Xinhao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6324392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palladium-Catalyzed <i>Meta</i> -Selective C–H Bond Activation with a Nitrile-Containing Template: Computational Study on Mechanism and Origins of Selectivity. Journal of the American Chemical Society, 2014, 136, 344-355.	13.7	317
2	Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions. Journal of the American Chemical Society, 2015, 137, 1706-1725.	13.7	271
3	Role of <i>N</i> -Acyl Amino Acid Ligands in Pd(II)-Catalyzed Remote C–H Activation of Tethered Arenes. Journal of the American Chemical Society, 2014, 136, 894-897.	13.7	263
4	Mechanism, Reactivity, and Selectivity in Palladium-Catalyzed Redox-Relay Heck Arylations of Alkenyl Alcohols. Journal of the American Chemical Society, 2014, 136, 1960-1967.	13.7	187
5	Copper-Catalyzed Radical 1,4-Difunctionalization of 1,3-Enynes with Alkyl Diacyl Peroxides and <i>N</i> -Fluorobenzenesulfonimide. Journal of the American Chemical Society, 2019, 141, 548-559.	13.7	162
6	Ligand-Controlled Remarkable Regio- and Stereodivergence in Intermolecular Hydrosilylation of Internal Alkynes: Experimental and Theoretical Studies. Journal of the American Chemical Society, 2013, 135, 13835-13842.	13.7	135
7	Iron-Catalyzed Carboamination of Olefins: Synthesis of Amines and Disubstituted β-Amino Acids. Journal of the American Chemical Society, 2017, 139, 13076-13082.	13.7	131
8	Copper-Catalyzed Enantioselective Radical 1,4-Difunctionalization of 1,3-Enynes. Journal of the American Chemical Society, 2020, 142, 18014-18021.	13.7	109
9	New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry. Accounts of Chemical Research, 2016, 49, 1302-1310.	15.6	100
10	Metalâ€Free [2+2+2] Cycloaddition of Ynamides and Nitriles: Mild and Regioselective Synthesis of Fully Substituted Pyridines. Angewandte Chemie - International Edition, 2016, 55, 9704-9708.	13.8	96
11	A Combined IMâ€MS/DFT Study on [Pd(MPAA)] atalyzed Enantioselective CH Activation: Relay of Chirality through a Rigid Framework. Chemistry - A European Journal, 2015, 21, 11180-11188.	3.3	94
12	Generation of Halomethyl Radicals by Halogen Atom Abstraction and Their Addition Reactions with Alkenes. Journal of the American Chemical Society, 2019, 141, 16643-16650.	13.7	91
13	Conversion of Methane to Methanol: Nickel, Palladium, and Platinum (d ⁹) Cations as Catalysts for the Oxidation of Methane by Ozone at Room Temperature. Chemistry - A European Journal, 2010, 16, 11605-11610.	3.3	89
14	Synthesis of Indolo[2,1- <i>a</i>]isoquinolines via a Triazene-Directed C–H Annulation Cascade. Journal of Organic Chemistry, 2014, 79, 11863-11872.	3.2	87
15	Iron-catalyzed carboazidation of alkenes and alkynes. Nature Communications, 2019, 10, 122.	12.8	83
16	Highly Regio―and Stereoselective Hydrosilylation of Internal Thioalkynes under Mild Conditions. Angewandte Chemie - International Edition, 2015, 54, 5632-5635.	13.8	77
17	A diversity-oriented synthesis of bioactive benzanilides via a regioselective C(sp ²)–H hydroxylation strategy. Chemical Science, 2016, 7, 2229-2238.	7.4	74
18	Rhodium atalyzed Regioselective <i>N</i> ² â€Alkylation of Benzotriazoles with Diazo Compounds/Enynones via a Nonclassical Pathway. Angewandte Chemie - International Edition, 2018, 57, 12489-12493.	13.8	73

#	Article	IF	CITATIONS
19	Assembling a Hybrid Pd Catalyst from a Chiral Anionic Co ^{III} Complex and Ligand for Asymmetric C(sp ³)–H Functionalization. Angewandte Chemie - International Edition, 2019, 58, 1803-1807.	13.8	73
20	Enantioselective Addition of Cyclic Ketones to Unactivated Alkenes Enabled by Amine/Pd(II) Cooperative Catalysis. ACS Catalysis, 2019, 9, 791-797.	11.2	72
21	Palladium-catalyzed benzo[d]isoxazole synthesis by C–H activation/[4 + 1] annulation. Chemical Science, 2014, 5, 1574-1578.	7.4	67
22	Structure and Chemistry of the Heteronuclear Oxo-Cluster [VPO ₄] ^{•+} : A Model System for the Gas-Phase Oxidation of Small Hydrocarbons. Journal of the American Chemical Society, 2013, 135, 3711-3721.	13.7	66
23	Iron-catalysed asymmetric carboazidation of styrenes. Nature Catalysis, 2021, 4, 28-35.	34.4	60
24	<i>γ</i> -Amino Butyric Acid (GABA) Synthesis Enabled by Copper-Catalyzed Carboamination of Alkenes. Organic Letters, 2017, 19, 4718-4721.	4.6	59
25	Access to N‣ubstituted 2â€Pyridones by Catalytic Intermolecular Dearomatization and 1,4â€Acyl Transfer. Angewandte Chemie - International Edition, 2019, 58, 1980-1984.	13.8	58
26	A Combined DFT/IM-MS Study on the Reaction Mechanism of Cationic Ru(II)-Catalyzed Hydroboration of Alkynes. ACS Catalysis, 2017, 7, 1361-1368.	11.2	56
27	Diastereo- and Enantioselective Catalytic Radical Oxysulfonylation of Alkenes in β,γ-Unsaturated Ketoximes. CheM, 2020, 6, 1692-1706.	11.7	55
28	A bioinspired and biocompatible ortho-sulfiliminyl phenol synthesis. Nature Communications, 2017, 8, 15912.	12.8	54
29	Conjugate Addition vs Heck Reaction: A Theoretical Study on Competitive Coupling Catalyzed by Isoelectronic Metal (Pd(II) and Rh(I)). Journal of Organic Chemistry, 2012, 77, 7487-7496.	3.2	53
30	Mechanistic Study on Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between Arenes and Boronic Acids under Aerobic Conditions. Journal of the American Chemical Society, 2018, 140, 5579-5587.	13.7	52
31	A Combined Computational and Experimental Study of Rh-Catalyzed C–H Silylation with Silacyclobutanes: Insights Leading to a More Efficient Catalyst System. Journal of the American Chemical Society, 2021, 143, 3571-3582.	13.7	52
32	Bonding in Cationic MCH ₂ ⁺ (M=K–La, Hf–Rn): A Theoretical Study on Periodic Trends. Chemistry - A European Journal, 2010, 16, 5882-5888.	3.3	51
33	Siliconâ€Containing Formal 4ï€â€Electron Fourâ€Membered Ring Systems: Antiaromatic, Aromatic, or Nonaromatic?. Chemistry - A European Journal, 2012, 18, 7516-7524.	3.3	51
34	Why does Togni's reagent I exist in the high-energy hypervalent iodine form? Re-evaluation of benziodoxole based hypervalent iodine reagents. Chemical Communications, 2016, 52, 5371-5374.	4.1	50
35	Total Synthesis of Incarvilleatone and Incarviditone: Insight into Their Biosynthetic Pathways and Structure Determination. Organic Letters, 2012, 14, 4878-4881.	4.6	46
36	Thermal Activation of Methane and Ethene by Bare MO ^{.+} (M=Ge, Sn, and Pb): A Combined Theoretical/Experimental Study. Chemistry - A European Journal, 2011, 17, 9619-9625.	3.3	45

#	Article	IF	CITATIONS
37	Organocatalytic nitrogen transfer to unactivated olefins via transient oxaziridines. Nature Catalysis, 2020, 3, 386-392.	34.4	45
38	Ligand-Controlled Reactivity, Selectivity, and Mechanism of Cationic Ruthenium-Catalyzed Hydrosilylations of Alkynes, Ketones, and Nitriles: A Theoretical Study. Journal of Organic Chemistry, 2014, 79, 8856-8864.	3.2	44
39	Synthetic Study of 1,3-Butadiene-Based IMDA Approach to Construct a [5â^77â^6] Tricyclic Core and Its Application to the Total Synthesis of C8-epi-Guanacastepene O. Journal of Organic Chemistry, 2006, 71, 6892-6897.	3.2	42
40	Computational Studies on the Mechanism of the Copperâ€Catalyzed sp ³ â€CH Crossâ€Dehydrogenative Coupling Reaction. ChemPlusChem, 2013, 78, 943-951.	2.8	42
41	Enantioselective Formation of Cyanoâ€Bearing Allâ€Carbon Quaternary Stereocenters: Desymmetrization by Copperâ€Catalyzed Nâ€Arylation. Angewandte Chemie - International Edition, 2014, 53, 9555-9559.	13.8	42
42	Reaction of Ta(NMe ₂) ₅ with O ₂ :  Formation of Aminoxy and Unusual (Aminomethyl)amide Oxo Complexes and Theoretical Studies of the Mechanistic Pathways. Journal of the American Chemical Society, 2007, 129, 14408-14421.	13.7	41
43	An Unusual Exchange between Alkylidyne Alkyl and Bis(alkylidene) Tungsten Complexes Promoted by Phosphine Coordination:Â Kinetic, Thermodynamic, and Theoretical Studies. Journal of the American Chemical Society, 2004, 126, 10208-10209.	13.7	40
44	A Theoretical Study on the Mechanism of the Reductive Half-Reaction of Xanthine Oxidase. Inorganic Chemistry, 2005, 44, 1466-1471.	4.0	40
45	Bonding in cationic MOH n + (MÂ=ÂKÂâ^'ÂLa, HfÂâ^'ÂRn; nÂ=Â0–2): DFT performances and periodic trends. Theoretical Chemistry Accounts, 2011, 129, 389-399.	1.4	40
46	Ir-Catalyzed Regio- and Stereoselective Hydrosilylation of Internal Thioalkynes: A Combined Experimental and Computational Study. Journal of Organic Chemistry, 2016, 81, 6157-6164.	3.2	40
47	Reactions of d0 Group 4 Amides with Dioxygen. Preparation of Unusual Oxo Aminoxy Complexes and Theoretical Studies of Their Formation. Journal of the American Chemical Society, 2005, 127, 5204-5211.	13.7	39
48	Hybrid Palladium Catalyst Assembled from Chiral Phosphoric Acid and Thioamide for Enantioselective β (sp ³)â^'H Arylation. Angewandte Chemie - International Edition, 2020, 59, 12774-12778.	13.8	39
49	Ru-Catalyzed Migratory Geminal Semihydrogenation of Internal Alkynes to Terminal Olefins. Journal of the American Chemical Society, 2019, 141, 17441-17451.	13.7	38
50	Pd-Catalyzed Asymmetric Intramolecular Aryl C–O Bond Formation with SDP(O) Ligand: Enantioselective Synthesis of (2,3-Dihydrobenzo[<i>b</i>][1,4]dioxin-2-yl)methanols. Organic Letters, 2015, 17, 840-843.	4.6	37
51	A Redox Non-Innocent Ligand Controls the Life Time of a Reactive Quartet Excited State - An MCSCF Study of [Ni(H)(OH)]+. Journal of the American Chemical Society, 2009, 131, 12634-12642.	13.7	36
52	Accurate Calculation, Prediction, and Assignment of3He NMR Chemical Shifts of Helium-3-Encapsulated Fullerenes and Fullerene Derivatives. Journal of Organic Chemistry, 2003, 68, 6732-6738.	3.2	35
53	Metal-Free Synthesis of 3-Arylquinolin-2-ones from Acrylic Amides via a Highly Regioselective 1,2-Aryl Migration: An Experimental and Computational Study. Journal of Organic Chemistry, 2016, 81, 4058-4065.	3.2	35
54	A Twist of the Twist Mechanism, 2-lodoxybenzoic Acid (IBX)-Mediated Oxidation of Alcohol Revisited: Theory and Experiment. Organic Letters, 2017, 19, 6502-6505.	4.6	35

#	Article	IF	CITATIONS
55	Rh(II)/BrÃ,nsted Acid Catalyzed General and Highly Diastereo- and Enantioselective Propargylation of in Situ Generated Oxonium Ylides and C-Alkynyl N-Boc N,O-Acetals: Synthesis of Polyfunctional Propargylamines. Organic Letters, 2019, 21, 1292-1296.	4.6	35
56	A Tungsten Silyl Alkylidyne Complex and Its Bis(alkylidene) Tautomer. Their Interconversion and an Unusual Silyl Migration in Their Reaction with Dioxygen. Organometallics, 2005, 24, 1214-1224.	2.3	33
57	A DFT Study on the Mechanism of Hydrosilylation of Unsaturated Compounds with Neutral Hydrido(hydrosilylene)tungsten Complex. Journal of Organic Chemistry, 2008, 73, 820-829.	3.2	33
58	Formal Syntheses of (±)-Platensimycin and (±)-Platencin via a Dual-Mode Lewis Acid Induced Cascade Cyclization Approach. Journal of Organic Chemistry, 2013, 78, 7912-7929.	3.2	33
59	Chemo―and Enantioselective Insertion of Furyl Carbene into the Nâ^'H Bond of 2â€Pyridones. Angewandte Chemie - International Edition, 2021, 60, 16942-16946.	13.8	32
60	Exploring an Expedient IMDA Reaction Approach to Construct the Guanacastepene Core. Organic Letters, 2005, 7, 3709-3712.	4.6	30
61	Thermal Activation of Methane by Diatomic Metal Oxide Radical Cations: PbO ^{+â<} as One of the Missing Pieces. ChemCatChem, 2010, 2, 1391-1394.	3.7	30
62	<i>N</i> -Heterocyclic Carbene-Catalyzed Four-Component Reaction: Chemoselective C _{radical} -C _{radical} Relay Coupling Involving the Homoenolate Intermediate. ACS Catalysis, 2021, 11, 10123-10130.	11.2	30
63	Unexpected Formation of (Dimethylaminomethylene)methylamide Complexes from the Reactions between Metal Chlorides and Lithium Dimethylamide. Organometallics, 2008, 27, 1338-1341.	2.3	27
64	Facile Dissociation of [(LNi ^{II}) ₂ E ₂] Dichalcogenides: Evidence for [LNi ^{II} E ₂] Superselenides and Supertellurides in Solution. Angewandte Chemie - International Edition, 2009, 48, 4551-4554.	13.8	27
65	Rhodium-Catalyzed Câ•N Bond Formation through a Rebound Hydrolysis Mechanism and Application in β-Lactam Synthesis. Organic Letters, 2019, 21, 4124-4127.	4.6	27
66	Theoretical studies on the mechanism and stereoselectivity of Rh(Phebox)-catalyzed asymmetric reductive aldol reaction. Organic and Biomolecular Chemistry, 2011, 9, 5845.	2.8	26
67	Metalâ€Free [2+2+2] Cycloaddition of Ynamides and Nitriles: Mild and Regioselective Synthesis of Fully Substituted Pyridines. Angewandte Chemie, 2016, 128, 9856-9860.	2.0	26
68	Directing Effects on the Copper-Catalyzed Site-Selective Arylation of Indoles. Organic Letters, 2018, 20, 6502-6505.	4.6	26
69	Mechanistic understanding of catalysis by combining mass spectrometry and computation. Chemical Communications, 2019, 55, 12749-12764.	4.1	25
70	Gasâ€Phase Reactions of Cationic Vanadiumâ€Phosphorus Oxide Clusters with C ₂ H _{<i>x</i> (sub> (<i>x=</i>4, 6): A DFTâ€Based Analysis of Reactivity Patterns. Chemistry - A European Journal, 2013, 19, 3017-3028.}	3.3	24
71	Radical Reactivity, Catalysis, and Reaction Mechanism of Arylcopper(II) Compounds: The Missing Link in Organocopper Chemistry. Journal of the American Chemical Society, 2019, 141, 18341-18348.	13.7	24
72	Facile difluoromethylation of aliphatic alcohols with an <i>S</i> -(difluoro-methyl)sulfonium salt: reaction, scope and mechanistic study. Chemical Communications, 2019, 55, 7446-7449.	4.1	24

#	Article	IF	CITATIONS
73	Asymmetric radical carboesterification of dienes. Nature Communications, 2021, 12, 6670.	12.8	24
74	Construction of Câ^'C Axial Chirality via Asymmetric Carbene Insertion into Arene Câ^'H Bonds. Angewandte Chemie - International Edition, 2021, 60, 25714-25718.	13.8	23
75	Generation of Gasâ€Phase Nanosized Vanadium Oxide Clusters from a Mononuclear Precursor by Solution Nucleation and Electrospray Ionization. Chemistry - A European Journal, 2010, 16, 1163-1167.	3.3	22
76	Mechanistic Study on Pd/Mono-N-protected Amino Acid Catalyzed Vinyl–Vinyl Coupling Reactions: Reactivity and <i>E</i> / <i>Z</i> Selectivity. Organic Letters, 2016, 18, 5240-5243.	4.6	22
77	Assembling a Hybrid Pd Catalyst from a Chiral Anionic Co III Complex and Ligand for Asymmetric C(sp 3) Tj ETQq1	1.0.7843 2.0	14.rgBT /Ov
78	Degradation of atrazine (ATZ) by ammonia/chlorine synergistic oxidation process. Chemical Engineering Journal, 2021, 415, 128841.	12.7	22
79	Systematic investigation of the aza-Cope reaction for fluorescence imaging of formaldehyde <i>in vitro</i> and <i>in vivo</i> . Chemical Science, 2021, 12, 13857-13869.	7.4	22
80	lsomerization of an N-Heterocyclic Germylene to an Azagermabenzen-1-ylidene and Its Coupling to a Unique Bis(germylene). Organometallics, 2010, 29, 5353-5357.	2.3	21
81	Iron(III)-Catalyzed Ortho-Preferred Radical Nucleophilic Alkylation of Electron-Deficient Arenes. Organic Letters, 2017, 19, 6538-6541.	4.6	21
82	Ligandâ€Assisted Palladium(II)/(IV) Oxidation for <i>sp</i> ³ CH Fluorination. Advanced Synthesis and Catalysis, 2016, 358, 1946-1957.	4.3	20
83	Streamlined asymmetric α-difunctionalization of ynones. Nature Communications, 2018, 9, 375.	12.8	20
84	Synthesis of <i>ortho</i> -Phenolic Sulfilimines via an Intermolecular Sulfur Atom Transfer Cascade Reaction. Organic Letters, 2020, 22, 3799-3803.	4.6	19
85	Reactivity Pattern in the Roomâ€Temperature Activation of NH ₃ by the Mainâ€Group Atomic Ions Ga ⁺ , Ge ⁺ , As ⁺ and Se ⁺ . European Journal of Inorganic Chemistry, 2010, 2010, 1516-1521.	2.0	18
86	Reactivities of d0 transition metal complexes toward oxygen: Synthetic and mechanistic studies. Science in China Series B: Chemistry, 2009, 52, 1723-1733.	0.8	17
87	N ₂ Activation by a Hafnium Complex: A DFT Study on COâ€Assisted Dinitrogen Cleavage and Functionalization. Chemistry - A European Journal, 2010, 16, 12564-12569.	3.3	17
88	Enantioselective Synthesis of Chiral Oxygen-Containing Heterocycles Using Copper-Catalyzed Aryl C–O Coupling Reactions via Asymmetric Desymmetrization. Journal of Organic Chemistry, 2017, 82, 1458-1463.	3.2	16
89	Ruthenium atalyzed Geminal Hydroborative Cyclization of Enynes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
90	Thermal Activation of NH Bonds by Transitionâ€metal Oxide Cations: Does a Hierarchy Exist in the First Row?. Chemistry - A European Journal, 2011, 17, 3886-3892.	3.3	15

#	Article	IF	CITATIONS
91	Copper(I)-Catalyzed Intramolecular Asymmetric Double C-Arylation for the Formation of Chiral Spirocyclic Bis-oxindoles. Organic Letters, 2019, 21, 4505-4509.	4.6	15
92	A DFTâ€Based Analysis of the Grossly Varying Reactivity Pattern in Roomâ€Temperature Activation and Dehydrogenation of CH ₄ by Mainâ€Group Atomic M ⁺ (M=Ga, Ge, As, and Se). Chemistry - A European Journal, 2009, 15, 11559-11565.	3.3	14
93	Reactions of a tungsten alkylidyne complex with mono-dentate phosphines: Thermodynamic and theoretical studies. Polyhedron, 2013, 58, 30-38.	2.2	14
94	Diastereoselective Total Synthesis of (±)-Basiliolide B and (±)- <i>epi</i> -8-Basiliolide B. Journal of Organic Chemistry, 2017, 82, 3463-3481.	3.2	14
95	Asymmetric Arylation of Diazoesters with Anisoles Enabled by Cooperative Gold and Phosphoric Acid Catalysis. Organic Letters, 2022, 24, 2809-2814.	4.6	14
96	Hybrid Palladium Catalyst Assembled from Chiral Phosphoric Acid and Thioamide for Enantioselective β (sp 3)⒒H Arylation. Angewandte Chemie, 2020, 132, 12874-12878.	2.0	13
97	An unusual formal migrative cycloaddition of aurone-derived azadienes: synthesis of benzofuran-fused nitrogen heterocycles. Chemical Science, 2021, 12, 7953-7957.	7.4	13
98	Rhodium atalyzed Regioselective <i>N</i> ² â€Alkylation of Benzotriazoles with Diazo Compounds/Enynones via a Nonclassical Pathway. Angewandte Chemie, 2018, 130, 12669-12673.	2.0	12
99	Designing new Togni reagents by computation. Chemical Communications, 2019, 55, 5667-5670.	4.1	12
100	Synthesis of Benzofurans and Benzoxazoles through a [3,3]-Sigmatropic Rearrangement: O–NHAc as a Multitasking Functional Group. Organic Process Research and Development, 2019, 23, 1646-1653.	2.7	12
101	Access to Nâ€Substituted 2â€Pyridones by Catalytic Intermolecular Dearomatization and 1,4â€Acyl Transfer. Angewandte Chemie, 2019, 131, 2002-2006.	2.0	12
102	DFT Studies on the Thermal Activation of Molecular Oxygen by Bare [Ni(H)(OH)] ⁺ . Helvetica Chimica Acta, 2009, 92, 151-164.	1.6	11
103	Ligandâ€Controlled Câ^'O Bond Coupling of Carboxylic Acids and Aryl Iodides: Experimental and Computational Insights. Advanced Synthesis and Catalysis, 2020, 362, 126-132.	4.3	11
104	Precise Introduction of the â^'CH _{<i>n</i>} X _{3–<i>n</i>} (X = F, Cl, Br, I) Moiety to Target Molecules by a Radical Strategy: A Theoretical and Experimental Study. Journal of the American Chemical Society, 2021, 143, 13195-13204.	13.7	11
105	Revealing the Iron-Catalyzed \hat{l}^2 -Methyl Scission of tert-Butoxyl Radicals via the Mechanistic Studies of Carboazidation of Alkenes. Molecules, 2020, 25, 1224.	3.8	10
106	Unusual Chemistry of the Complex Mg•+(2-Fluoropyridine) Activated by the Photoexcitation of Mg•+. Journal of the American Chemical Society, 2003, 125, 12351-12357.	13.7	8
107	Effects of Aromatic Substitutions on the Photoreactions in Mg•+(C6HnF2X4-n) (X = F, CH3) Complexes:Â Formation and Decomposition of Benzyne Radical Cations. Journal of Physical Chemistry A, 2004, 108, 3356-3366.	2.5	8
108	Density Functional Theory Study of the Reaction between d0 Tungsten Alkylidyne Complexes and H2O: Addition versus Hydrolysis. Inorganic Chemistry, 2017, 56, 7111-7119.	4.0	8

#	Article	IF	CITATIONS
109	Interaction of peptide backbones and transition metal ions: 1. an IM-MS and DFT study of the binding pattern, structure and fragmentation of Pd(II)/Ni(II)-Polyalanine complexes. International Journal of Mass Spectrometry, 2019, 438, 87-96.	1.5	8
110	Computational Study on the Fate of Oxidative Directing Groups in Ru(II), Rh(III), and Pd(II) Catalyzed C–H Functionalization. Journal of Organic Chemistry, 2020, 85, 12594-12602.	3.2	8
111	Sulfonium Triggered Alkyne–Azide Click Cycloaddition. Organic Letters, 2022, 24, 1448-1453.	4.6	8
112	lsotope‧ensitive Degenerate [1,3]â€Hydrogen Migration versus Competitive Enol–Keto Tautomerization. Chemistry - A European Journal, 2009, 15, 11815-11819.	3.3	7
113	Computational exploration of reactive fragment for mechanism-based inhibition of xanthine oxidase. Journal of Organometallic Chemistry, 2018, 864, 58-67.	1.8	6
114	Fluorine-substitution induced switching of dissociation patterns of C6H4Ë™+produced by photoelimination of MgF2from the complexes of MgË™+(multifluorobenzene). Physical Chemistry Chemical Physics, 2005, 7, 826-831.	2.8	5
115	The reaction of alkyl hydropersulfides (RSSH, R = CH ₃ and ^t Bu) with H ₂ S in the gas phase and in aqueous solution. Physical Chemistry Chemical Physics, 2019, 21, 537-545.	2.8	4
116	Chemo―and Enantioselective Insertion of Furyl Carbene into the Nâ^'H Bond of 2â€Pyridones. Angewandte Chemie, 2021, 133, 17079-17083.	2.0	3
117	Construction of C Axial Chirality via Asymmetric Carbene Insertion into Arene Câ€H Bonds. Angewandte Chemie, 0, , .	2.0	3
118	Pyridyne radical cations produced by photodissociation of MgË™+(multifluoro-pyridine) complexes: A combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2007, 9, 607-615.	2.8	2
119	Copper(<scp>i</scp>)–catalyzed intramolecular asymmetric C-arylation of acyclic β-ester amides: enantioselective formation of chiral oxindoles. Organic Chemistry Frontiers, 2021, 8, 4211-4216.	4.5	2
120	Rutheniumâ \in Catalyzed Geminal Hydroborative Cyclization of Enynes. Angewandte Chemie, 0, , .	2.0	2
121	Gaseous Ni+ complexes with BINOL derivatives and chiral esters in the gas phase: an experimental and theoretical investigation. Collection of Czechoslovak Chemical Communications, 2009, 74, 255-273.	1.0	1
122	Front Cover Picture: Ligand-Assisted Palladium(II)/(IV) Oxidation forsp3CH Fluorination (Adv. Synth.) Tj ETQq0	00.rgBT 4.3	/Overlock 10
123	Innentitelbild: Access to N-Substituted 2-Pyridones by Catalytic Intermolecular Dearomatization and 1,4-Acyl Transfer (Angew. Chem. 7/2019). Angewandte Chemie, 2019, 131, 1866-1866.	2.0	0
124	Innenrücktitelbild: Assembling a Hybrid Pd Catalyst from a Chiral Anionic Co ^{III} Complex and Ligand for Asymmetric C(sp ³)–H Functionalization (Angew. Chem. 6/2019). Angewandte Chemie, 2019, 131, 1863-1863.	2.0	0
125	Copper(<scp>i</scp>)-catalyzed asymmetric intramolecular C-arylation with ureas as the additives: highly enantioselective formation of spirooxindoles. Organic and Biomolecular Chemistry, 2021, 19, 7480-7484.	2.8	0