled-Up Hybrid Physical–Chemical Vapor Deposition. IEEE Transactions on Applied Superconductivity, 2013, 23, 7500304-7500304.	1.7	4
17	Clean MgB ₂ thin films on different types of single-crystal substrate fabricated by hybrid physical–chemical vapor deposition. Superconductor Science and Technology, 2009, 22, 025002.	3.5	35