
Patrick H Toy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/632563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Halogen Bondâ€Catalyzed Friedelâ^'Crafts Reactions of Furans Using a 2,2'â€Bipyridineâ€Based Catalyst. Advanced Synthesis and Catalysis, 2021, 363, 215-221.	4.3	13
2	Ru ^V â€Acylimido Intermediate in [Ru ^{IV} (Por)Cl ₂]â€Catalyzed C–N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angewandte Chemie - International Edition, 2021, 60, 18619-18629.	13.8	11
3	Ru V â€Acylimido Intermediate in [Ru IV (Por)Cl 2]â€Catalyzed C–N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angewandte Chemie, 2021, 133, 18767-18777.	2.0	1
4	Innenrücktitelbild: Ru ^V â€Acylimido Intermediate in [Ru ^{IV} (Por)Cl ₂]â€Catalyzed C–N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions (Angew. Chem. 34/2021). Angewandte Chemie, 2021, 133, 19039-19039.	2.0	0
5	Halogen Bond atalyzed Povarov Reactions. Advanced Synthesis and Catalysis, 2020, 362, 3437-3441.	4.3	23
6	Halogen Bond-Catalyzed Friedel–Crafts Reactions of Aldehydes and Ketones Using a Bidentate Halogen Bond Donor Catalyst: Synthesis of Symmetrical Bis(indolyl)methanes. Organic Letters, 2019, 21, 9212-9216.	4.6	57
7	Highly Enantioselective Synthesis Using Prolinol as a Chiral Auxiliary: Silver-Mediated Synthesis of Axially Chiral Vinylallenes and Subsequent (Hetero)-Diels–Alder Reactions. Organic Letters, 2019, 21, 7717-7721.	4.6	18
8	Reductive Halogenation Reactions: Selective Synthesis of Unsymmetrical α-Haloketones. Organic Letters, 2019, 21, 8149-8152.	4.6	2
9	Triphenylphosphine Oxide-Catalyzed Selective α,β-Reduction of Conjugated Polyunsaturated Ketones. Synlett, 2019, 30, 1100-1104.	1.8	13
10	<i>>S</i> -Dimethylarsino-glutathione (darinaparsin®) targets histone H3.3, leading to TRAIL-induced apoptosis in leukemia cells. Chemical Communications, 2019, 55, 13120-13123.	4.1	17
11	Polyunsaturated fatty acid amides from the <i>Zanthoxylum</i> genus – from culinary curiosities to probes for chemical biology. Natural Product Reports, 2018, 35, 54-74.	10.3	40
12	Self-Supported N-Heterocyclic Carbenes and Their Use as Organocatalysts. Molecules, 2016, 21, 1100.	3.8	4
13	Catalytic Wittig and aza-Wittig reactions. Beilstein Journal of Organic Chemistry, 2016, 12, 2577-2587.	2.2	83
14	Chromatography-Free Esterification Reactions Using a Bifunctional Polymer. Synlett, 2016, 27, 1207-1210.	1.8	7
15	Organocatalytic Alkyne Isomerizations under Flow Conditions Using Heterogeneous Bifunctional Polystyrene Bearing Phosphine and Phenol Groups. Synthesis, 2016, 49, 145-150.	2.3	3
16	Functionalized Tri- and Tetraphosphine Ligands as a General Approach for Controlled Implantation of Phosphorus Donors with a High Local Density in Immobilized Molecular Catalysts. ChemPlusChem, 2015, 80, 119-129.	2.8	8
17	Rasta Resin-TBD-Catalyzed γ-Selective Morita–Baylis–Hillman Reactions of α,γ-Disubstituted Allenones. Synlett, 2015, 26, 1732-1736.	1.8	5
18	Polyethyleneimine-Supported Triphenylphosphine and Its Use as a Highly Loaded Bifunctional Polymeric Reagent in Chromatography-Free One-Pot Wittig Reactions. Synlett, 2015, 26, 1737-1743.	1.8	7

PATRICK H TOY

#	Article	IF	CITATIONS
19	Self-Supported Ligands as a Platform for Catalysis: Use of a Polymeric Oxime in a Recyclable Palladacycle Precatalyst for Suzuki–Miyaura Reactions. Synlett, 2014, 25, 1319-1324.	1.8	10
20	Synthesis of γ-Sanshool and Hydroxy-γ-sanshool. Synlett, 2014, 25, 2787-2790.	1.8	8
21	Reengineering classic organic reactions using polymeric tools. Pure and Applied Chemistry, 2014, 86, 1651-1661.	1.9	3
22	A bifunctional palladated rasta resin for Mizoroki–Heck reactions. Tetrahedron Letters, 2014, 55, 4331-4333.	1.4	5
23	Rasta resin–triphenylphosphine oxides and their use as recyclable heterogeneous reagent precursors in halogenation reactions. Beilstein Journal of Organic Chemistry, 2014, 10, 1397-1405.	2.2	10
24	Synthesis of Hydroxy-α-sanshool. Synlett, 2012, 23, 2564-2566.	1.8	10
25	Multifunctional organic polymeric catalysts and reagents. Pure and Applied Chemistry, 2012, 85, 543-556.	1.9	9
26	Rasta Resin–PPh ₃ –NBn <i>i</i> Pr ₂ and its Use in Oneâ€Pot Wittig Reaction Cascades. Chemistry - an Asian Journal, 2012, 7, 351-359.	3.3	29
27	An Efficient and Reusable Palladium Catalyst Supported on a Rasta Resin for Suzuki–Miyaura Cross ouplings. European Journal of Organic Chemistry, 2012, 2012, 893-896.	2.4	28
28	Tandem Oneâ€Pot Wittig/Reductive Aldol Reactions in which the Waste from One Process Catalyzes a Subsequent Reaction. Chemistry - an Asian Journal, 2011, 6, 2251-2254.	3.3	30
29	Phosphonium ion tagged chiral phosphoric acids and their application in Friedel–Crafts reactions of indoles. Tetrahedron, 2011, 67, 4103-4109.	1.9	36
30	Chromatography-Free Wittig Reactions Using a Bifunctional Polymeric Reagent. Organic Letters, 2010, 12, 4996-4999.	4.6	60
31	Use of Water-Compatible Polystyreneâ^'Polyglycidol Resins for the Separation and Recovery of Dissolved Precious Metal Salts. Industrial & Engineering Chemistry Research, 2009, 48, 4975-4979.	3.7	10
32	Organic Polymer Supports for Synthesis and for Reagent and Catalyst Immobilization. Chemical Reviews, 2009, 109, 815-838.	47.7	580
33	Multipolymer Reaction System for Selective Aerobic Alcohol Oxidation:  Simultaneous Use of Multiple Different Polymer-Supported Ligands. ACS Combinatorial Science, 2007, 9, 115-120.	3.3	45
34	Bifunctional Polymeric Organocatalysts and Their Application in the Cooperative Catalysis of Morita–Baylis–Hillman Reactions. Chemistry - A European Journal, 2007, 13, 2369-2376.	3.3	80
35	The Mitsunobu Reaction: Origin, Mechanism, Improvements, and Applications. Chemistry - an Asian Journal, 2007, 2, 1340-1355.	3.3	253
36	Nanoscale Catalysis of Organic Molecule Transformations. Journal of Experimental Nanoscience, 2006, 1, 397-397.	2.4	0

ΡΑΤRICK Η ΤΟΥ

#	Article	IF	CITATIONS
37	Organocatalytic Mitsunobu Reactions. Journal of the American Chemical Society, 2006, 128, 9636-9637.	13.7	134
38	Influence of Michael Acceptor Stereochemistry on Intramolecular Moritaâ^Baylisâ^Hillman Reactions. Journal of Organic Chemistry, 2006, 71, 368-371.	3.2	44
39	A polystyrene-supported triflating reagent for the synthesis of aryl triflates. Tetrahedron, 2005, 61, 709-715.	1.9	22
40	Optimization of polystyrene-supported triphenylphosphine catalysts for aza-Morita–Baylis–Hillman reactions. Tetrahedron, 2005, 61, 12026-12032.	1.9	47
41	Polystyrene-supported triphenylarsines: useful ligands in palladium-catalyzed aryl halide homocoupling reactions and a catalyst for alkene epoxidation using hydrogen peroxide. Tetrahedron, 2005, 61, 12053-12057.	1.9	34
42	Arsonium Ylides in Organic Synthesis. ChemInform, 2005, 36, no.	0.0	0
43	Arsonium ylides in organic synthesis. Tetrahedron, 2005, 61, 1385-1405.	1.9	51
44	Sulfur- and selenium-based linkers in polymer-supported organic synthesis. Journal of Sulfur Chemistry, 2005, 26, 509-540.	2.0	12
45	A multipolymer system for organocatalytic alcohol oxidation. Organic and Biomolecular Chemistry, 2005, 3, 970.	2.8	42
46	Multipolymer Solution-Phase Reactions: Application to the Mitsunobu Reaction. Journal of the American Chemical Society, 2005, 127, 52-53.	13.7	88
47	Chiral auxiliaries in polymer-supported organic synthesis. Tetrahedron: Asymmetry, 2004, 15, 387-399.	1.8	133
48	An improved and general synthesis of monomers for incorporating trityl linker groups into polystyrene synthesis supports. Tetrahedron, 2004, 60, 2903-2907.	1.9	14
49	Polymer-supported thioanisole: a versatile platform for organic synthesis reagents. Tetrahedron, 2004, 60, 2875-2879.	1.9	20
50	Polystyrene-Supported Triphenylarsine Reagents and Their Use in Suzuki Cross-Coupling Reactions. ACS Combinatorial Science, 2004, 6, 955-960.	3.3	35
51	Polystyrene-Supported Phosphine-Catalyzed aza-Baylisâ^'Hillman Reactions and the Relationship between Resin Loading Level and Catalyst Efficiency. ACS Combinatorial Science, 2004, 6, 680-683.	3.3	45
52	Soluble polystyrene-based sulfoxide reagents for Swern oxidation reactions. Tetrahedron, 2003, 59, 7171-7176.	1.9	33
53	Direct Radical Polymerization of 4-Styryldiphenylphosphine:Â Preparation of Cross-Linked and Non-Cross-Linked Triphenylphosphine-Containing Polystyrene Polymers. Journal of Organic Chemistry, 2003, 68, 9831-9834.	3.2	57
54	Polytetrahydrofuran Cross-Linked Polystyrene Resins for Solid-Phase Organic Synthesis. ACS Combinatorial Science, 2001, 3, 117-124.	3.3	68

ΡΑΤRICK Η ΤΟΥ

#	Article	IF	CITATIONS
55	Soluble Polymer Bound Cleavage Reagents:  A Multipolymer Strategy for the Cleavage of Tertiary Amines from REM Resin. Organic Letters, 2000, 2, 2205-2207.	4.6	35
56	Soluble Polymer-Supported Organic Synthesis. Accounts of Chemical Research, 2000, 33, 546-554.	15.6	299
57	Application of a New Solid-Phase Resin: Benzamide ortho-Lithiation and the Synthesis of a Phthalide Library. Synlett, 1999, 1999, 1438-1440.	1.8	38
58	New supports for solid-phase organic synthesis: development of polystyrene resins containing tetrahydrofuran derived cross-linkers. Tetrahedron Letters, 1999, 40, 6329-6332.	1.4	113
59	Organic Polymer-Microencapsulated Metal Catalysts. , 0, , 341-377.		Ο
60	Synthesis of Bungeanool, Isobungeanool, Dihydrobungeanool, Tetrahydrobungeanool, Hazaleamide, Lanyuamide III and Analogues. Synthesis, 0, , .	2.3	0