
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6325796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Model-based Analysis of ChIP-Seq (MACS). Genome Biology, 2008, 9, R137.	13.9	13,517
2	Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nature Medicine, 2018, 24, 1550-1558.	15.2	2,791
3	MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biology, 2014, 15, 554.	3.8	1,614
4	Cofactor Dynamics and Sufficiency in Estrogen Receptor–Regulated Transcription. Cell, 2000, 103, 843-852.	13.5	1,571
5	Genome-wide analysis of estrogen receptor binding sites. Nature Genetics, 2006, 38, 1289-1297.	9.4	1,227
6	Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1. Cell, 2005, 122, 33-43.	13.5	1,208
7	Molecular Determinants for the Tissue Specificity of SERMs. Science, 2002, 295, 2465-2468.	6.0	1,069
8	FoxA1 Translates Epigenetic Signatures into Enhancer-Driven Lineage-Specific Transcription. Cell, 2008, 132, 958-970.	13.5	863
9	Androgen Receptor Regulates a Distinct Transcription Program in Androgen-Independent Prostate Cancer. Cell, 2009, 138, 245-256.	13.5	797
10	<i>Rb1</i> and <i>Trp53</i> cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science, 2017, 355, 78-83.	6.0	767
11	The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3320-3323.	3.3	754
12	EZH2 Oncogenic Activity in Castration-Resistant Prostate Cancer Cells Is Polycomb-Independent. Science, 2012, 338, 1465-1469.	6.0	748
13	X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell, 2006, 9, 121-132.	7.7	736
14	XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature, 2014, 508, 103-107.	13.7	663
15	A major chromatin regulator determines resistance of tumor cells to T cell–mediated killing. Science, 2018, 359, 770-775.	6.0	641
16	Formation of the Androgen Receptor Transcription Complex. Molecular Cell, 2002, 9, 601-610.	4.5	616
17	Differential Activation of Peroxisome Proliferator-activated Receptors by Eicosanoids. Journal of Biological Chemistry, 1995, 270, 23975-23983.	1.6	609
18	Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science, 1994, 264, 1455-1458.	6.0	608

#	Article	IF	CITATIONS
19	A Hierarchical Network of Transcription Factors Governs Androgen Receptor-Dependent Prostate Cancer Growth. Molecular Cell, 2007, 27, 380-392.	4.5	598
20	Cistrome: an integrative platform for transcriptional regulation studies. Genome Biology, 2011, 12, R83.	13.9	598
21	Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature, 1995, 377, 451-454.	13.7	554
22	Emergence of Constitutively Active Estrogen Receptor-α Mutations in Pretreated Advanced Estrogen Receptor–Positive Breast Cancer. Clinical Cancer Research, 2014, 20, 1757-1767.	3.2	529
23	Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Research, 2019, 47, D729-D735.	6.5	527
24	Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nature Structural and Molecular Biology, 2013, 20, 908-913.	3.6	524
25	Sequence determinants of improved CRISPR sgRNA design. Genome Research, 2015, 25, 1147-1157.	2.4	514
26	Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature, 2016, 529, 413-417.	13.7	490
27	ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. Nature Reviews Clinical Oncology, 2015, 12, 573-583.	12.5	458
28	Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Research, 2017, 45, D658-D662.	6.5	451
29	Nucleosome dynamics define transcriptional enhancers. Nature Genetics, 2010, 42, 343-347.	9.4	426
30	AIB1 Is a Conduit for Kinase-Mediated Growth Factor Signaling to the Estrogen Receptor. Molecular and Cellular Biology, 2000, 20, 5041-5047.	1.1	413
31	Spatial and Temporal Recruitment of Androgen Receptor and Its Coactivators Involves Chromosomal Looping and Polymerase Tracking. Molecular Cell, 2005, 19, 631-642.	4.5	401
32	Model-based analysis of tiling-arrays for ChIP-chip. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12457-12462.	3.3	390
33	Androgen Receptor Gene Expression in Prostate Cancer Is Directly Suppressed by the Androgen Receptor Through Recruitment of Lysine-Specific Demethylase 1. Cancer Cell, 2011, 20, 457-471.	7.7	387
34	Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nature Biotechnology, 2016, 34, 1279-1286.	9.4	380
35	Cyclin D1 Stimulation of Estrogen Receptor Transcriptional Activity Independent of cdk4â€. Molecular and Cellular Biology, 1997, 17, 5338-5347.	1.1	375
36	p63 regulates an adhesion programme and cell survival in epithelial cells. Nature Cell Biology, 2006, 8, 551-561.	4.6	372

#	Article	IF	CITATIONS
37	Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4260-4265.	3.3	366
38	The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nature Genetics, 2015, 47, 1346-1351.	9.4	363
39	p300 is a component of an estrogen receptor coactivator complex Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11540-11545.	3.3	360
40	8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with <i>MYC</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9742-9746.	3.3	353
41	High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell, 2004, 6, 263-274.	7.7	351
42	Targeting Androgen Receptor in Estrogen Receptor-Negative Breast Cancer. Cancer Cell, 2011, 20, 119-131.	7.7	340
43	D538G Mutation in Estrogen Receptor-α: A Novel Mechanism for Acquired Endocrine Resistance in Breast Cancer. Cancer Research, 2013, 73, 6856-6864.	0.4	340
44	Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7319-7324.	3.3	332
45	Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biology, 2015, 16, 281.	3.8	330
46	Positive Cross-Regulatory Loop Ties GATA-3 to Estrogen Receptor α Expression in Breast Cancer. Cancer Research, 2007, 67, 6477-6483.	0.4	317
47	Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Research, 2009, 37, 4850-4861.	6.5	310
48	Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci. Cell, 2013, 152, 633-641.	13.5	300
49	Estrogen-Dependent Signaling in a Molecularly Distinct Subclass of Aggressive Prostate Cancer. Journal of the National Cancer Institute, 2008, 100, 815-825.	3.0	286
50	Regulation of ERBB2 by oestrogen receptor–PAX2 determines response to tamoxifen. Nature, 2008, 456, 663-666.	13.7	283
51	Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO Journal, 2008, 27, 535-545.	3.5	279
52	GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature, 2011, 480, 557-560.	13.7	279
53	Protein Kinase C Î \pm Is a Central Signaling Node and Therapeutic Target for Breast Cancer Stem Cells. Cancer Cell, 2013, 24, 347-364.	7.7	277
54	Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nature Communications, 2016, 7, 10982.	5.8	267

#	Article	IF	CITATIONS
55	Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5207-E5215.	3.3	266
56	A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes and Development, 2006, 20, 2513-2526.	2.7	261
57	Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nature Protocols, 2019, 14, 756-780.	5.5	260
58	Estrogen Receptor Target Gene: An Evolving Concept. Molecular Endocrinology, 2006, 20, 1707-1714.	3.7	249
59	Structural analysis of the interaction between the human immunodeficiency virus Rev protein and the Rev response element Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 683-687.	3.3	240
60	The Role of microRNA-221 and microRNA-222 in Androgen-Independent Prostate Cancer Cell Lines. Cancer Research, 2009, 69, 3356-3363.	0.4	236
61	TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer. Cancer Cell, 2016, 29, 846-858.	7.7	228
62	The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. Cancer Cell, 2016, 29, 574-586.	7.7	227
63	ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. Journal of Clinical Investigation, 2013, 123, 1109-1122.	3.9	227
64	Location of BRCA1 in Human Breast and Ovarian Cancer Cells. Science, 1996, 272, 123-126.	6.0	220
65	Modification of BRCA1-Associated Breast Cancer Risk by the Polymorphic Androgen-Receptor CAG Repeat. American Journal of Human Genetics, 1999, 64, 1371-1377.	2.6	219
66	BRG-1 Is Recruited to Estrogen-Responsive Promoters and Cooperates with Factors Involved in Histone Acetylation. Molecular and Cellular Biology, 2000, 20, 7541-7549.	1.1	205
67	Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations. Cancer Cell, 2018, 33, 173-186.e5.	7.7	201
68	Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Research, 2011, 21, 555-565.	2.4	196
69	Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nature Methods, 2014, 11, 73-78.	9.0	195
70	Differentiation-Specific Histone Modifications Reveal Dynamic Chromatin Interactions and Partners for the Intestinal Transcription Factor CDX2. Developmental Cell, 2010, 19, 713-726.	3.1	192
71	Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biology, 2013, 14, R125.	13.9	188
72	CARM1 Regulates Estrogen-Stimulated Breast Cancer Growth through Up-regulation of <i>E2F1</i> . Cancer Research, 2008, 68, 301-306.	0.4	176

#	Article	IF	CITATIONS
73	SV40 small t antigen enhances the transformation activity of limiting concentrations of SV40 large T antigen. Cell, 1987, 48, 321-330.	13.5	174
74	PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncology, The, 2013, 14, e465-e475.	5.1	173
75	CD151 Accelerates Breast Cancer by Regulating α6 Integrin Function, Signaling, and Molecular Organization. Cancer Research, 2008, 68, 3204-3213.	0.4	170
76	KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance. Cancer Cell, 2018, 34, 939-953.e9.	7.7	170
77	Measuring Residual Estrogen Receptor Availability during Fulvestrant Therapy in Patients with Metastatic Breast Cancer. Cancer Discovery, 2015, 5, 72-81.	7.7	168
78	Evidence that the CAG repeat in the androgen receptor gene is associated with the age-related decline in serum androgen levels in men. Journal of Endocrinology, 1999, 162, 137-142.	1.2	167
79	Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Research, 2003, 6, 39-52.	2.2	165
80	PKA-dependent regulation of the histone lysine demethylase complex PHF2–ARID5B. Nature Cell Biology, 2011, 13, 668-675.	4.6	165
81	Molecular cloning of cDNA for human von willebrand factor: Authentication by a new method. Cell, 1985, 41, 49-56.	13.5	161
82	Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Research, 2012, 22, 1015-1025.	2.4	161
83	Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data. Genome Biology, 2020, 21, 32.	3.8	161
84	Growth factor stimulation induces a distinct ERα cistrome underlying breast cancer endocrine resistance. Genes and Development, 2010, 24, 2219-2227.	2.7	156
85	VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-seq analysis. BMC Bioinformatics, 2018, 19, 135.	1.2	156
86	MYC regulation of a "poor-prognosis―metastatic cancer cell state. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3698-3703.	3.3	153
87	<i>SLCO2B1</i> and <i>SLCO1B3</i> May Determine Time to Progression for Patients Receiving Androgen Deprivation Therapy for Prostate Cancer. Journal of Clinical Oncology, 2011, 29, 2565-2573.	0.8	153
88	Estrogen Induces c-myc Gene Expression via an Upstream Enhancer Activated by the Estrogen Receptor and the AP-1 Transcription Factor. Molecular Endocrinology, 2011, 25, 1527-1538.	3.7	150
89	Lac repressor can regulate expression from a hybrid SV40 early promoter containing a lac operator in animal cells. Cell, 1987, 49, 603-612.	13.5	144
90	An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence. Cancer Cell, 2021, 39, 240-256.e11.	7.7	143

#	Article	IF	CITATIONS
91	Phosphorylation of EZH2 by AMPK Suppresses PRC2 Methyltransferase Activity and Oncogenic Function. Molecular Cell, 2018, 69, 279-291.e5.	4.5	138
92	Modification of SV40 T antigen by poly ADP-ribosylation. Cell, 1981, 24, 567-572.	13.5	137
93	Inhibition of Estrogen Receptor Action by the Orphan Receptor SHP (Short Heterodimer Partner). Molecular Endocrinology, 1998, 12, 1551-1557.	3.7	137
94	Agonist and Chemopreventative Ligands Induce Differential Transcriptional Cofactor Recruitment by Aryl Hydrocarbon Receptor. Molecular and Cellular Biology, 2003, 23, 7920-7925.	1.1	132
95	MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene, 2014, 33, 2790-2800.	2.6	131
96	Cistrome Cancer: A Web Resource for Integrative Gene Regulation Modeling in Cancer. Cancer Research, 2017, 77, e19-e22.	0.4	130
97	ARv7 Represses Tumor-Suppressor Genes in Castration-Resistant Prostate Cancer. Cancer Cell, 2019, 35, 401-413.e6.	7.7	127
98	Integrative analyses of single-cell transcriptome and regulome using MAESTRO. Genome Biology, 2020, 21, 198.	3.8	126
99	Estrogen receptor prevents p53-dependent apoptosis in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18060-18065.	3.3	125
100	PARP1-Driven Poly-ADP-Ribosylation Regulates BRCA1 Function in Homologous Recombination–Mediated DNA Repair. Cancer Discovery, 2014, 4, 1430-1447.	7.7	125
101	CaM Kinase Kinase β-Mediated Activation of the Growth Regulatory Kinase AMPK Is Required for Androgen-Dependent Migration of Prostate Cancer Cells. Cancer Research, 2011, 71, 528-537.	0.4	124
102	Coactivator AIB1 links estrogen receptor transcriptional activity and stability. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11599-11604.	3.3	122
103	Control of Cyclin D1 and Breast Tumorigenesis by the EgIN2 Prolyl Hydroxylase. Cancer Cell, 2009, 16, 413-424.	7.7	120
104	The RasGAP Gene, RASAL2, Is a Tumor and Metastasis Suppressor. Cancer Cell, 2013, 24, 365-378.	7.7	120
105	Unique ERα Cistromes Control Cell Type-Specific Gene Regulation. Molecular Endocrinology, 2008, 22, 2393-2406.	3.7	119
106	Elucidation of the ELK1 target gene network reveals a role in the coordinate regulation of core components of the gene regulation machinery. Genome Research, 2009, 19, 1963-1973.	2.4	119
107	FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6600-E6609.	3.3	119
108	A Comprehensive View of Nuclear Receptor Cancer Cistromes. Cancer Research, 2011, 71, 6940-6947.	0.4	118

#	Article	IF	CITATIONS
109	Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets. Genome Research, 2008, 18, 393-403.	2.4	117
110	Lysine-Specific Demethylase 1 Has Dual Functions as a Major Regulator of Androgen Receptor Transcriptional Activity. Cell Reports, 2014, 9, 1618-1627.	2.9	115
111	Synthetic Lethal and Resistance Interactions with BET Bromodomain Inhibitors in Triple-Negative Breast Cancer. Molecular Cell, 2020, 78, 1096-1113.e8.	4.5	114
112	Transcriptional landscape of the human cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3473-3478.	3.3	110
113	High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nature Communications, 2019, 10, 4358.	5.8	109
114	Selective coactivation of estrogen-dependent transcription by CITED1 CBP/p300-binding protein. Genes and Development, 2001, 15, 2598-2612.	2.7	108
115	Oncogenic Deregulation of EZH2 as an Opportunity for Targeted Therapy in Lung Cancer. Cancer Discovery, 2016, 6, 1006-1021.	7.7	108
116	Genomic Collaboration of Estrogen Receptor α and Extracellular Signal-Regulated Kinase 2 in Regulating Gene and Proliferation Programs. Molecular and Cellular Biology, 2011, 31, 226-236.	1.1	107
117	Targeting NF-κB in Waldenstrom macroglobulinemia. Blood, 2008, 111, 5068-5077.	0.6	106
118	FOXA1 upregulation promotes enhancer and transcriptional reprogramming in endocrine-resistant breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26823-26834.	3.3	103
119	Therapeutically Increasing MHC-I Expression Potentiates Immune Checkpoint Blockade. Cancer Discovery, 2021, 11, 1524-1541.	7.7	103
120	Cell Cycle Progression Stimulated by Tamoxifen-Bound Estrogen Receptor-α and Promoter-Specific Effects in Breast Cancer Cells Deficient in N-CoR and SMRT. Molecular Endocrinology, 2005, 19, 1543-1554.	3.7	101
121	ChiLin: a comprehensive ChIP-seq and DNase-seq quality control and analysis pipeline. BMC Bioinformatics, 2016, 17, 404.	1.2	100
122	LLGL2 rescues nutrient stress by promoting leucine uptake in ER+ breast cancer. Nature, 2019, 569, 275-279.	13.7	99
123	Integrin αvβ6–TGFβ–SOX4 Pathway Drives Immune Evasion in Triple-Negative Breast Cancer. Cancer Cell, 2021, 39, 54-67.e9.	7.7	99
124	Growth factor requirements and basal phenotype of an immortalized mammary epithelial cell line. Cancer Research, 2002, 62, 89-98.	0.4	97
125	Cell-type selective chromatin remodeling defines the active subset of FOXA1-bound enhancers. Genome Research, 2009, 19, 372-380.	2.4	96
126	Vitamin D receptor regulates autophagy in the normal mammary gland and in luminal breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2186-E2194.	3.3	96

#	Article	IF	CITATIONS
127	ERAP140, a Conserved Tissue-Specific Nuclear Receptor Coactivator. Molecular and Cellular Biology, 2002, 22, 3358-3372.	1.1	92
128	PI3K/AKT Signaling Regulates H3K4 Methylation in Breast Cancer. Cell Reports, 2016, 15, 2692-2704.	2.9	92
129	ANDROGEN MEDIATED REGULATION AND FUNCTIONAL IMPLICATIONS OF FKBP51 EXPRESSION IN PROSTATE CANCER. Journal of Urology, 2005, 173, 1772-1777.	0.2	91
130	AKT Alters Genome-Wide Estrogen Receptor α Binding and Impacts Estrogen Signaling in Breast Cancer. Molecular and Cellular Biology, 2008, 28, 7487-7503.	1.1	87
131	Definition of a FoxA1 Cistrome That Is Crucial for G1 to S-Phase Cell-Cycle Transit in Castration-Resistant Prostate Cancer. Cancer Research, 2011, 71, 6738-6748.	0.4	87
132	TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup. Clinical Cancer Research, 2017, 23, 7072-7083.	3.2	87
133	Targeting the Androgen Receptor in Breast Cancer. Current Oncology Reports, 2015, 17, 4.	1.8	86
134	Enhanced Efficacy of Simultaneous PD-1 and PD-L1 Immune Checkpoint Blockade in High-Grade Serous Ovarian Cancer. Cancer Research, 2021, 81, 158-173.	0.4	85
135	Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis. PLoS Pathogens, 2017, 13, e1006668.	2.1	84
136	Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4482-E4491.	3.3	83
137	Differential impact of RB status on E2F1 reprogramming in human cancer. Journal of Clinical Investigation, 2017, 128, 341-358.	3.9	83
138	The Evolving Role of the Estrogen Receptor Mutations in Endocrine Therapy-Resistant Breast Cancer. Current Oncology Reports, 2017, 19, 35.	1.8	80
139	Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2–ERα–GREB1 Transcriptional Axis. Cancer Research, 2018, 78, 671-684.	0.4	80
140	The altered expression of MiRâ€221/â€222 and MiRâ€23b/â€27b is associated with the development of human castration resistant prostate cancer. Prostate, 2012, 72, 1093-1103.	1.2	79
141	InÂvivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell, 2021, 184, 5357-5374.e22.	13.5	79
142	Amplitude modulation of androgen signaling by c-MYC. Genes and Development, 2013, 27, 734-748.	2.7	78
143	Functional Analysis of a Novel Estrogen Receptor-Â Isoform. Molecular Endocrinology, 1999, 13, 129-137.	3.7	78
144	Tetradian oscillation of estrogen receptor α is necessary to prevent liver lipid deposition. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11806-11811.	3.3	77

#	ARTICLE	IF	CITATIONS
145	Prognostic and predictive value of androgen receptor expression in postmenopausal women with estrogen receptor-positive breast cancer: results from the Breast International Group Trial 1–98. Breast Cancer Research, 2019, 21, 30.	2.2	76
146	<i>FOXA1</i> Is a Potential Oncogene in Anaplastic Thyroid Carcinoma. Clinical Cancer Research, 2009, 15, 3680-3689.	3.2	75
147	Loss of Estrogen-Regulated microRNA Expression Increases HER2 Signaling and Is Prognostic of Poor Outcome in Luminal Breast Cancer. Cancer Research, 2015, 75, 436-445.	0.4	75
148	Modeling <i>cis</i> -regulation with a compendium of genome-wide histone H3K27ac profiles. Genome Research, 2016, 26, 1417-1429.	2.4	75
149	TCF4 and CDX2, major transcription factors for intestinal function, converge on the same <i>cis</i> -regulatory regions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15157-15162.	3.3	73
150	The SERM/SERD bazedoxifene disrupts ESR1 helix 12 to overcome acquired hormone resistance in breast cancer cells. ELife, 2018, 7, .	2.8	72
151	Cistromics of hormone-dependent cancer. Endocrine-Related Cancer, 2009, 16, 381-389.	1.6	71
152	Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nature Communications, 2021, 12, 1979.	5.8	70
153	Coactivator Function Defines the Active Estrogen Receptor Alpha Cistrome. Molecular and Cellular Biology, 2009, 29, 3413-3423.	1.1	68
154	Androgen receptor mediates the expression of UDPâ€glucuronosyltransferase 2 B15 and B17 genes. Prostate, 2008, 68, 839-848.	1.2	67
155	Consideration of breast cancer subtype in targeting the androgen receptor. , 2019, 200, 135-147.		65
156	ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor. ELife, 2016, 5, .	2.8	64
157	Chromatin immunoprecipitation from fixed clinical tissues reveals tumor-specific enhancer profiles. Nature Medicine, 2016, 22, 685-691.	15.2	64
158	Segregation of steroid receptor coactivator-1 from steroid receptors in mammary epithelium. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 208-213.	3.3	63
159	Induction of Krüppel-Like Factor 5 Expression by Androgens Results in Increased CXCR4-Dependent Migration of Prostate Cancer Cells <i>in Vitro</i> . Molecular Endocrinology, 2009, 23, 1385-1396.	3.7	62
160	The OXR domain defines a conserved family of eukaryotic oxidation resistance proteins. BMC Cell Biology, 2007, 8, 13.	3.0	61
161	Enhancer-Mediated Oncogenic Function of the Menin Tumor Suppressor in Breast Cancer. Cell Reports, 2017, 18, 2359-2372.	2.9	59
162	Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 5775.	5.8	59

#	Article	IF	CITATIONS
163	Specific association of estrogen receptor beta with the cell cycle spindle assembly checkpoint protein, MAD2. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2836-2839.	3.3	58
164	Impact of a Pre-Operative Exercise Intervention on Breast Cancer Proliferation and Gene Expression: Results from the Pre-Operative Health and Body (PreHAB) Study. Clinical Cancer Research, 2019, 25, 5398-5406.	3.2	58
165	Transcriptional Regulation in Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030437.	2.9	57
166	PDEF Promotes Luminal Differentiation and Acts as a Survival Factor for ER-Positive Breast Cancer Cell, 2013, 23, 753-767.	7.7	56
167	MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets. Nature Communications, 2022, 13, 2559.	5.8	56
168	Estrogen-regulated feedback loop limits the efficacy of estrogen receptor–targeted breast cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7869-7878.	3.3	55
169	Estrogen receptor signaling is reprogrammed during breast tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11437-11443.	3.3	55
170	TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation. Oncogene, 2015, 34, 3815-3825.	2.6	52
171	High-dimensional genomic data bias correction and data integration using MANCIE. Nature Communications, 2016, 7, 11305.	5.8	52
172	Estrogen-Dependent and Estrogen-Independent Mechanisms Contribute to AIB1-Mediated Tumor Formation. Cancer Research, 2010, 70, 4102-4111.	0.4	50
173	Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling. Oncotarget, 2018, 9, 4282-4300.	0.8	49
174	Targeting the AIB1 Oncogene through Mammalian Target of Rapamycin Inhibition in the Mammary Gland. Cancer Research, 2006, 66, 11381-11388.	0.4	48
175	CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity. Nature Cancer, 2021, 2, 34-48.	5.7	48
176	Coregulator Control of Androgen Receptor Action by a Novel Nuclear Receptor-binding Motif. Journal of Biological Chemistry, 2014, 289, 8839-8851.	1.6	46
177	Role of diet in prostate cancer: the epigenetic link. Oncogene, 2015, 34, 4683-4691.	2.6	46
178	PLZF, a Tumor Suppressor Genetically Lost in Metastatic Castration-Resistant Prostate Cancer, Is a Mediator of Resistance to Androgen Deprivation Therapy. Cancer Research, 2015, 75, 1944-1948.	0.4	46
179	TRPS1 Is a Lineage-Specific Transcriptional Dependency in Breast Cancer. Cell Reports, 2018, 25, 1255-1267.e5.	2.9	46
180	Increased lysosomal biomass is responsible for the resistance of triple-negative breast cancers to CDK4/6 inhibition. Science Advances, 2020, 6, eabb2210.	4.7	46

#	Article	IF	CITATIONS
181	Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1. Endocrine-Related Cancer, 2017, 24, T135-T145.	1.6	45
182	Acquired resistance to combined BET and CDK4/6 inhibition in triple-negative breast cancer. Nature Communications, 2020, 11, 2350.	5.8	45
183	Protein-Degrading Enediynes:  Library Screening of Bergman Cycloaromatization Products. Organic Letters, 2000, 2, 1863-1866.	2.4	44
184	Target-Directed Enediynes:Â Designed Estramycins. Journal of Organic Chemistry, 2001, 66, 3688-3695.	1.7	44
185	Unraveling estrogen action in osteoporosis. Cell Cycle, 2008, 7, 1348-1352.	1.3	44
186	Improved design and analysis of CRISPR knockout screens. Bioinformatics, 2018, 34, 4095-4101.	1.8	44
187	Androgen Receptor Expression and Breast Cancer Survival: Results From the Nurses' Health Studies. Journal of the National Cancer Institute, 2019, 111, 700-708.	3.0	44
188	Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence. Nature Genetics, 2021, 53, 881-894.	9.4	44
189	Epigenetic remodeling regulates transcriptional changes between ovarian cancer and benign precursors. JCl Insight, 2016, 1, .	2.3	42
190	Role of steroid receptor and coregulator mutations in hormone-dependent cancers. Journal of Clinical Investigation, 2017, 127, 1126-1135.	3.9	42
191	TISMO: syngeneic mouse tumor database to model tumor immunity and immunotherapy response. Nucleic Acids Research, 2022, 50, D1391-D1397.	6.5	41
192	Subcellular Localization of Activated AKT in Estrogen Receptor- and Progesterone Receptor-Expressing Breast Cancers. American Journal of Pathology, 2010, 176, 2139-2149.	1.9	40
193	Genome-Scale Signatures of Gene Interaction from Compound Screens Predict Clinical Efficacy of Targeted Cancer Therapies. Cell Systems, 2018, 6, 343-354.e5.	2.9	40
194	The Lineage Determining Factor GRHL2 Collaborates with FOXA1 to Establish a Targetable Pathway in Endocrine Therapy-Resistant Breast Cancer. Cell Reports, 2019, 29, 889-903.e10.	2.9	40
195	Nkx3-1 and LEF-1 Function as Transcriptional Inhibitors of Estrogen Receptor Activity. Cancer Research, 2008, 68, 7380-7385.	0.4	39
196	Blockade of AP-1 Potentiates Endocrine Therapy and Overcomes Resistance. Molecular Cancer Research, 2016, 14, 470-481.	1.5	39
197	NF-κB Activation-Induced Anti-apoptosis Renders HER2-Positive Cells Drug Resistant and Accelerates Tumor Growth. Molecular Cancer Research, 2014, 12, 408-420.	1.5	38
198	Systematic characterization of mutations altering protein degradation in human cancers. Molecular Cell, 2021, 81, 1292-1308.e11.	4.5	36

#	Article	IF	CITATIONS
199	Integrative Analysis Reveals the Transcriptional Collaboration between EZH2 and E2F1 in the Regulation of Cancer-Related Gene Expression. Molecular Cancer Research, 2016, 14, 163-172.	1.5	34
200	Overview consensus statement. Urology, 2002, 60, 1-6.	0.5	33
201	Deciphering essential cistromes using genome-wide CRISPR screens. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25186-25195.	3.3	33
202	The joint effect of smoking and AIB1 on breast cancer risk in BRCA1 mutation carriers. Carcinogenesis, 2006, 27, 599-605.	1.3	32
203	β-Catenin Is a Useful Adjunct Immunohistochemical Marker for the Diagnosis of Pulmonary Lymphangioleiomyomatosis. American Journal of Clinical Pathology, 2011, 135, 776-782.	0.4	32
204	Development of Bag-1L as a therapeutic target in androgen receptor-dependent prostate cancer. ELife, 2017, 6, .	2.8	32
205	Target Gene-Specific Regulation of Androgen Receptor Activity by p42/p44 Mitogen-Activated Protein Kinase. Molecular Endocrinology, 2008, 22, 2420-2432.	3.7	30
206	Unraveling the clinicopathological features driving the emergence of ESR1 mutations in metastatic breast cancer. Npj Breast Cancer, 2018, 4, 22.	2.3	30
207	Androgen Receptor Is a Non-canonical Inhibitor of Wild-Type and Mutant Estrogen Receptors in Hormone Receptor-Positive Breast Cancers. IScience, 2019, 21, 341-358.	1.9	29
208	Androgen Receptor CAG Repeat Polymorphism and Risk of TMPRSS2:ERG–Positive Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2027-2031.	1.1	28
209	Inhibition of MAN2A1 Enhances the Immune Response to Anti–PD-L1 in Human Tumors. Clinical Cancer Research, 2020, 26, 5990-6002.	3.2	28
210	Hdac3 is an epigenetic inhibitor of the cytotoxicity program in CD8 T cells. Journal of Experimental Medicine, 2020, 217, .	4.2	28
211	Determinants of transcription factor regulatory range. Nature Communications, 2020, 11, 2472.	5.8	28
212	Emerging data on the efficacy and safety of fulvestrant, a unique antiestrogen therapy for advanced breast cancer. Expert Opinion on Drug Safety, 2011, 10, 819-826.	1.0	27
213	Estrogen Receptor Molecular Biology. Hematology/Oncology Clinics of North America, 1994, 8, 101-112.	0.9	26
214	Modulator Recognition Factor 1, an AT-Rich Interaction Domain Family Member, Is a Novel Corepressor for Estrogen Receptor α. Molecular Endocrinology, 2005, 19, 2491-2501.	3.7	26
215	The Dysregulated Pharmacology of Clinically Relevant <i>ESR1</i> Mutants is Normalized by Ligand-activated WT Receptor. Molecular Cancer Therapeutics, 2020, 19, 1395-1405.	1.9	26
216	Genome-Wide Impact of Androgen Receptor Trapped clone-27 Loss on Androgen-Regulated Transcription in Prostate Cancer Cells. Cancer Research, 2009, 69, 3140-3147.	0.4	25

#	Article	IF	CITATIONS
217	BINOCh: binding inference from nucleosome occupancy changes. Bioinformatics, 2011, 27, 1867-1868.	1.8	25
218	Interplay between estrogen receptor and AKT in Estradiol-induced alternative splicing. BMC Medical Genomics, 2013, 6, 21.	0.7	25
219	Human Estrogen Receptor (ER) Gene Promoter-P1: Estradiol-Independent Activity and Estradiol Inducibility in ER+ and ER- Cells. Molecular Endocrinology, 1997, 11, 1319-1331.	3.7	25
220	Androgen receptor expression in normal breast tissue and subsequent breast cancer risk. Npj Breast Cancer, 2018, 4, 33.	2.3	24
221	Molecular features of exceptional response to neoadjuvant anti-androgen therapy in high-risk localized prostate cancer. Cell Reports, 2021, 36, 109665.	2.9	24
222	Multimodal Regulation of E2F1 Gene Expression by Progestins. Molecular and Cellular Biology, 2010, 30, 1866-1877.	1.1	23
223	Inhibition of EZH2 transactivation function sensitizes solid tumors to genotoxic stress. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	22
224	The androgen receptor CAG repeat polymorphism and its relationship to prostate cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 1998, 1378, 1-5.	3.3	21
225	Polymorphic repeat in AIB1 does not alter breast cancer risk. Breast Cancer Research, 2000, 2, 378-85.	2.2	21
226	FGFR-inhibitor-mediated dismissal of SWI/SNF complexes from YAP-dependent enhancers induces adaptive therapeutic resistance. Nature Cell Biology, 2021, 23, 1187-1198.	4.6	21
227	TransCONFIRM: Identification of a Genetic Signature of Response to Fulvestrant in Advanced Hormone Receptor–Positive Breast Cancer. Clinical Cancer Research, 2016, 22, 5755-5764.	3.2	20
228	FiTAc-seq: fixed-tissue ChIP-seq for H3K27ac profiling and super-enhancer analysis of FFPE tissues. Nature Protocols, 2020, 15, 2503-2518.	5.5	20
229	xMAN: extreme MApping of OligoNucleotides. BMC Genomics, 2008, 9, S20.	1.2	19
230	Alcohol Consumption and Risk of Breast Cancer by Tumor Receptor Expression. Hormones and Cancer, 2015, 6, 237-246.	4.9	19
231	CistromeFinder for ChIP-seq and DNase-seq data reuse. Bioinformatics, 2013, 29, 1352-1354.	1.8	18
232	Research Resource: Aorta- and Liver-Specific ERα-Binding Patterns and Gene Regulation by Estrogen. Molecular Endocrinology, 2014, 28, 1337-1351.	3.7	18
233	CoBRA: Containerized Bioinformatics Workflow for Reproducible ChIP/ATAC-seq Analysis. Genomics, Proteomics and Bioinformatics, 2021, 19, 652-661.	3.0	18
234	Primate-specific evolution of an LDLR enhancer. Genome Biology, 2006, 7, R68.	13.9	16

#	Article	IF	CITATIONS
235	Digital Quantification of Gene Expression in Sequential Breast Cancer Biopsies Reveals Activation of an Immune Response. PLoS ONE, 2013, 8, e64225.	1.1	16
236	Control of Steroid Receptor Dynamics and Function by Genomic Actions of the Cochaperones p23 and Bag-1L. Nuclear Receptor Signaling, 2014, 12, nrs.12005.	1.0	16
237	A less invasive method for orthotopic injection of breast cancer cells into the mouse mammary gland. Laboratory Animals, 2017, 51, 85-88.	0.5	16
238	Adult Body Size and Physical Activity in Relation to Risk of Breast Cancer According to Tumor Androgen Receptor Status. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 962-968.	1.1	15
239	Pre-diagnostic sex hormone levels and survival among breast cancer patients. Breast Cancer Research and Treatment, 2019, 174, 749-758.	1.1	15
240	Clonal tracing reveals diverse patterns of response to immune checkpoint blockade. Genome Biology, 2020, 21, 263.	3.8	15
241	Amplified in Breast Cancerâ€l Glutamine Repeat and Prostate Cancer Risk. Prostate Journal, 2000, 2, 27-32.	0.2	14
242	CRISPR Screens Identify Essential Cell Growth Mediators in BRAF Inhibitor-resistant Melanoma. Genomics, Proteomics and Bioinformatics, 2020, 18, 26-40.	3.0	14
243	Importance of Breast Cancer Subtype in the Development of Androgen-Receptor-Directed Therapy. Current Breast Cancer Reports, 2014, 6, 71-78.	0.5	13
244	The Sly Oncogene: FOXA1 Mutations in Prostate Cancer. Cancer Cell, 2019, 36, 119-121.	7.7	13
245	Androgen receptor splice variant 7 functions independently of the full length receptor in prostate cancer cells. Cancer Letters, 2021, 519, 172-184.	3.2	13
246	BAG1L: a promising therapeutic target for androgen receptor-dependent prostate cancer. Journal of Molecular Endocrinology, 2019, 62, R289-R299.	1.1	13
247	Genome Wide DNA Methylation Profiling In Patients with Multiple Myeloma Blood, 2010, 116, 3622-3622.	0.6	12
248	Elucidating the role of androgen receptor in breast cancer. Clinical Investigation, 2012, 2, 1003-1011.	0.0	11
249	An Integrative Pharmacogenomic Approach Identifies Two-drug Combination Therapies for Personalized Cancer Medicine. Scientific Reports, 2016, 6, 22120.	1.6	11
250	Gene expression profiling of prostate tissue identifies chromatin regulation as a potential link between obesity and lethal prostate cancer. Cancer, 2017, 123, 4130-4138.	2.0	11
251	High Expression of FGD3, a Putative Regulator of Cell Morphology and Motility, Is Prognostic of Favorable Outcome in Multiple Cancers. JCO Precision Oncology, 2017, 1, 1-13.	1.5	11
252	Pleiotropic Mechanisms Drive Endocrine Resistance in the Three-Dimensional Bone Microenvironment. Cancer Research, 2021, 81, 371-383.	0.4	10

#	Article	IF	CITATIONS
253	Computational modeling of ovarian cancer dynamics suggests optimal strategies for therapy and screening. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
254	Abstract B077: Signatures of T-cell dysfunction and exclusion predict cancer immunotherapy response. Cancer Immunology Research, 2019, 7, B077-B077.	1.6	10
255	p16INK4A-deficiency predicts response to combined HER2 and CDK4/6 inhibition in HER2+ breast cancer brain metastases. Nature Communications, 2022, 13, 1473.	5.8	10
256	ERG-Mediated Coregulator Complex Formation Maintains Androgen Receptor Signaling in Prostate Cancer. Cancer Research, 2020, 80, 4612-4619.	0.4	9
257	Response to supraphysiological testosterone is predicted by a distinct androgen receptor cistrome. JCI Insight, 2022, 7, .	2.3	9
258	Premenopausal Plasma Osteoprotegerin and Breast Cancer Risk: A Case–Control Analysis Nested within the Nurses' Health Study II. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1264-1270.	1.1	7
259	A Bayesian model for single cell transcript expression analysis on MERFISH data. Bioinformatics, 2019, 35, 995-1001.	1.8	5
260	A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway. IScience, 2022, 25, 104175.	1.9	5
261	CHIPS: A Snakemake pipeline for quality control and reproducible processing of chromatin profiling data. F1000Research, 0, 10, 517.	0.8	4
262	Combining Chromatin Immunoprecipitation and Oligonucleotide Tiling Arrays (ChIP-Chip) for Functional Genomic Studies. Methods in Molecular Biology, 2009, 556, 155-164.	0.4	3
263	Targeting transcriptional co-activators in advanced prostate cancer. Cell Cycle, 2016, 15, 3333-3334.	1.3	3
264	Abstract 3731: Deciphering the transcriptional role of estrogen receptor alpha in ovarian cancer. Cancer Research, 2018, 78, 3731-3731.	0.4	3
265	Hormone-Responsive Cancers. , 2019, , 717-741.e8.		2
266	Formation of the Androgen Receptor Transcription Complex. Molecular Cell, 2003, 11, 1697.	4.5	1
267	Differentiation-Specific Histone Modifications Reveal Dynamic Chromatin Interactions and Partners for the Intestinal Transcription Factor CDX2. Developmental Cell, 2014, 31, 801.	3.1	1
268	Abstract 2674: High fat diet accelerates MYC-driven prostate cancer through metabolic and epigenomic rewiring. , 2016, , .		1
269	Abstract 3779: Clonal tracing reveals different mechanisms of resistance to immune checkpoint blockade. , 2019, , .		1
270	Estrogen receptor (ER) signaling in normal, BRCA (B) 1 and B2 mutation associated, and ER-positive breast cancer (BC) mammary cells Journal of Clinical Oncology, 2012, 30, 576-576.	0.8	1

#	Article	IF	CITATIONS
271	Effect of HOXB13 and FOXA1 on the AR cistrome during prostate tumorigenesis in primary human tissue Journal of Clinical Oncology, 2014, 32, 5018-5018.	0.8	1
272	How drug resistance takes shape. ELife, 2016, 5, .	2.8	1
273	Abstract A218: Modulating glucocorticoid receptor-mediated signaling for enhancement of cancer immunotherapy. , 2019, , .		1
274	Data Integration on Noncoding RNA Studies. , 0, , 403-424.		0
275	PAX8 and lineage dependence in high grade serous ovarian cancer. Gynecologic Oncology, 2015, 139, 591-592.	0.6	Ο
276	Enhancing Therapy: It's about Time. Cell, 2018, 174, 771-772.	13.5	0
277	Mapping the Androgen Receptor Cistrome. , 2009, , 663-680.		Ο
278	Abstract 2071: Loss of ER-regulated microRNAs is fundamental to hormone-independent breast cancer cells. , 2010, , .		0
279	Promoter-Wide Transcriptional Deregulation In Waldenstrom Macroglobulinemia. Blood, 2010, 116, 3620-3620.	0.6	Ο
280	Abstract 260: Identification of the role of linker histone H1 in estrogen receptor binding and activity. , 2011, , .		0
281	Abstract 4542: Dose-dependent effects of progestins on progesterone receptor activity and target gene expression: less is more. , 2011, , .		Ο
282	Abstract 941: Targeting androgen receptor in estrogen receptor-negative breast cancer. , 2011, , .		0
283	Abstract 174: MicroRNA signatures of castration resistant human prostate cancer. , 2011, , .		Ο
284	Abstract 2960: Factor dependent chromatin structure and nucleosome dynamics. , 2012, , .		0
285	Abstract LB-74: The estrogen receptor regulates the transcription of p53 target genes in breast cancer cells. , 2012, , .		Ο
286	Abstract LB-406: Identification of functional enhancer SNPs in breast cancer models though ChIP-sequencing screening. , 2012, , .		0
287	Abstract LB-275: Genome-wide analysis of the vitamin D receptor (VDR) binding sites reveals vitamin D role mediating autophagy in luminal-like breast cancer cells. , 2012, , .		0
288	Abstract 2256: PDEF regulation and role as a survival factor in ER positive breast cancer cells. , 2012, , .		0

#	Article	IF	CITATIONS
289	Abstract 3562: Genome-wide analysis of the vitamin D receptor (VDR) binding sites reveals vitamin D role modulating autophagy and metabolism in luminal-like breast cancer cells , 2013, , .		Ο
290	Abstract A46: LSD1 globally mediates epigenetic modifications on androgen receptor-dependent enhancers. , 2013, , .		0
291	Abstract IA15: Epigenetics of hormone dependence. , 2013, , .		0
292	Residual estrogen receptor availability during fulvestrant 500 mg therapy in patients with metastatic breast cancer Journal of Clinical Oncology, 2014, 32, 588-588.	0.8	0
293	Abstract 1289: Breast cancer predisposition in multiple endocrine neoplasia type 1. , 2014, , .		0
294	Abstract 5238: Integrative analysis of functional long noncoding RNAs during prostate cancer progression. , 2014, , .		0
295	Abstract LB-275: Adult body size and physical activity in relation to risk of breast cancer defined by tumor androgen receptor status. , 2014, , .		0
296	Abstract S1-01: TransCONFIRM: The correlative analysis of breast tumors from patients with advanced hormone receptor positive disease identifies a genetic signature associated with decreased benefit from single agent fulvestrant. , 2015, , .		0
297	Abstract PD6-2: FoxA1 gene amplification in ER+ breast cancer mediates endocrine resistance by increasing IL-8. , 2015, , .		0
298	Abstract P3-05-14: Modeling chemoendocrine therapy for ER+/p53wt luminal breast cancer. , 2015, , .		0
299	Long non-coding RNA-mediated PTEN regulation in prostate cancer Journal of Clinical Oncology, 2015, 33, e16081-e16081.	0.8	0
300	Abstract 4677: Control of androgen receptor function by the genomic action of the cochaperone Bag-1L. , 2015, , .		0
301	Abstract LB-016: Estrogen receptor stability is modulated by calpain activity in breast cancer cells. , 2015, , .		0
302	Abstract 4686: Identifying obesity-linked gene expression changes in prostate cancer. , 2015, , .		0
303	Abstract 1865: TRIM24 acts as a transcriptional co-activator of the androgen receptor during prostate cancer progression. , 2015, , .		0
304	Abstract 1849: Androgen receptor transcriptionally represses genes mediating DNA synthesis and repair in prostate cancer. , 2015, , .		0
305	Abstract 966: LSD1 functions as a global androgen receptor coactivator and is a therapeutic target in prostate cancer. , 2015, , .		0
306	Abstract A2-11: PLZF, a tumor suppressor genetically lost in metastatic castration resistant prostate cancer, is a mediator of resistance to androgen deprivation therapy. , 2015, , .		0

#	Article	IF	CITATIONS
307	Abstract A69: The PAX8 cistrome in benign and malignant Mullerian epithelia , 2016, , .		Ο
308	Abstract A10: High-fat diet enhances MYC-driven prostate cancer through epigenomic and metabolomic rewiring. , 2016, , .		0
309	Abstract A22: Functional long noncoding RNAs in castration-resistant prostate cancer. , 2016, , .		0
310	Abstract IA11: Dependency of prostate cancer on HNRNPL and its associated RNAs. , 2016, , .		0
311	Abstract 864: Androgen receptor stability in prostate cancer is regulated by the cochaperone Bag-1L. , 2016, , .		0
312	Abstract 4295: Androgen receptor expression in normal breast TDLUs and subsequent breast cancer risk. , 2016, , .		0
313	Overexpression of BCL9, a Wnt/β-Catenin Transcriptional Co-Activator, in Transgenic Mice Promotes Spontaneous Development of B-Cell Malignancies. Blood, 2016, 128, 441-441.	0.6	0
314	Abstract 4950: The emergence of ESR1 mutations is associated with aromatase inhibitor and fulvestrant therapy. , 2017, , .		0
315	Abstract LB-257: Estrogen signaling in mature luminal and luminal progenitor cells of BRCA2 carriers and non-carriers. , 2017, , .		0
316	Abstract LB-085: RB loss-induced genome wide E2F1 reprogramming drive advanced prostate cancer. , 2017, , .		0
317	Abstract LB-087: Stage specific re-calibration of E2F1 function after RB loss. , 2017, , .		0
318	Abstract 3376: Reprogramming the estrogen signaling network is a potential mechanism for human breast tumorigenesis. , 2017, , .		0
319	Abstract 2170:Rb1suppresses prostate cancer metastasis and lineage plasticity underlying castration resistance. , 2017, , .		0
320	Abstract 2257: Pre-diagnostic sex hormone levels and breast cancer survival in the Nurses' Health Study. , 2017, , .		0
321	Abstract PR06: CRISPR screens identified drivers of endocrine resistance and synthetic lethal vulnerabilities in breast cancer. , 2017, , .		0
322	Abstract A05: Androgen receptor expression and breast cancer survival in the Nurses' Health Study cohorts. , 2017, , .		0
323	Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of <i>ESR1</i> Activating Mutations. SSRN Electronic Journal, O, , .	0.4	0
324	Abstract 4207: Androgen receptor expression and ER+ breast cancer prognosis in the BIG 1-98 trial. , 2018, , .		0

#	Article	IF	CITATIONS
325	Abstract B040: Differential impact of RB status on E2F1 reprogramming in human cancer. , 2018, , .		ο
326	Abstract IA03: Differential impact of RB pathway status on E2F1 reprogramming and disease progression in human prostate cancer. , 2018, , .		0
327	Abstract A12: Identification of resistance to immune checkpoint blockade. , 2018, , .		0
328	Abstract A146: Systematic discovery of immune regulatory mechanisms in tumor cells. , 2019, , .		0
329	Abstract A077: Microenvironmental factors shape resistance patterns to immune checkpoint blockade. , 2019, , .		Ο
330	Abstract 2615: Systematic approaches to predict oncogenic transcriptional regulatory circuitries identify important nodes in high-grade serous ovarian cancer. , 2019, , .		0
331	Abstract PD7-01: Identification of a high FOXA1-induced pro-metastatic enhancer signature in endocrine-resistant and metastatic breast cancer. , 2020, , .		Ο
332	Abstract 3435: Characterizing the dependence of AP-1 transcription factors on Estrogen Receptor Alpha transcriptional activity and Fulvestrant sensitivity in ovarian cancer cells. , 2020, , .		0
333	Abstract 3662: FiTAc-seq: Fixed-Tissue ChIP-seq for H3K27Ac profiling and super-enhancer analysis on FFPE tissues. , 2020, , .		0
334	<i>In vivo</i> CRISPR Screens Identify E3 Ligase <i>Cop1</i> as a Modulator of Macrophage Infiltration and Cancer Immunotherapy Target. SSRN Electronic Journal, 0, , .	0.4	0
335	Abstract P6-04-02: Integrative cistromic/transcriptomic profiling identifies a high FOXA1/ER-activated pro-metastatic secretome in endocrine-resistant breast cancer. , 2020, , .		0
336	David M. Livingston 1941–2021. Nature Cancer, 2021, 2, 1276-1277.	5.7	0