Ramiro Logares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6325749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eukaryotic plankton diversity in the sunlit ocean. Science, 2015, 348, 1261605.	12.6	1,551
2	The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Research, 2012, 41, D597-D604.	14.5	1,463
3	Patterns of Rare and Abundant Marine Microbial Eukaryotes. Current Biology, 2014, 24, 813-821.	3.9	450
4	Marine protist diversity in <scp>E</scp> uropean coastal waters and sediments as revealed by highâ€throughput sequencing. Environmental Microbiology, 2015, 17, 4035-4049.	3.8	384
5	Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME Journal, 2013, 7, 937-948.	9.8	330
6	Infrequent marine–freshwater transitions in the microbial world. Trends in Microbiology, 2009, 17, 414-422.	7.7	311
7	Metagenomic <scp>16S rDNA I</scp> llumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environmental Microbiology, 2014, 16, 2659-2671.	3.8	291
8	Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA. ISME Journal, 2010, 4, 1144-1153.	9.8	208
9	Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome, 2021, 9, 128.	11.1	191
10	Sinking particles promote vertical connectivity in the ocean microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6799-E6807.	7.1	185
11	Abundant and rare picoeukaryotic subâ€communities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern <scp>P</scp> acific <scp>O</scp> cean. Environmental Microbiology, 2017, 19, 287-300.	3.8	183
12	Large variability of bathypelagic microbial eukaryotic communities across the world's oceans. ISME Journal, 2016, 10, 945-958.	9.8	171
13	Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME Journal, 2014, 8, 854-866.	9.8	157
14	Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome, 2020, 8, 55.	11.1	154
15	Contrasting prevalence of selection and drift in the community structuring of bacteria and microbial eukaryotes. Environmental Microbiology, 2018, 20, 2231-2240.	3.8	153
16	Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Scientific Data, 2017, 4, 170093.	5.3	147
17	Important contribution of macroalgae to oceanic carbon sequestration. Nature Geoscience, 2019, 12, 748-754.	12.9	141
18	Environmental Sequencing Provides Reasonable Estimates of the Relative Abundance of Specific Picoeukaryotes. Applied and Environmental Microbiology, 2016, 82, 4757-4766.	3.1	118

#	Article	IF	CITATIONS
19	Environmental microbiology through the lens of high-throughput DNA sequencing: Synopsis of current platforms and bioinformatics approaches. Journal of Microbiological Methods, 2012, 91, 106-113.	1.6	115
20	Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME Journal, 2012, 6, 1823-1833.	9.8	114
21	The planktonic protist interactome: where do we stand after a century of research?. ISME Journal, 2020, 14, 544-559.	9.8	111
22	Phenotypically Different Microalgal Morphospecies with Identical Ribosomal DNA: A Case of Rapid Adaptive Evolution?. Microbial Ecology, 2007, 53, 549-561.	2.8	110
23	Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Communications Biology, 2021, 4, 604.	4.4	107
24	Large-scale ocean connectivity and planktonic body size. Nature Communications, 2018, 9, 142.	12.8	102
25	Extensive dinoflagellate phylogenies indicate infrequent marine–freshwater transitions. Molecular Phylogenetics and Evolution, 2007, 45, 887-903.	2.7	101
26	Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nature Communications, 2018, 9, 310.	12.8	101
27	Benthic protists: the under-charted majority. FEMS Microbiology Ecology, 2016, 92, fiw120.	2.7	94
28	Eukaryotic versus prokaryotic marine picoplankton ecology. Environmental Microbiology, 2013, 15, 1254-1261.	3.8	92
29	Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME Journal, 2020, 14, 437-449.	9.8	80
30	Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environmental Microbiology, 2008, 10, 2635-2644.	3.8	79
31	Quantifying longâ€ŧerm recurrence in planktonic microbial eukaryotes. Molecular Ecology, 2019, 28, 923-935.	3.9	79
32	Different bacterial communities in ectomycorrhizae and surrounding soil. Scientific Reports, 2013, 3, 3471.	3.3	77
33	Perspectives from Ten Years of Protist Studies by Highâ€Throughput Metabarcoding. Journal of Eukaryotic Microbiology, 2020, 67, 612-622.	1.7	72
34	Rarity in aquatic microbes: placing protists on the map. Research in Microbiology, 2015, 166, 831-841.	2.1	69
35	Infrequent Transitions between Saline and Fresh Waters in One of the Most Abundant Microbial Lineages (SAR11). Molecular Biology and Evolution, 2010, 27, 347-357.	8.9	66
36	Restructuring of the sponge microbiome favors tolerance to ocean acidification. Environmental Microbiology Reports, 2016, 8, 536-544.	2.4	60

#	Article	IF	CITATIONS
37	Protist Diversity and Seasonal Dynamics in Skagerrak Plankton Communities as Revealed by Metabarcoding and Microscopy. Journal of Eukaryotic Microbiology, 2019, 66, 494-513.	1.7	60
38	Genetic Diversity Patterns in Five Protist Species Occurring in Lakes. Protist, 2009, 160, 301-317.	1.5	55
39	Seasonal patterns in Arctic prasinophytes and inferred ecology of <i>Bathycoccus</i> unveiled in an Arctic winter metagenome. ISME Journal, 2017, 11, 1372-1385.	9.8	54
40	General Patterns of Diversity in Major Marine Microeukaryote Lineages. PLoS ONE, 2013, 8, e57170.	2.5	54
41	Diatom diversity through HTS-metabarcoding in coastal European seas. Scientific Reports, 2018, 8, 18059.	3.3	48
42	A global overview of the trophic structure within microbiomes across ecosystems. Environment International, 2021, 151, 106438.	10.0	48
43	Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells. Scientific Reports, 2017, 7, 41498.	3.3	47
44	Exploring the oceanic microeukaryotic interactome with metaomics approaches. Aquatic Microbial Ecology, 2017, 79, 1-12.	1.8	46
45	Seasonal succession of small planktonic eukaryotes inhabiting surface waters of a coastal upwelling system. Environmental Microbiology, 2018, 20, 2955-2973.	3.8	44
46	Low Evolutionary Diversification in a Widespread and Abundant Uncultured Protist (MAST-4). Molecular Biology and Evolution, 2012, 29, 1393-1406.	8.9	42
47	Evidence of concurrent local adaptation and high phenotypic plasticity in a polar microeukaryote. Environmental Microbiology, 2015, 17, 1510-1519.	3.8	41
48	Higher contribution of globally rare bacterial taxa reflects environmental transitions across the surface ocean. Molecular Ecology, 2019, 28, 1930-1945.	3.9	41
49	The roles of geographic distance and socioeconomic factors on international collaboration among ecologists. Scientometrics, 2017, 113, 1539-1550.	3.0	36
50	Seasonal niche differentiation among closely related marine bacteria. ISME Journal, 2022, 16, 178-189.	9.8	36
51	Single cell genomics yields a wide diversity of small planktonic protists across major ocean ecosystems. Scientific Reports, 2019, 9, 6025.	3.3	35
52	Polar lakes may act as ecological islands to aquatic protists. Molecular Ecology, 2012, 21, 3200-3209.	3.9	33
53	Recent evolutionary diversification of a protist lineage. Environmental Microbiology, 2008, 10, 1231-1243.	3.8	31
54	Fatty acid and sterol composition of two evolutionarily closely related dinoflagellate morphospecies from cold Scandinavian brackish and freshwaters. European Journal of Phycology, 2006, 41, 303-311.	2.0	29

#	Article	IF	CITATIONS
55	Planktonic protistan communities in lakes along a large-scale environmental gradient. FEMS Microbiology Ecology, 2017, 93, fiw231.	2.7	28
56	Tracing the Origin of Planktonic Protists in an Ancient Lake. Microorganisms, 2020, 8, 543.	3.6	28
57	Draft genome sequence of strain HIMB100, a cultured representative of the SAR116 clade of marine Alphaproteobacteria. Standards in Genomic Sciences, 2011, 5, 269-278.	1.5	27
58	A data mining approach to dinoflagellate clustering according to sterol composition: correlations with evolutionary history. International Journal of Data Mining and Bioinformatics, 2010, 4, 431.	0.1	26
59	Single Cell Genomics Reveals Viruses Consumed by Marine Protists. Frontiers in Microbiology, 2020, 11, 524828.	3.5	26
60	Ecological and evolutionary significance of novel protist lineages. European Journal of Protistology, 2016, 55, 4-11.	1.5	25
61	Assessing the viral content of uncultured picoeukaryotes in the globalâ€ocean by single cell genomics. Molecular Ecology, 2019, 28, 4272-4289.	3.9	25
62	Impact of grazing, resource availability and light on prokaryotic growth and diversity in the oligotrophic surface global ocean. Environmental Microbiology, 2019, 21, 1482-1496.	3.8	24
63	MARINEâ€DERIVED DINOFLAGELLATES IN ANTARCTIC SALINE LAKES: COMMUNITY COMPOSITION AND ANNUAL DYNAMICS ¹ *[link]. Journal of Phycology, 2008, 44, 592-604.	2.3	23
64	Mixing of water masses caused by a drifting iceberg affects bacterial activity, community composition and substrate utilization capability in the Southern Ocean. Environmental Microbiology, 2017, 19, 2453-2467.	3.8	21
65	Disentangling environmental effects in microbial association networks. Microbiome, 2021, 9, 232.	11.1	21
66	Summer comes to the Southern Ocean: how phytoplankton shape bacterioplankton communities far into the deep dark sea. Ecosphere, 2019, 10, e02641.	2.2	20
67	Uncovering the genomic potential of the Amazon River microbiome to degrade rainforest organic matter. Microbiome, 2020, 8, 151.	11.1	18
68	Comparative genomics reveals new functional insights in uncultured MAST species. ISME Journal, 2021, 15, 1767-1781.	9.8	18
69	Thermal Tolerances in Tadpoles of Three Species of Patagonian Anurans. South American Journal of Herpetology, 2010, 5, 89-96.	0.5	17
70	Probing the Rare Biosphere of the North-West Mediterranean Sea: An Experiment with High Sequencing Effort. PLoS ONE, 2016, 11, e0159195.	2.5	17
71	Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf. Nature Communications, 2022, 13, 117.	12.8	17
72	Microzooplankton distribution in the Amundsen Sea Polynya (Antarctica) during an extensive Phaeocystis antarctica bloom. Progress in Oceanography, 2019, 170, 1-10.	3.2	15

#	Article	IF	CITATIONS
73	Weak Coherence in Abundance Patterns Between Bacterial Classes and Their Constituent OTUs Along a Regulated River. Frontiers in Microbiology, 2015, 6, 1293.	3.5	14
74	Diversity patterns of planktonic microeukaryote communities in tropical floodplain lakes based on 18S rDNA gene sequences. Journal of Plankton Research, 2019, 41, 241-256.	1.8	13
75	Bacterioplankton dynamics driven by interannual and spatial variation in diatom and dinoflagellate spring bloom communities in the Baltic Sea. Limnology and Oceanography, 2021, 66, 255-271.	3.1	13
76	Recent advances in environmental DNAâ€based biodiversity assessment and conservation. Diversity and Distributions, 2021, 27, 1876-1879.	4.1	13
77	Long-term patterns of an interconnected core marine microbiota. Environmental Microbiomes, 2022, 17, 22.	5.0	13
78	Niche adaptation promoted the evolutionary diversification of tiny ocean predators. Proceedings of the United States of America, 2021, 118, .	7.1	12
79	Primer Design for an Accurate View of Picocyanobacterial Community Structure by Using High-Throughput Sequencing. Applied and Environmental Microbiology, 2019, 85, .	3.1	9
80	The influence of light and water mass on bacterial population dynamics in the Amundsen Sea Polynya. Elementa, 2015, 3, .	3.2	9
81	Response of pico-nano-eukaryotes to inorganic and organic nutrient additions. Estuarine, Coastal and Shelf Science, 2020, 235, 106565.	2.1	7
82	Microbial eukaryote assemblages and potential novel diversity in four tropical East African Great Lakes. FEMS Microbiology Ecology, 2021, 97, .	2.7	7
83	First insights into the overwintering biology of Alsodes gargola frogs and tadpoles inhabiting harsh Andean-Patagonian alpine environments. Amphibia - Reptilia, 2006, 27, 263-267.	0.5	6
84	Delineating closely related dinoflagellate lineages using phylotranscriptomics. Journal of Phycology, 2018, 54, 571-576.	2.3	5
85	Composition and dynamics of microeukaryote communities in the River Danube Fottea, 2010, 10, 99-113.	0.9	4
86	Population genetics: the next stop for microbial ecologists?. Open Life Sciences, 2011, 6, 887-892.	1.4	3
87	Lifting the Lid: Nitrifying Archaea Sustain Diverse Microbial Communities Below the Ross Ice Shelf. SSRN Electronic Journal, 0, , .	0.4	3
88	Black Swans in ecology and evolution: The importance of improbable but highly influential events. Ideas in Ecology and Evolution, 2012, , .	0.1	3
89	Microbial population genomes from the Amazon River reveal possible modulation of the organic matter degradation process in tropical freshwaters. Molecular Ecology, 2022, 31, 206-219.	3.9	2
90	Applying Clustering and Phylogeny Analysis to Study Dinoflagellates Based on Sterol Composition. , 2008, , .		1

#	Article	IF	CITATIONS
91	Ecology of Rare Microorganisms. , 2019, , 90-90.		0