Simon A Levin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6327424/publications.pdf

Version: 2024-02-01

502 papers 68,187 citations

906 116 h-index 245 g-index

541 all docs

541 docs citations

times ranked

541

55420 citing authors

#	Article	IF	CITATIONS
1	Governance in the Face of Extreme Events: Lessons from Evolutionary Processes for Structuring Interventions, and the Need to Go Beyond. Ecosystems, 2022, 25, 697-711.	3.4	18
2	Fundamental limitations on efficiently forecasting certain epidemic measures in network models. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
3	Marine phytoplankton resilience may moderate oligotrophic ecosystem responses and biogeochemical feedbacks to climate change. Limnology and Oceanography, 2022, 67, .	3.1	15
4	Robots as models of evolving systems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120019119.	7.1	10
5	Earth stewardship: Shaping a sustainable future through interacting policy and norm shifts. Ambio, 2022, 51, 1907-1920.	5. 5	23
6	Stepping Up: A U.S. Perspective on the Ten Steps to Responsible Inland Fisheries. Fisheries, 2022, 47, 68-77.	0.8	0
7	Punishment institutions selected and sustained through voting and learning. Nature Sustainability, 2022, 5, 578-585.	23.7	4
8	Governing sustainable transformations of urban social-ecological-technological systems. Npj Urban Sustainability, 2022, 2, .	8.0	20
9	Vaccination-hesitancy and global warming: distinct social challenges with similar behavioural solutions. Royal Society Open Science, 2022, 9, .	2.4	4
10	Understanding the coevolution of mask wearing and epidemics: A network perspective. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	14
11	Interacting with others while reacting to the environment. Behavioral and Brain Sciences, 2022, 45, .	0.7	1
12	More than ponds amid skyscrapers: Urban fisheries as multiscalar human–natural systems. Aquatic Ecosystem Health and Management, 2022, 25, 49-58.	0.6	2
13	Ecological complexity and the biosphere: the next 30 years. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	14
14	Fish and fisheries in hot water: What is happening and how do we adapt?. Population Ecology, 2021, 63, 17-26.	1.2	35
15	Analysis of the risk premium in the forward market for salmon. Journal of Commodity Markets, 2021, 21, 100122.	2.1	1
16	Resolution of Respect Robert M. May (1936–2020). Bulletin of the Ecological Society of America, 2021, 102, e01769.	0.2	0
17	Superinfection and the evolution of an initial asymptomatic stage. Royal Society Open Science, 2021, 8, 202212.	2.4	4
18	Trajectory of individual immunity and vaccination required for SARS-CoV-2 community immunity: a conceptual investigation. Journal of the Royal Society Interface, 2021, 18, 20200683.	3.4	15

#	Article	IF	Citations
19	Boat to bowl: resilience through network rewiring of a community-supported fishery amid the COVID-19 pandemic. Environmental Research Letters, 2021, 16, 034054.	5.2	12
20	Our future in the Anthropocene biosphere. Ambio, 2021, 50, 834-869.	5.5	275
21	Emergent Field-Driven Robot Swarm States. Physical Review Letters, 2021, 126, 108002.	7.8	44
22	Partial immunity and SARS-CoV-2 mutationsâ€"Response. Science, 2021, 372, 354-355.	12.6	2
23	Optimal, near-optimal, and robust epidemic control. Communications Physics, 2021, 4, .	5.3	61
24	Modeling Atlantic herring fisheries as multiscalar human-natural systems. Fisheries Research, 2021, 236, 105855.	1.7	4
25	Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science, 2021, 372, 363-370.	12.6	185
26	Biased perceptions explain collective action deadlocks and suggest new mechanisms to prompt cooperation. IScience, 2021, 24, 102375.	4.1	14
27	A well-timed shift from local to global agreements accelerates climate change mitigation. Nature Communications, 2021, 12, 2908.	12.8	2
28	Analysis of the potential impact of durability, timing, and transmission blocking of COVID-19 vaccine on morbidity and mortality. EClinicalMedicine, 2021, 35, 100863.	7.1	35
29	Generalized Stoichiometry and Biogeochemistry for Astrobiological Applications. Bulletin of Mathematical Biology, 2021, 83, 73.	1.9	12
30	Unifying deterministic and stochastic ecological dynamics via a landscape-flux approach. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
31	On the Coevolution of Economic and Ecological Systems. Annual Review of Resource Economics, 2021, 13, 355-377.	3.7	4
32	Evolution of an asymptomatic first stage of infection in a heterogeneous population. Journal of the Royal Society Interface, 2021, 18, 20210175.	3.4	2
33	Sunsetting as an adaptive strategy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	3
34	Introduction to PNAS special issue on evolutionary models of financial markets. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2104800118.	7.1	37
35	Irrigated areas drive irrigation water withdrawals. Nature Communications, 2021, 12, 4525.	12.8	42
36	Vaccine nationalism and the dynamics and control of SARS-CoV-2. Science, 2021, 373, eabj7364.	12.6	80

#	Article	IF	CITATIONS
37	Dynamics of informal risk sharing in collective index insurance. Nature Sustainability, 2021, 4, 426-432.	23.7	12
38	WTO must ban harmful fisheries subsidies. Science, 2021, 374, 544-544.	12.6	45
39	Risk transfer policies and climate-induced immobility among smallholder farmers. Nature Climate Change, 2021, 11, 1046-1054.	18.8	20
40	Interindividual cooperation mediated by partisanship complicates Madison's cure for "mischiefs of faction― Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
41	Link recommendation algorithms and dynamics of polarization in online social networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	69
42	Segregation and clustering of preferences erode socially beneficial coordination. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
43	The dynamics of political polarization. Proceedings of the National Academy of Sciences of the United States of America, 2021, $118,\ldots$	7.1	28
44	Extreme temperature events will drive coral decline in the Coral Triangle. Global Change Biology, 2020, 26, 2120-2133.	9.5	36
45	Landscape sustainability science in the drylands: mobility, rangelands and livelihoods. Landscape Ecology, 2020, 35, 2433-2447.	4.2	29
46	Linking Multiscalar Fisheries Using Metacoupling Models. Frontiers in Marine Science, 2020, 7, .	2.5	8
47	Cutting Through the Noise: Bacterial Chemotaxis in Marine Microenvironments. Frontiers in Marine Science, 2020, 7, .	2.5	12
48	Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells. PLoS Computational Biology, 2020, 16, e1008051.	3.2	11
49	Corridors of Clarity: Four Principles to Overcome Uncertainty Paralysis in the Anthropocene. BioScience, 2020, 70, 1139-1144.	4.9	14
50	Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science, 2020, 370, 811-818.	12.6	210
51	Robert May, 1936–2020: A man for all disciplines. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23199-23201.	7.1	0
52	Economic and Behavioral Influencers of Vaccination and Antimicrobial Use. Frontiers in Public Health, 2020, 8, 614113.	2.7	33
53	Probabilistic Foundations of Spatial Mean-Field Models in Ecology and Applications. SIAM Journal on Applied Dynamical Systems, 2020, 19, 2682-2719.	1.6	10
54	Dynamics in a simple evolutionary-epidemiological model for the evolution of an initial asymptomatic infection stage. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11541-11550.	7.1	28

#	Article	IF	Citations
55	Evolution of cooperation on temporal networks. Nature Communications, 2020, 11, 2259.	12.8	78
56	Combating climate change with matching-commitment agreements. Scientific Reports, 2020, 10, 10251.	3.3	14
57	Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190254.	4.0	33
58	Social dimensions of fertility behavior and consumption patterns in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6300-6307.	7.1	33
59	Opportunities for agentâ€based modelling in human dimensions of fisheries. Fish and Fisheries, 2020, 21, 570-587.	5.3	16
60	Coalition-structured governance improves cooperation to provide public goods. Scientific Reports, 2020, 10, 9194.	3.3	9
61	Global Marine Fishing across Space and Time. Sustainability, 2020, 12, 4714.	3.2	19
62	Implications of localized charge for human influenza A H1N1 hemagglutinin evolution: Insights from deep mutational scans. PLoS Computational Biology, 2020, 16, e1007892.	3.2	3
63	An invitation for more research on transnational corporations and the biosphere. Nature Ecology and Evolution, 2020, 4, 494-494.	7.8	9
64	Special issue of the Journal of Mathematical Biology to honor Alan Hastings' 65th birthday. Journal of Mathematical Biology, 2020, 80, 1-2.	1.9	0
65	Dispersal Increases the Resilience of Tropical Savanna and Forest Distributions. American Naturalist, 2020, 195, 833-850.	2.1	13
66	Generating Controlled, Dynamic Chemical Landscapes to Study Microbial Behavior. Journal of Visualized Experiments, 2020, , .	0.3	2
67	Caring for the future can turn tragedy into comedy for long-term collective action under risk of collapse. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12915-12922.	7.1	48
68	Asynchrony between virus diversity and antibody selection limits influenza virus evolution. ELife, 2020, 9, .	6.0	25
69	Active Control and Sustained Oscillations in actSIS Epidemic Dynamics. IFAC-PapersOnLine, 2020, 53, 807-812.	0.9	3
70	Title is missing!. , 2020, 16, e1008051.		0
71	Title is missing!. , 2020, 16, e1008051.		0
72	Title is missing!. , 2020, 16, e1008051.		0

#	Article	IF	CITATIONS
73	Title is missing!. , 2020, 16, e1008051.		О
74	Stability and recovery of coral-algae systems: the importance of recruitment seasonality and grazing influence. Theoretical Ecology, 2019, 12, 61-72.	1.0	11
75	Cooperation in the Climate Commons. Review of Environmental Economics and Policy, 2019, 13, 227-247.	7.0	55
76	Consensus and polarization in competing complex contagion processes. Journal of the Royal Society Interface, 2019, 16, 20190196.	3.4	24
77	Effects of humanâ€induced prey depletion on large carnivores in protected areas: Lessons from modeling tiger populations in stylized spatial scenarios. Ecology and Evolution, 2019, 9, 11298-11313.	1.9	10
78	Special issue of theoretical ecology to honor Alan Hastings' 65th birthday. Theoretical Ecology, 2019, 12, 129-130.	1.0	0
79	Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10792-10797.	7.1	41
80	Spatial patterning among savanna trees in high-resolution, spatially extensive data. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10681-10685.	7.1	30
81	Spatial feedbacks and the dynamics of savanna and forest. Theoretical Ecology, 2019, 12, 237-262.	1.0	20
82	Role of economics in analyzing the environment and sustainable development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5233-5238.	7.1	128
83	Incentivizing hospital infection control. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6221-6225.	7.1	22
84	Perceived entertainment and recreational value motivate illegal hunting in Southwest China. Biological Conservation, 2019, 234, 100-106.	4.1	22
85	The architecture of robustness. , 2019, , .		5
86	Dynamic analysis and decision-making in disease-behavior systems with perceptions, , $2019, , .$		1
87	Transnational corporations and the challenge of biosphere stewardship. Nature Ecology and Evolution, 2019, 3, 1396-1403.	7.8	194
88	Path-dependent institutions drive alternative stable states in conservation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 689-694.	7.1	21
89	Localized prosocial preferences, public goods, and common-pool resources. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5305-5310.	7.1	15
90	Local, Global, Multi-Level: Market Structure and Multi-Species Fishery Dynamics. Ecological Economics, 2019, 156, 185-195.	5.7	10

#	Article	IF	Citations
91	How ecology shapes exploitation: a framework to predict the behavioural response of human and animal foragers along exploration–exploitation tradeâ€offs. Ecology Letters, 2018, 21, 779-793.	6.4	32
92	On the complex dynamics of savanna landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1336-E1345.	7.1	54
93	Ecological and evolutionary dynamics of interconnectedness and modularity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 750-755.	7.1	10
94	Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3463-E3470.	7.1	1,907
95	From single steps to mass migration: the problem of scale in the movement ecology of the Serengeti wildebeest. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170012.	4.0	45
96	Economic Incentives in the Socially Optimal Management of Infectious Disease: When $R_{0} \$ is Not Enough. EcoHealth, 2018, 15, 274-289.	2.0	9
97	What is blue growth? The semantics of "Sustainable Development―of marine environments. Marine Policy, 2018, 87, 177-179.	3.2	147
98	Conserved behavioral circuits govern high-speed decision-making in wild fish shoals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12224-12228.	7.1	52
99	Reply to Charra et al.: Global longitudinal assessment of 2019 changes in defined daily doses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11433-E11435.	7.1	4
100	Cascading regime shifts within and across scales. Science, 2018, 362, 1379-1383.	12.6	220
101	The Economics of Infectious Disease, Trade and Pandemic Risk. EcoHealth, 2018, 15, 241-243.	2.0	15
102	Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO ₂ . Biogeosciences, 2018, 15, 2761-2779.	3.3	24
103	Quantifying resilience of humans and other animals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11883-11890.	7.1	204
104	Reply to Abat et al.: Improved policies necessary to ensure an effective future for antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8111-E8112.	7.1	4
105	Revenue-sharing clubs provide economic insurance and incentives for sustainability in common-pool resource systems. Journal of Theoretical Biology, 2018, 454, 205-214.	1.7	17
106	Incomplete cooperation and co-benefits: deepening climate cooperation with a proliferation of small agreements. Climatic Change, 2017, 144, 65-79.	3.6	17
107	Spatial heterogeneity can resolve the nitrogen paradox of tropical forests. Ecology, 2017, 98, 1049-1061.	3.2	15
108	Farming and public goods production in <i>Caenorhabditis elegans</i> populations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2289-2294.	7.1	25

#	Article	IF	Citations
109	Marine Ecosystems as Complex Adaptive Systems: Emergent Patterns, Critical Transitions, and Public Goods. Ecosystems, 2017, 20, 458-476.	3.4	33
110	Maintaining cooperation in social-ecological systems:. Theoretical Ecology, 2017, 10, 155-165.	1.0	22
111	Robert Treat Paine III (1933–2016). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6881-6882.	7.1	2
112	Shortâ€range dispersal maintains a volatile marine metapopulation: the brown alga <i>Postelsia palmaeformis</i> . Ecology, 2017, 98, 1560-1573.	3.2	6
113	The growth of finfish in global open-ocean aquaculture under climate change. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170834.	2.6	69
114	Characterizing fisheries connectivity in marine social–ecological systems. ICES Journal of Marine Science, 2017, 74, 2087-2096.	2.5	81
115	Reducing antimicrobial use in food animals. Science, 2017, 357, 1350-1352.	12.6	448
116	The pleasure of pursuit: recreational hunters in rural Southwest China exhibit low exit rates in response to declining catch. Ecology and Society, 2017, 22, .	2.3	29
117	Social Creation of Pro-social Preferences for Collective Action. , 2017, , 127-143.		10
118	Mobility can promote the evolution of cooperation via emergent self-assortment dynamics. PLoS Computational Biology, 2017, 13, e1005732.	3.2	28
119	Transboundary capital and pollution flows and the emergence of regional inequalities. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 913-922.	0.9	2
120	A collective navigation hypothesis for homeward migration in anadromous salmonids. Fish and Fisheries, 2016, 17, 525-542.	5.3	73
121	Use antimicrobials wisely. Nature, 2016, 537, 159-161.	27.8	47
122	Slowing Down of Recovery as Generic Risk Marker for Acute Severity Transitions in Chronic Diseases. Critical Care Medicine, 2016, 44, 601-606.	0.9	73
123	The right incentives enable ocean sustainability successes and provide hope for the future. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14507-14514.	7.1	123
124	Human–environment interactions in population and ecosystem health. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14502-14506.	7.1	83
125	Social norms as solutions. Science, 2016, 354, 42-43.	12.6	476
126	Natural search algorithms as a bridge between organisms, evolution, and ecology. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9413-9420.	7.1	44

#	Article	IF	Citations
127	A keystone ecologist: Robert Treat Paine, 1933–2016. Ecology, 2016, 97, 2905-2909.	3.2	3
128	Collective behavior as a driver of critical transitions in migratory populations. Movement Ecology, 2016, 4, 18.	2.8	27
129	The content and availability of information affects the evolution of social-information gathering strategies. Theoretical Ecology, 2016, 9, 455-476.	1.0	4
130	Robustness of norm-driven cooperation in the commons. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152431.	2.6	34
131	Wealth reallocation and sustainability under climate change. Nature Climate Change, 2016, 6, 237-244.	18.8	52
132	Physical limits on bacterial navigation in dynamic environments. Journal of the Royal Society Interface, 2016, 13, 20150844.	3.4	24
133	Heterogeneous Preference and Local Nonlinearity in Consensus Decision Making. Physical Review Letters, 2016, 116, 038701.	7.8	27
134	Evolutionary dynamics of collective index insurance. Journal of Mathematical Biology, 2016, 72, 997-1010.	1.9	6
135	The role of phytoplankton diversity in the emergent oceanic stoichiometry. Journal of Plankton Research, 2016, 38, 1021-1035.	1.8	39
136	Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nature Plants, 2015, 1, 15182.	9.3	73
137	Decreased water limitation under elevated CO ₂ amplifies potential for forest carbon sinks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7213-7218.	7.1	53
138	A new approach to financial regulation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12543-12544.	7.1	20
139	Beyond Ebola: lessons to mitigate future pandemics. The Lancet Global Health, 2015, 3, e354-e355.	6.3	42
140	Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science, 2015, 347, 651-655.	12.6	202
141	What Mathematics can do for Sustainability. Bulletin of Mathematical Biology, 2015, 77, 251-253.	1.9	3
142	Fitness tradeoffs between spores and nonaggregating cells can explain the coexistence of diverse genotypes in cellular slime molds. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2776-2781.	7.1	63
143	On the evolutionary interplay between dispersal and local adaptation in heterogeneous environments. Evolution; International Journal of Organic Evolution, 2015, 69, 1390-1405.	2.3	41
144	The potential for alternative stable states in nutrient-enriched invaded grasslands. Theoretical Ecology, 2015, 8, 399-417.	1.0	12

#	Article	IF	Citations
145	The social benefits of private infectious disease-risk mitigation. Theoretical Ecology, 2015, 8, 467-479.	1.0	6
146	Eluding catastrophic shifts. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1828-36.	7.1	97
147	Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5649-5654.	7.1	2,521
148	Modeling tiger population and territory dynamics using an agent-based approach. Ecological Modelling, 2015, 312, 347-362.	2.5	56
149	Social information use and the evolution of unresponsiveness in collective systems. Journal of the Royal Society Interface, 2015, 12, 20140893.	3.4	33
150	From Management to Stewardship: Viewing Forests As Complex Adaptive Systems in an Uncertain World. Conservation Letters, 2015, 8, 368-377.	5.7	183
151	Implications of the spatial dynamics of fire spread for the bistability of savanna and forest. Journal of Mathematical Biology, 2015, 70, 329-341.	1.9	48
152	Public goods in relation to competition, cooperation, and spite. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10838-10845.	7.1	87
153	Disease risk mitigation: The equivalence of two selective mixing strategies on aggregate contact patterns and resulting epidemic spread. Journal of Theoretical Biology, 2014, 363, 262-270.	1.7	11
154	An Extra Dimension to Decision-Making in Animals: The Three-way Trade-off between Speed, Effort per-Unit-Time and Accuracy. PLoS Computational Biology, 2014, 10, e1003937.	3.2	17
155	Bridging Disciplines To Enact Change: An Interview with Tyler Prize Laureate Simon Levin, PhD. Sustainability, 2014, 7, 138-139.	0.7	0
156	Impact of ocean phytoplankton diversity on phosphate uptake. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17540-17545.	7.1	93
157	Urban ecology: advancing science and society. Frontiers in Ecology and the Environment, 2014, 12, 574-581.	4.0	60
158	Managing the climate commons at the nexus of ecology, behaviour and economics. Nature Climate Change, 2014, 4, 1057-1063.	18.8	46
159	Merging Economics and Epidemiology to Improve the Prediction and Management of Infectious Disease. EcoHealth, 2014, 11, 464-475.	2.0	87
160	Cross-Reactive Immune Responses as Primary Drivers of Malaria Chronicity. Infection and Immunity, 2014, 82, 140-151.	2.2	17
161	Disease at the wildlife-livestock interface: Acaricide use on domestic cattle does not prevent transmission of a tick-borne pathogen with multiple hosts. Veterinary Parasitology, 2014, 199, 206-214.	1.8	18
162	Rainfall and temperatures changes have confounding impacts on <i><scp>P</scp>hytophthora cinnamomi</i> occurrence risk in the southwestern <scp>USA</scp> under climate change scenarios. Global Change Biology, 2014, 20, 1299-1312.	9.5	43

#	Article	IF	CITATIONS
163	Climate policies under wealth inequality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2212-2216.	7.1	112
164	Dealing with femtorisks in international relations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17356-17362.	7.1	24
165	Does aquaculture add resilience to the global food system?. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13257-13263.	7.1	468
166	Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E880-7.	7.1	55
167	Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infectious Diseases, The, 2014, 14, 742-750.	9.1	1,719
168	Evolutionary comparison between viral lysis rate and latent period. Journal of Theoretical Biology, 2014, 345, 32-42.	1.7	34
169	Mechanistic analysis of the search behaviour of <i>Caenorhabditis elegans </i> Society Interface, 2014, 11, 20131092.	3.4	46
170	Some Perspectives on Linked Ecosystems and Socioeconomic Systems. , 2014, , 95-116.		11
171	Decision Accuracy and the Role of Spatial Interaction in Opinion Dynamics. Journal of Statistical Physics, 2013, 151, 203-217.	1.2	7
172	Regime shifts in a social-ecological system. Theoretical Ecology, 2013, 6, 359-372.	1.0	169
173	Reciprocal insurance among Kenyan pastoralists. Theoretical Ecology, 2013, 6, 173-187.	1.0	22
173 174	Reciprocal insurance among Kenyan pastoralists. Theoretical Ecology, 2013, 6, 173-187. The evolution of intermittent breeding. Journal of Mathematical Biology, 2013, 66, 685-703.	1.0	40
174	The evolution of intermittent breeding. Journal of Mathematical Biology, 2013, 66, 685-703. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environment	1.9	40
174 175	The evolution of intermittent breeding. Journal of Mathematical Biology, 2013, 66, 685-703. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environment and Development Economics, 2013, 18, 111-132. Contributions of gopher mound and casting disturbances to plant community structure in a Cascade	1.9	40 530
174 175 176	The evolution of intermittent breeding. Journal of Mathematical Biology, 2013, 66, 685-703. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environment and Development Economics, 2013, 18, 111-132. Contributions of gopher mound and casting disturbances to plant community structure in a Cascade Range meadow complex. Botany, 2013, 91, 555-561. Editorial for the special issue of mathematical biosciences, BIOCOMP 2012. Mathematical Biosciences,	1.9 1.5 1.0	40 530 15
174 175 176	The evolution of intermittent breeding. Journal of Mathematical Biology, 2013, 66, 685-703. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environment and Development Economics, 2013, 18, 111-132. Contributions of gopher mound and casting disturbances to plant community structure in a Cascade Range meadow complex. Botany, 2013, 91, 555-561. Editorial for the special issue of mathematical biosciences, BIOCOMP 2012. Mathematical Biosciences, 2013, 245, 1. Linking Plant Disease Risk and Precipitation Drivers: A Dynamical Systems Framework. American	1.9 1.5 1.0	40 530 15

#	Article	IF	Citations
181	Competition for Water and Light in Closed-Canopy Forests: A Tractable Model of Carbon Allocation with Implications for Carbon Sinks. American Naturalist, 2013, 181, 314-330.	2.1	87
182	Social Norms and Global Environmental Challenges: The Complex Interaction of Behaviors, Values, and Policy. BioScience, 2013, 63, 164-175.	4.9	202
183	Cutting through the complexity of cell collectives. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122770.	2.6	111
184	Resource limitation in a competitive context determines complex plant responses to experimental resource additions. Ecology, 2013, 94, 2505-2517.	3.2	92
185	Marine Taxa Track Local Climate Velocities. Science, 2013, 341, 1239-1242.	12.6	1,025
186	Stigmergy, collective actions, and animal social spacing. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16904-16909.	7.1	43
187	Fusing enacted and expected mimicry generates a winning strategy that promotes the evolution of cooperation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10229-10233.	7.1	35
188	A model for variable phytoplankton stoichiometry based on cell protein regulation. Biogeosciences, 2013, 10, 4341-4356.	3.3	42
189	Preface to Special Issue in Honor of Carlos Castillo-Chavez. Mathematical Biosciences and Engineering, 2013, 10, .	1.9	0
190	Preface to Special Issue in Honor of Carlos Castillo-Chavez. Mathematical Biosciences and Engineering, 2013, 10, xxv-xxvii.	1.9	0
191	Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5609-5614.	7.1	725
192	Elinor Ostrom: An uncommon woman for the commons. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13135-13136.	7.1	9
193	Decision versus compromise for animal groups in motion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 227-232.	7.1	82
194	Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 847-852.	7.1	293
195	Integrating Theoretical Climate and Fire Effects on Savanna and Forest Systems. American Naturalist, 2012, 180, 211-224.	2.1	126
196	Superinfection and the evolution of resistance to antimalarial drugs. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3834-3842.	2.6	33
197	Patchiness and Demographic Noise in Three Ecological Examples. Journal of Statistical Physics, 2012, 148, 724-740.	1.2	40
198	Evolution of cooperation and skew under imperfect information. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14936-14941.	7.1	21

#	Article	IF	CITATIONS
199	Anticipating Critical Transitions. Science, 2012, 338, 344-348.	12.6	1,607
200	Towards the marriage of theory and data. Interface Focus, 2012, 2, 141-143.	3.0	14
201	Relationship between treatment-seeking behaviour and artemisinin drug quality in Ghana. Malaria Journal, 2012, 11, 110.	2.3	12
202	Functional Biogeography of Ocean Microbes Revealed through Non-Negative Matrix Factorization. PLoS ONE, 2012, 7, e43866.	2.5	60
203	Linking Dispersal and Immigration in Multidimensional Environments. Bulletin of Mathematical Biology, 2012, 74, 1754-1763.	1.9	4
204	Sustainability as Adaptability. Journal of Applied Corporate Finance, 2012, 24, 14-22.	0.8	13
205	The survival of the conformist: Social pressure and renewable resource management. Journal of Theoretical Biology, 2012, 299, 152-161.	1.7	108
206	Epilogue: The Challenge of Sustainability: Lessons from an Evolutionary Perspective. , 2012, , 431-437.		4
207	The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science, 2011, 334, 230-232.	12.6	1,039
208	Hydrologic controls and anthropogenic drivers of the zebra mussel invasion of the Mississippiâ€Missouri river system. Water Resources Research, 2011, 47, .	4.2	38
209	Evolution of a modular software network. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19985-19989.	7.1	47
210	Uninformed Individuals Promote Democratic Consensus in Animal Groups. Science, 2011, 334, 1578-1580.	12.6	354
211	Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states. Ecology, 2011, 92, 1063-1072.	3.2	342
212	To breed or not to breed: a model of partial migration. Oikos, 2011, 120, 1871-1879.	2.7	70
213	On the use of IPCC-class models to assess the impact of climate on Living Marine Resources. Progress in Oceanography, 2011, 88, 1-27.	3.2	272
214	Universality in Bacterial Colonies. Journal of Statistical Physics, 2011, 144, 303-315.	1.2	58
215	On Nonstable and Stable Population Momentum. Demography, 2011, 48, 1581-1599.	2.5	9
216	Evolution of dispersal in explicitly spatial metacommunities. Journal of Theoretical Biology, 2011, 269, 256-265.	1.7	22

#	Article	IF	CITATIONS
217	Dynamic model of flexible phytoplankton nutrient uptake. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20633-20638.	7.1	107
218	Tree cover in sub-Saharan Africa: Rainfall and fire constrain forest and savanna as alternative stable states. Ecology, 2011, 92, 1063-1072.	3.2	60
219	The emergence of regularity and variability in marine ecosystems: the combined role of physics, chemistry and biology. Scientia Marina, 2011, 75, 719-731.	0.6	7
220	Fishery Discards Impact on Seabird Movement Patterns at Regional Scales. Current Biology, 2010, 20, 215-222.	3.9	147
221	Eavesdropping and language dynamics. Journal of Theoretical Biology, 2010, 264, 104-118.	1.7	21
222	Multiscale analysis of collective motion and decision-making in swarms: An advection–diffusion equation with memory approach. Journal of Theoretical Biology, 2010, 264, 893-913.	1.7	17
223	Decentralize, adapt and cooperate. Nature, 2010, 465, 292-293.	27.8	19
224	How Can Vaccines Against Influenza and Other Viral Diseases Be Made More Effective?. PLoS Biology, 2010, 8, e1000571.	5.6	23
225	Climate Change and the Integrity of Science. Science, 2010, 328, 689-690.	12.6	143
226	Crossing scales, crossing disciplines: collective motion and collective action in the Global Commons . Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 13-18.	4.0	33
227	Specialization and evolutionary branching within migratory populations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20394-20399.	7.1	45
228	Askö in Washington 1999: Managing Ecosystem Resources. , 2010, , 115-126.		0
229	Askö 2001: Sustainability's Compass – Indicators of Genuine Wealth. , 2010, , 183-192.		0
230	Askö in Stanford 2000: Are We Consuming Too Much?. , 2010, , 135-161.		2
231	Differential neutralization efficiency of hemagglutinin epitopes, antibody interference, and the design of influenza vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8701-8706.	7.1	100
232	Intergenerational resource transfers with random offspring numbers. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13702-13706.	7.1	49
233	Facultative versus Obligate Nitrogen Fixation Strategies and Their Ecosystem Consequences. American Naturalist, 2009, 174, 465-477.	2.1	116
234	Looming Global-Scale Failures and Missing Institutions. Science, 2009, 325, 1345-1346.	12.6	317

#	Article	IF	Citations
235	Managing waterâ€use tradeâ€offs in a semiâ€arid river delta to sustain multiple ecosystem services: a modeling approach. Ecological Research, 2009, 24, 491-503.	1.5	41
236	Vertically structured prokaryotic community can control the efficiency of the biological pump in the oceans. Theoretical Ecology, 2009, 2, 199-216.	1.0	5
237	Dynamics of Decision Making in Animal Group Motion. Journal of Nonlinear Science, 2009, 19, 399-435.	2.1	53
238	Diversity in Current Ecological Thinking: Implications for Environmental Management. Environmental Management, 2009, 43, 17-27.	2.7	74
239	On the use of hemagglutination-inhibition for influenza surveillance: Surveillance data are predictive of influenza vaccine effectiveness. Vaccine, 2009, 27, 2447-2452.	3.8	44
240	Games, Groups, Norms, and Societies. Springer Series in Game Theory, 2009, , 143-153.	0.2	3
241	Generalized Models Reveal Stabilizing Factors in Food Webs. Science, 2009, 325, 747-750.	12.6	249
242	Modeling responses of coupled social–ecological systems of the Gulf of California to anthropogenic and natural perturbations. Ecological Research, 2009, 24, 505-519.	1.5	18
243	River networks as ecological corridors: A complex systems perspective for integrating hydrologic, geomorphologic, and ecologic dynamics. Water Resources Research, 2009, 45, .	4.2	148
244	Phytoplankton stoichiometry. Ecological Research, 2008, 23, 479-485.	1.5	143
245	Comparison between perfect information and passive–adaptive social learning models of forest harvesting. Theoretical Ecology, 2008, 1, 189-197.	1.0	7
246	Observing bacteria through the lens of social evolution. Journal of Biology, 2008, 7, 27.	2.7	37
247	Superdiffusion and encounter rates in diluted, low dimensional worlds. European Physical Journal: Special Topics, 2008, 157, 157-166.	2.6	33
248	Ecology for bankers. Nature, 2008, 451, 893-894.	27.8	651
249	The role of size inequality in self-thinning: A pattern-oriented simulation model for arid savannas. Ecological Modelling, 2008, 210, 431-445.	2.5	35
250	Bottom–up and top–down forcing in a simple size-structured plankton dynamics model. Journal of Marine Systems, 2008, 74, 134-152.	2.1	46
251	Signatures of vegetational functional diversity in river basins. Water Resources Research, 2008, 44, .	4.2	6
252	Resilience, Robustness, and Marine Ecosystem-based Management. BioScience, 2008, 58, 27-32.	4.9	416

#	Article	IF	CITATIONS
253	Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1573-1578.	7.1	94
254	Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1971-1976.	7.1	89
255	Fractal reorientation clocks: Linking animal behavior to statistical patterns of search. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19072-19077.	7.1	170
256	The Evolution of Quorum Sensing in Bacterial Biofilms. PLoS Biology, 2008, 6, e14.	5.6	343
257	Emerging collective behaviors of animal groups. , 2008, , .		4
258	The Evolution of Dispersal in Reserve Networks. American Naturalist, 2007, 170, 59-78.	2.1	86
259	On State-Space Reduction in Multi-Strain Pathogen Models, with an Application to Antigenic Drift in Influenza A. PLoS Computational Biology, 2007, 3, e159.	3.2	50
260	Introduction: Infectious diseases. Environment and Development Economics, 2007, 12, 625-626.	1.5	3
261	ECOLOGY: Remodeled Foundations. Science, 2007, 316, 1699-1700.	12.6	5
262	Designing marine reserves for interacting species: Insights from theory. Biological Conservation, 2007, 137, 163-179.	4.1	96
	2007, 137, 103 177.	4.1	
263	Intraspecific Variation and Species Coexistence. American Naturalist, 2007, 170, 807-818.	2.1	82
263			82
	Intraspecific Variation and Species Coexistence. American Naturalist, 2007, 170, 807-818. On biodiversity in river networks: A tradeâ€off metapopulation model and comparative analysis. Water	2.1	
264	Intraspecific Variation and Species Coexistence. American Naturalist, 2007, 170, 807-818. On biodiversity in river networks: A tradeâ€off metapopulation model and comparative analysis. Water Resources Research, 2007, 43, .	2.1	14
264 265	Intraspecific Variation and Species Coexistence. American Naturalist, 2007, 170, 807-818. On biodiversity in river networks: A tradeâ€off metapopulation model and comparative analysis. Water Resources Research, 2007, 43, . Patterns and Prediction in Microbial Oceanography. Oceanography, 2007, 20, 34-46. A neutral metapopulation model of biodiversity in river networks. Journal of Theoretical Biology,	2.1 4.2	14
264 265 266	Intraspecific Variation and Species Coexistence. American Naturalist, 2007, 170, 807-818. On biodiversity in river networks: A tradeâ€off metapopulation model and comparative analysis. Water Resources Research, 2007, 43, . Patterns and Prediction in Microbial Oceanography. Oceanography, 2007, 20, 34-46. A neutral metapopulation model of biodiversity in river networks. Journal of Theoretical Biology, 2007, 245, 351-363. Heterogeneous animal group models and their group-level alignment dynamics: An equation-free	2.1 4.2 1.0	14 13 94
264 265 266 267	Intraspecific Variation and Species Coexistence. American Naturalist, 2007, 170, 807-818. On biodiversity in river networks: A tradeâ€off metapopulation model and comparative analysis. Water Resources Research, 2007, 43, . Patterns and Prediction in Microbial Oceanography. Oceanography, 2007, 20, 34-46. A neutral metapopulation model of biodiversity in river networks. Journal of Theoretical Biology, 2007, 245, 351-363. Heterogeneous animal group models and their group-level alignment dynamics: An equation-free approach. Journal of Theoretical Biology, 2007, 246, 100-112. A model of flexible uptake of two essential resources. Journal of Theoretical Biology, 2007, 246,	2.1 4.2 1.0 1.7	14 13 94

#	Article	IF	CITATIONS
271	REPRODUCTIVE ASYNCHRONY INCREASES WITH ENVIRONMENTAL DISTURBANCE. Evolution; International Journal of Organic Evolution, 2007, 55, 830-834.	2.3	4
272	Consumption, Investment, and Future Well-Being: Reply to Daly et al Conservation Biology, 2007, 21, 1363-1365.	4.7	7
273	Synchronized deforestation induced by social learning under uncertainty of forest-use value. Ecological Economics, 2007, 63, 452-462.	5.7	33
274	Evolutionary escape from the prisoner's dilemma. Journal of Theoretical Biology, 2007, 245, 411-422.	1.7	74
275	Epidemic Enhancement in Partially Immune Populations. PLoS ONE, 2007, 2, e165.	2.5	20
276	Evolutionary Branching of Single Traits. , 2007, , 191-212.		0
277	Tragedy of the commons in plant water use. Water Resources Research, 2006, 42, .	4.2	38
278	The SIRC model and influenza A. Mathematical Biosciences, 2006, 200, 152-169.	1.9	141
279	Fundamental Questions in Biology. PLoS Biology, 2006, 4, e300.	5.6	26
280	Size and scaling of predator-prey dynamics. Ecology Letters, 2006, 9, 548-557.	6.4	90
281	Learning to live in a global commons: socioeconomic challenges for a sustainable environment. Ecological Research, 2006, 21, 328-333.	1.5	89
282	Global stability in a chemostat with multiple nutrients. Journal of Mathematical Biology, 2006, 52, 419-438.	1.9	16
283	On Karl Hadeler becoming 70. Journal of Mathematical Biology, 2006, 53, 496-498.	1.9	3
284	The Evolution of Resource Adaptation: How Generalist and Specialist Consumers Evolve. Bulletin of Mathematical Biology, 2006, 68, 1111-1123.	1.9	32
285	Cooperation among Microorganisms. PLoS Biology, 2006, 4, e299.	5.6	75
286	Global asymptotic coherence in discrete dynamical systems. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3968-3971.	7.1	26
287	Building Resilience and Adaptation to Manage Arctic Change. Ambio, 2006, 35, 198-202.	5.5	70
288	Quick Fixes for the Environment: Part of the Solution or Part of the Problem?. Environment, 2006, 48, 20-27.	1.4	32

#	Article	IF	CITATIONS
289	Bursts of nonsynonymous substitutions in HIV-1 evolution reveal instances of positive selection at conservative protein sites. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19396-19401.	7.1	28
290	The effect of global travel on the spread of SARS. Mathematical Biosciences and Engineering, 2006, 3, 205-218.	1.9	100
291	Simon A. Levin's Passion for Ecology. BioScience, 2005, 55, 828.	4.9	1
292	HIDDEN EFFECTS OF CHRONIC TUBERCULOSIS IN AFRICAN BUFFALO. Ecology, 2005, 86, 2358-2364.	3.2	95
293	The Evolution of Intergenerational Discounting in Offspring Quality. American Naturalist, 2005, 165, 311-321.	2.1	31
294	Long-distance biological transport processes through the air: can nature's complexity be unfolded in silico?. Diversity and Distributions, 2005, 11, 131-137.	4.1	98
295	Effective leadership and decision-making in animal groups on the move. Nature, 2005, 433, 513-516.	27.8	2,214
296	LEAKY PREZYGOTIC ISOLATION AND POROUS GENOMES: RAPID INTROGRESSION OF MATERNALLY INHERITED DNA. Evolution; International Journal of Organic Evolution, 2005, 59, 720-729.	2.3	265
297	Native harvester ants threatened with widespread displacement exert localized effects on serpentine grassland plant community composition. Oikos, 2005, 109, 351-359.	2.7	15
298	Dynamic response of grass cover to rainfall variability: implications for the function and persistence of savanna ecosystems. Advances in Water Resources, 2005, 28, 291-302.	3.8	101
299	Special issue on eco-informatics: Modeling biological conservation decisions. Environmental Modeling and Assessment, 2005, 10, 161-162.	2.2	2
300	Spatial attributes and reserve design models: A review. Environmental Modeling and Assessment, 2005, 10, 163-181.	2.2	215
301	The Evolution of Norms. PLoS Biology, 2005, 3, e194.	5.6	128
302	LEAKY PREZYGOTIC ISOLATION AND POROUS GENOMES: RAPID INTROGRESSION OF MATERNALLY INHERITED DNA. Evolution; International Journal of Organic Evolution, 2005, 59, 720.	2.3	13
303	Mechanistic Analytical Models for Longâ€Distance Seed Dispersal by Wind. American Naturalist, 2005, 166, 368-381.	2.1	245
304	From The Cover: Strategic interactions in multi-institutional epidemics of antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3153-3158.	7.1	117
305	Age Structure, Residents, and Transients of Miocene Rodent Communities. American Naturalist, 2005, 165, E108-E125.	2.1	43
306	Coevolutionary arms races between bacteria and bacteriophage. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9535-9540.	7.1	245

#	Article	IF	CITATIONS
307	Can stable social groups be maintained by homophilous imitation alone?. Journal of Economic Behavior and Organization, 2005, 57, 267-286.	2.0	65
308	MARINE RESERVE DESIGN AND THE EVOLUTION OF SIZE AT MATURATION IN HARVESTED FISH. , 2005, 15, 882-901.		112
309	Self-organization and the Emergence of Complexity in Ecological Systems. BioScience, 2005, 55, 1075.	4.9	171
310	On state-space reduction in multi-strain pathogen models, with an application to antigenic drift in influenza A. PLoS Computational Biology, 2005, preprint, e159.	3.2	1
311	A global movement toward an ecosystem approach to management of marine resources. Marine Ecology - Progress Series, 2005, 300, 275-279.	1.9	76
312	Are We Consuming Too Much?. Journal of Economic Perspectives, 2004, 18, 147-172.	5.9	590
313	ECOLOGY: Hatcheries and Endangered Salmon. Science, 2004, 303, 1980-1980.	12.6	67
314	Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: Resistance is a regional problem. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3709-3714.	7.1	169
315	Dynamical resonance can account for seasonality of influenza epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16915-16916.	7.1	311
316	Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature, 2004, 429, 171-174.	27.8	767
317	Spread of two linked social norms on complex interaction networks. Journal of Theoretical Biology, 2004, 230, 57-64.	1.7	51
318	Equation-free modelling of evolving diseases: coarse-grained computations with individual-based models. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 2761-2779.	2.1	31
319	Competitive coexistence in a dynamic landscape. Theoretical Population Biology, 2004, 66, 341-353.	1.1	27
320	Using mathematical optimization models to design nature reserves. Frontiers in Ecology and the Environment, 2004, 2, 98-105.	4.0	121
321	Genetic diversity and interdependent crop choices in agriculture. Resources and Energy Economics, 2004, 26, 175-184.	2.5	51
322	Evolution and persistence of influenza A and other diseases. Mathematical Biosciences, 2004, 188, 17-28.	1.9	47
323	Coupling ecology and evolution: malaria and the S-gene across time scales. Mathematical Biosciences, 2004, 189, 1-19.	1.9	40
324	Toward a Dynamic Metacommunity Approach to Marine Reserve Theory. BioScience, 2004, 54, 1003.	4.9	77

#	Article	IF	CITATIONS
325	Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnology and Oceanography, 2004, 49, 1463-1470.	3.1	263
326	Scale and Scaling in Ecological and Economic Systems. The Economics of Non-market Goods and Resources, 2004, , 29-59.	1.2	15
327	Scale and Scaling in Ecological and Economic Systems. Environmental and Resource Economics, 2003, 26, 527-557.	3.2	58
328	Components of spatial patterning in a serpentine grassland. Ecological Research, 2003, 18, 405-421.	1.5	6
329	Traveling waves in a model of influenza A drift. Journal of Theoretical Biology, 2003, 222, 437-445.	1.7	74
330	The Ecology and Evolution of Seed Dispersal: A Theoretical Perspective. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 575-604.	8.3	653
331	Coping With Uncertainty: A Call for a New Science-Policy Forum. Ambio, 2003, 32, 330-335.	5.5	103
332	Ecosystem Dynamics. Handbook of Environmental Economics, 2003, 1, 61-95.	0.1	1
333	ENVIRONMENTAL ECONOMICS: False Alarm over Environmental False Alarms. Science, 2003, 301, 1187-1188.	12.6	32
334	THEORETICAL PERSPECTIVES ON EVOLUTION OF LONG-DISTANCE DISPERSAL AND THE EXAMPLE OF SPECIALIZED PESTS. Ecology, 2003, 84, 1957-1967.	3.2	64
335	Long-Distance Dispersal 1. Ecology, 2003, 84, 1943-1944.	3.2	32
336	Linear Growth Models for a Single Species: Averaging Spatial Effects via Eigenvalues., 2003,, 89-139.		1
337	Density Dependent Single-Species Models. , 2003, , 141-198.		0
338	Permanence., 2003,, 199-244.		0
339	Beyond Permanence: More Persistence Theory. , 2003, , 245-294.		0
340	Spatial Heterogeneity in Reaction-Diffusion Models for Two Competing Species., 2003,, 295-349.		1
341	Nonmonotone Systems. , 2003, , 351-394.		0
342	Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6263-6268.	7.1	205

#	Article	IF	CITATIONS
343	Complex adaptive systems: Exploring the known, the unknown and the unknowable. Bulletin of the American Mathematical Society, 2002, 40, 3-20.	1.5	264
344	Competition and Species Packing in Patchy Environments. Theoretical Population Biology, 2002, 61, 265-276.	1.1	30
345	Modelling the Effects of Current on Prey Acquisition in Planktivorous Fishes. Marine and Freshwater Behaviour and Physiology, 2002, 35, 69-85.	0.9	12
346	Metapopulations, community assembly, and scale invariance in aspect space. Theoretical Population Biology, 2002, 62, 329-338.	1.1	5
347	Ecology and evolution of the flu. Trends in Ecology and Evolution, 2002, 17, 334-340.	8.7	233
348	Comparing Classical Community Models: Theoretical Consequences for Patterns of Diversity. American Naturalist, 2002, 159, 1-23.	2.1	552
349	Mechanisms of long-distance dispersal of seeds by wind. Nature, 2002, 418, 409-413.	27.8	565
350	Spatial and Biological Aspects of Reserve Design. Environmental Modeling and Assessment, 2002, 7, 115-122.	2.2	17
351	New Directions in the Mathematics of Infectious Disease. The IMA Volumes in Mathematics and Its Applications, 2002, , $1\text{-}5$.	0.5	4
352	New Directions in the Mathematics of Infectious Disease. The IMA Volumes in Mathematics and Its Applications, 2002, , $1\text{-}5$.	0.5	2
353	OSCILLATORY DYNAMICS AND SPATIAL SCALE: THE ROLE OF NOISE AND UNRESOLVED PATTERN. Ecology, 2001, 82, 2357-2369.	3.2	55
354	Towards a theoretical basis for ecosystem conservation. Ecological Research, 2001, 16, 983-995.	1.5	12
355	Phenotypic diversity and ecosystem functioning in changing environments: A theoretical framework. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11376-11381.	7.1	395
356	REPRODUCTIVE ASYNCHRONY INCREASES WITH ENVIRONMENTAL DISTURBANCE. Evolution; International Journal of Organic Evolution, 2001, 55, 830.	2.3	26
357	Diffusion and Ecological Problems: Modern Perspectives. Interdisciplinary Applied Mathematics, 2001, ,	0.3	696
358	Community assembly and the emergence of ecosystem pattern. Scientia Marina, 2001, 65, 171-179.	0.6	22
359	Immune Systems and Ecosystems. Ecology and Society, 2001, 5, .	0.9	7
360	Global cooperation achieved through small behavioral changes among strangers. Complexity, 2000, 5, 14-19.	1.6	6

#	Article	IF	CITATIONS
361	Moment Expansions in Spatial Ecological Models and Moment Closure through Gaussian Approximation. Bulletin of Mathematical Biology, 2000, 62, 595-632.	1.9	12
362	Lessons on Pattern Formation from Planet WATOR. Journal of Theoretical Biology, 2000, 205, 201-214.	1.7	29
363	Multiple Scales and the Maintenance of Biodiversity. Ecosystems, 2000, 3, 498-506.	3.4	190
364	Moment Methods for Ecological Processes in Continuous Space. , 2000, , 388-411.		28
365	Economic Pathways to Ecological Sustainability. BioScience, 2000, 50, 339.	4.9	134
366	Pathogenâ€Driven Outbreaks in Forest Defoliators Revisited: Building Models from Experimental Data. American Naturalist, 2000, 156, 105-120.	2.1	135
367	The emergence of diversity in plant communities. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 2000, 323, 129-139.	0.8	11
368	ECOLOGY: The Value of Nature and the Nature of Value. Science, 2000, 289, 395-396.	12.6	783
369	Coherence and Conservation. Science, 2000, 290, 1360-1364.	12.6	279
370	Extinction Thresholds and Metapopulation Persistence in Dynamic Landscapes. American Naturalist, 2000, 156, 478-494.	2.1	264
370 371		2.1	264
	2000, 156, 478-494.		
371	2000, 156, 478-494. Managing Ecosystem Resourcesâ€. Environmental Science & Description (Science & Description) (Science & D	10.0	69
371 372	Managing Ecosystem Resourcesâ€. Environmental Science & Description (Similarity, Species Packing, and System Stability for Hierarchical Competition (Similarity, Species Packing, and System Stability for Hierarchical Competition (Models. American Naturalist, 1999, 153, 371-383). FROM INDIVIDUALS TO POPULATION DENSITIES: SEARCHING FOR THE INTERMEDIATE SCALE OF NONTRIVIAL	10.0	130
371 372 373	Managing Ecosystem Resourcesâ€. Environmental Science & Environmental Science	10.0 2.1 3.2	69 130 115
371 372 373	Managing Ecosystem Resourcesâ€. Environmental Science & Environmental Science	10.0 2.1 3.2 7.1	69 130 115 29
371 372 373 374	Managing Ecosystem Resourcesâ€. Environmental Science & Description and Superior and Physics. Journal of Theoretical Biology, 1999, 196, 397-454. Managing Ecosystem Resourcesâ€. Environmental Science & Description and Relaxation from Meta-stability in Spatial Ecological Models. Application 34, 1401-1406. Limiting Similarity, Species Packing, and System Stability for Hierarchical Competitionâ€Colonization Models. American Naturalist, 1999, 153, 371-383. FROM INDIVIDUALS TO POPULATION DENSITIES: SEARCHING FOR THE INTERMEDIATE SCALE OF NONTRIVIAL DETERMINISM. Ecology, 1999, 80, 2225-2236. Disease transmission dynamics and the evolution of antibiotic resistance in hospitals and communal settings. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 800-801. From Individuals to Aggregations: the Interplay between Behavior and Physics. Journal of Theoretical Biology, 1999, 196, 397-454.	10.0 2.1 3.2 7.1	69 130 115 29

#	Article	IF	Citations
379	Local Frequency Dependence and Global Coexistence. Theoretical Population Biology, 1999, 55, 270-282.	1.1	74
380	Spatial Scaling in a Benthic Population Model with Density-Dependent Disturbance. Theoretical Population Biology, 1999, 56, 106-122.	1.1	23
381	ERROR PROPAGATION IN A FOREST SUCCESSION MODEL:THE ROLE OF FINE-SCALE HETEROGENEITY IN LIGHT. Ecology, 1999, 80, 1927-1943.	3.2	50
382	Towards a Science of Ecological Management. Ecology and Society, 1999, 3, .	0.9	44
383	Allelopathy of bacteria in a lattice population: Competition between colicin-sensitive and colicin-producing strains. Evolutionary Ecology, 1998, 12, 785-802.	1.2	125
384	"Critical Slowing Down―in Time-to-extinction: an Example of Critical Phenomena in Ecology. Journal of Theoretical Biology, 1998, 192, 363-376.	1.7	54
385	Ecosystems and the Biosphere as Complex Adaptive Systems. Ecosystems, 1998, 1, 431-436.	3.4	1,171
386	Terrestrial models and global change: challenges for the future. Global Change Biology, 1998, 4, 581-590.	9.5	151
387	Spatial Aspects of Interspecific Competition. Theoretical Population Biology, 1998, 53, 30-43.	1.1	230
388	GLOBAL FOOD SUPPLY:Food Production, Population Growth, and the Environment., 1998, 281, 1291-1292.		135
389	Anticipating environmental disasters. Environment and Development Economics, 1998, 3, 491-537.	1.5	0
390	Resilience in natural and socioeconomic systems. Environment and Development Economics, 1998, 3, 221-262.	1.5	272
391	12. Theories of Simplification and Scaling of Spatially Distributed Processes. , 1998, , 271-295.		27
392	9. Biologically Generated Spatial Pattern and the Coexistence of Competing Species., 1998,, 204-232.		34
393	Terrestrial models and global change: challenges for the future. Global Change Biology, 1998, 4, 581-590.	9.5	18
394	Ecological Science and the Human Predicament. , 1998, 282, 879c-879.		52
395	Evolution and spatial structure interact to influence plantâ€"herbivore population and community dynamics. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1677-1685.	2.6	27
396	Mathematical and Computational Challenges in Population Biology and Ecosystems Science. Science, 1997, 275, 334-343.	12.6	351

#	Article	IF	CITATIONS
397	Conversations with the Community: AAAS at the Millennium. Science, 1997, 278, 2066-2067.	12.6	35
398	A patch-based spatial modeling approach: conceptual framework and simulation scheme. Ecological Modelling, 1997, 101, 325-346.	2.5	60
399	The dynamics of cocirculating influenza strains conferring partial cross-immunity. Journal of Mathematical Biology, 1997, 35, 825-842.	1.9	268
400	Allelopathy in Spatially Distributed Populations. Journal of Theoretical Biology, 1997, 185, 165-171.	1.7	283
401	Biodiversity: Interfacing Populations and Ecosystems. , 1997, , 277-288.		10
402	The Multifaceted Aspects of Ecosystem Integrity. Ecology and Society, 1997, 1, .	0.9	130
403	From individuals to epidemics. Philosophical Transactions of the Royal Society B: Biological Sciences, 1996, 351, 1615-1621.	4.0	129
404	The Effects of Disturbance Architecture on Landscape-Level Population Dynamics. Ecology, 1996, 77, 375-394.	3.2	215
405	Spatial Models for Species-Area Curves. Journal of Theoretical Biology, 1996, 179, 119-127.	1.7	161
406	The Dynamics of Herds: From Individuals to Aggregations. Journal of Theoretical Biology, 1996, 182, 85-98.	1.7	269
407	Economic growth, carrying capacity, and the environment. Environment and Development Economics, 1996, 1, 104-110.	1.5	74
408	Economic Growth, Carrying Capacity, and the Environment. , 1996, 6, 13-15.		56
409	The timing of life history events. Journal of Theoretical Biology, 1995, 172, 33-42.	1.7	85
410	Species diversity and ecosystem response to carbon dioxide fertilization: conclusions from a temperate forest model. Global Change Biology, 1995, 1, 373-381.	9.5	111
411	Economic growth, carrying capacity, and the environment. Ecological Economics, 1995, 15, 91-95.	5.7	521
412	The effects of population heterogeneity on disease invasion. Mathematical Biosciences, 1995, 128, 25-40.	1.9	73
413	The dynamics of group formation. Mathematical Biosciences, 1995, 128, 243-264.	1.9	127
414	Economic Growth, Carrying Capacity, and the Environment. Science, 1995, 268, 520-521.	12.6	1,435

#	Article	IF	CITATIONS
415	The Problem of Pattern and Scale in Ecology. , 1995, , 277-326.		15
416	A Spatial Patch Dynamic Modeling Approach to Pattern and Process in an Annual Grassland. Ecological Monographs, 1994, 64, 447-464.	5.4	191
417	The dynamics of bacteria-plasmid systems. Journal of Mathematical Biology, 1994, 32, 123-145.	1.9	23
418	Stochastic Spatial Models: A User's Guide to Ecological Applications. Philosophical Transactions of the Royal Society B: Biological Sciences, 1994, 343, 329-350.	4.0	398
419	The Importance of Being Discrete (and Spatial). Theoretical Population Biology, 1994, 46, 363-394.	1.1	915
420	Frontiers in Ecosystem Science. Lecture Notes in Biomathematics, 1994, , 381-389.	0.3	2
421	Self-organization of Front Patterns in Large Wildebeest Herds. Journal of Theoretical Biology, 1993, 165, 541-552.	1.7	73
422	Concepts of Scale at the Local Level. , 1993, , 7-19.		26
423	The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology, 1992, 73, 1943-1967.	3.2	5,366
424	Pattern and scale in a serpentine grassland. Theoretical Population Biology, 1992, 41, 257-276.	1.1	54
425	The Problem of Pattern and Scale in Ecology. , 1992, , 277-326.		38
426	Dispersal in patchy environments: The effects of temporal and spatial structure. Theoretical Population Biology, 1991, 39, 63-99.	1.1	170
427	Evolutionary stability of plant communities and the maintenance of multiple dispersal types. Theoretical Population Biology, 1991, 40, 285-307.	1.1	47
428	The Sustainable Biosphere Initiative: An Ecological Research Agenda: A Report from the Ecological Society of America. Ecology, 1991, 72, 371-412.	3.2	633
429	Interpreting ecological patterns generated through simple stochastic processes. Landscape Ecology, 1991, 5, 163-174.	4.2	16
430	The Problem of Relevant Detail. Lecture Notes in Biomathematics, 1991, , 9-15.	0.3	10
431	Spread of invading organisms. Landscape Ecology, 1990, 4, 177-188.	4.2	440

#	Article	IF	CITATIONS
433	Diffuse coevolution in plant-herbivore communities. Theoretical Population Biology, 1990, 37, 171-191.	1.1	34
434	Topics in Evolutionary Ecology. , 1990, , 327-358.		4
435	16. Challenges in the Development of a Theory of Community and Ecosystem Structure and Function. , 1989, , 242-255.		44
436	Aggregation in Model Ecosystems II. Approximate Aggregation. Mathematical Medicine and Biology, 1989, 6, 1-23.	1.2	135
437	Ecotoxicology: Problems and Approaches. , 1989, , 3-7.		5
438	Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus. Applied Mathematics Letters, 1989, 2, 327-331.	2.7	69
439	Dynamical models of ecosystems and epidemics. Future Generation Computer Systems, 1989, 5, 265-274.	7.5	14
440	Epidemiological models with age structure, proportionate mixing, and cross-immunity. Journal of Mathematical Biology, 1989, 27, 233-258.	1.9	244
441	On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). Journal of Mathematical Biology, 1989, 27, 373-398.	1.9	121
442	A Theoretical Framework for Data Analysis of Wind Dispersal of Seeds and Pollen. Ecology, 1989, 70, 329-338.	3.2	379
443	The Dependence of Plant Root: Shoot Ratios on Internal Nitrogen Concentration. Annals of Botany, 1989, 64, 71-75.	2.9	96
444	Influenza and Some Related Mathematical Models. Biomathematics, 1989, , 235-252.	0.7	9
445	Models in Ecotoxicology: Methodological Aspects. Biomathematics, 1989, , 315-321.	0.7	1
446	Periodicity in Epidemiological Models. Biomathematics, 1989, , 193-211.	0.7	122
447	Perspectives in Ecological Theory. , 1989, , .		111
448	Safety standards for the environmental release of genetically engineered organisms. Trends in Biotechnology, 1988, 6, S47-S49.	9.3	5
449	Safety standards for the environmental release of genetically engineered organisms. Trends in Ecology and Evolution, 1988, 3, S47-S49.	8.7	0
450	The Spread of a Reinvading Species: Range Expansion in the California Sea Otter. American Naturalist, 1988, 131, 526-543.	2.1	178

#	Article	IF	CITATIONS
451	PHYSIOLOGICAL AND BEHAVIORAL ADAPTATION TO VARYING ENVIRONMENTS: A MATHEMATICAL MODEL. Evolution; International Journal of Organic Evolution, 1988, 42, 986-994.	2.3	51
452	An ecological perspective on the introduction of genetically engineered organisms into the environment. Journal of Chemical Technology and Biotechnology, 1988, 43, 257-263.	3.2	1
453	Pattern, Scale, and Variability: An Ecological Perspective. Lecture Notes in Biomathematics, 1988, , 1-12.	0.3	17
454	Aggregation in model ecosystems. I. Perfect aggregation. Ecological Modelling, 1987, 37, 287-302.	2.5	221
455	Scale and Predictability in Ecological Modeling. Lecture Notes in Biomathematics, 1987, , 2-10.	0.3	12
456	Dynamical behavior of epidemiological models with nonlinear incidence rates. Journal of Mathematical Biology, 1987, 25, 359-380.	1.9	630
457	Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology, 1987, 128, 11-45.	1.7	1,127
458	The Interaction between Dispersal and Dormancy Strategies in Varying and Heterogeneous Environments. Lecture Notes in Biomathematics, 1987, , 110-122.	0.3	58
459	Ecological and Evolutionary Aspects of Dispersal. Lecture Notes in Biomathematics, 1987, , 80-87.	0.3	3
460	Recurrent Themes in Mathematical Biology. Lecture Notes in Biomathematics, 1987, , 10-29.	0.3	0
461	Sex-Ratio Selection in Species with Helpers-At-The-Nest. American Naturalist, 1986, 127, 1-8.	2.1	207
462	Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. Journal of Mathematical Biology, 1986, 23, 187-204.	1.9	670
463	Potential ecological consequences of genetically engineered organisms. Environmental Management, 1986, 10, 495-513.	2.7	10
464	Population Models and Community Structure in Heterogeneous Environments. Biomathematics, 1986, , 295-320.	0.7	42
465	Random Walk Models of Movement and Their Implications. Biomathematics, 1986, , 149-154.	0.7	13
466	Pattern Generation in Space and Aspect. SIAM Review, 1985, 27, 45-67.	9.5	181
467	Limitations of Laboratory Bioassays: The Need for Ecosystem-Level Testing. BioScience, 1985, 35, 165-171.	4.9	233
468	New perspectives in ecotoxicology. Environmental Management, 1984, 8, 375-442.	2.7	104

#	Article	IF	Citations
469	Dispersal strategies in patchy environments. Theoretical Population Biology, 1984, 26, 165-191.	1.1	444
470	Models of the influence of predation on aspect diversity in prey populations. Journal of Mathematical Biology, 1982, 14, 253-284.	1.9	44
471	Intertidal Landscapes: Disturbance and the Dynamics of Pattern. Ecological Monographs, 1981, 51, 145-178.	5.4	1,047
472	Selection of Intermediate Rates of Increase in Parasite-Host Systems. American Naturalist, 1981, 117, 308-315.	2.1	477
473	Analysis of an age-structured fishery model. Journal of Mathematical Biology, 1981, 12, 263-263.	1.9	3
474	The Role of Theoretical Ecology in the Description and Understanding of Populations in Heterogeneous Environments. American Zoologist, 1981, 21, 865-875.	0.7	60
475	Age-Structure and Stability in Multiple-Age Spawning Populations. Lecture Notes in Biomathematics, 1981, , 21-45.	0.3	33
476	MODELS OF POPULATION DISPERSAL. , 1981, , 1-18.		7
477	MAINTENANCE OF THE THREE SEX CHROMOSOME POLYMORPHISM IN THE PLATYFISH, <i>XIPHOPHORUS MACULATUS</i> Livolution; International Journal of Organic Evolution, 1980, 34, 663-672.	2.3	32
478	Analysis of an age-structured fishery model. Journal of Mathematical Biology, 1980, 9, 245-274.	1.9	157
479	Pattern Formation in Ecological Communities. , 1978, , 433-465.		38
480	Distinctions between the two-state and sequential models for cooperative ligand binding Proceedings of the National Academy of Sciences of the United States of America, 1977, 74, 139-143.	7.1	11
481	The role of mosaic phenomena in natural communities. Theoretical Population Biology, 1977, 12, 117-139.	1.1	377
482	A Mathematical Model of Coevolving Populations. American Naturalist, 1977, 111, 657-675.	2.1	97
483	A More Functional Response to Predator-Prey Stability. American Naturalist, 1977, 111, 381-383.	2.1	40
484	A note on difference-delay equations. Theoretical Population Biology, 1976, 9, 178-187.	1.1	136
485	Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions. AIP Conference Proceedings, 1976, , .	0.4	53
486	Hypothesis for origin of planktonic patchiness. Nature, 1976, 259, 659-659.	27.8	335

#	Article	IF	Citations
487	Uniqueness theorems for the compressible flow equation. Applicable Analysis, 1976, 5, 207-215.	1.3	1
488	Positive convolution operators and lipschitz classes. Applicable Analysis, 1976, 5, 217-226.	1.3	1
489	Disturbance, Patch Formation, and Community Structure. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71, 2744-2747.	7.1	769
490	Dispersion and Population Interactions. American Naturalist, 1974, 108, 207-228.	2.1	979
491	Stability Matrices and the Solvability of Certain Systems of Linear Inequalities ^{â€} . Linear and Multilinear Algebra, 1974, 2, 253-255.	1.0	0
492	A Mathematical Analysis of the Genetic Feedback Mechanism. American Naturalist, 1972, 106, 145-164.	2.1	39
493	On the reduction of a first-order overdetermined system of partial differential equations. Journal of Mathematical Analysis and Applications, 1972, 38, 467-470.	1.0	0
494	Redwoods: A Population Model Debunked. Science, 1971, 174, 435-436.	12.6	6
495	Community Equilibria and Stability, and an Extension of the Competitive Exclusion Principle. American Naturalist, 1970, 104, 413-423.	2.1	565
496	On the boundedness of an iterative procedure for solving a system of linear inequalities. Proceedings of the American Mathematical Society, 1970, 26, 229-235.	0.8	24
497	Principles of nonlinear superposition. Journal of Mathematical Analysis and Applications, 1970, 30, 197-205.	1.0	19
498	Nonlinear boundary problems for a quasilinear parabolic equation. Journal of Differential Equations, 1969, 5, 32-37.	2.2	0
499	On steady-state intercompartmental flows. Journal of Colloid and Interface Science, 1967, 23, 572-576.	9.4	1
500	Modeling and Analysis of the Spread of COVID-19 Under a Multiple-Strain Model with Mutations. , 0, , .		13
501	Sunsetting as an Adaptive Strategy. SSRN Electronic Journal, 0, , .	0.4	3
502	Transboundary Capital and Pollution Flows and the Emergence of Regional Inequalities. SSRN Electronic Journal, 0 , , .	0.4	0