Jessica A Cardin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6324040/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The Logic of Developing Neocortical Circuits in Health and Disease. Journal of Neuroscience, 2021, 41, 813-822.	3.6	20
2	Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits. Nature Methods, 2020, 17, 107-113.	19.0	102
3	Mechanisms underlying gain modulation in the cortex. Nature Reviews Neuroscience, 2020, 21, 80-92.	10.2	168
4	Up and Down States of Cortical Neurons in Focal Limbic Seizures. Cerebral Cortex, 2020, 30, 3074-3086.	2.9	8
5	Mesoscopic Imaging: Shining a Wide Light on Large-Scale Neural Dynamics. Neuron, 2020, 108, 33-43.	8.1	67
6	Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI. Nature Methods, 2020, 17, 1262-1271.	19.0	111
7	Activation of Distinct Channelrhodopsin Variants Engages Different Patterns of Network Activity. ENeuro, 2020, 7, ENEURO.0222-18.2019.	1.9	13
8	Developmental loss of MeCP2 from VIP interneurons impairs cortical function and behavior. ELife, 2020, 9, .	6.0	40
9	Functional flexibility in cortical circuits. Current Opinion in Neurobiology, 2019, 58, 175-180.	4.2	30
10	Inhibitory Interneurons Regulate Temporal Precision and Correlations in Cortical Circuits. Trends in Neurosciences, 2018, 41, 689-700.	8.6	172
11	Altered hippocampal interneuron activity precedes ictal onset. ELife, 2018, 7, .	6.0	59
12	Developmental Dysfunction of VIP Interneurons Impairs Cortical Circuits. Neuron, 2017, 95, 884-895.e9.	8.1	123
13	Sensation during Active Behaviors. Journal of Neuroscience, 2017, 37, 10826-10834.	3.6	82
14	Snapshots of the Brain in Action: Local Circuit Operations through the Lens of Î ³ Oscillations. Journal of Neuroscience, 2016, 36, 10496-10504.	3.6	83
15	More than meets the eye. Nature Neuroscience, 2016, 19, 984-986.	14.8	0
16	Projection-Specific Visual Feature Encoding by Layer 5 Cortical Subnetworks. Cell Reports, 2016, 14, 2538-2545.	6.4	74
17	Optogenetic stimulation of cholinergic brainstem neurons during focal limbic seizures: Effects on cortical physiology. Epilepsia, 2015, 56, e198-e202.	5.1	37
18	Arousal and Locomotion Make Distinct Contributions to Cortical Activity Patterns and Visual Encoding. Neuron, 2015, 86, 740-754.	8.1	676

JESSICA A CARDIN

#	Article	IF	CITATIONS
19	Waking State: Rapid Variations Modulate Neural and Behavioral Responses. Neuron, 2015, 87, 1143-1161.	8.1	648
20	Optogenetics: 10 years after ChR2 in neurons—views from the community. Nature Neuroscience, 2015, 18, 1202-1212.	14.8	122
21	Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 2014, 17, 1123-1129.	14.8	480
22	Optical Neural Interfaces. Annual Review of Biomedical Engineering, 2014, 16, 103-129.	12.3	170
23	Dissecting local circuits in vivo: Integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity. Journal of Physiology (Paris), 2012, 106, 104-111.	2.1	47
24	Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols, 2010, 5, 247-254.	12.0	477
25	Computational Modeling of Distinct Neocortical Oscillations Driven by Cell-Type Selective Optogenetic Drive: Separable Resonant Circuits Controlled by Low-Threshold Spiking and Fast-Spiking Interneurons. Frontiers in Human Neuroscience, 2010, 4, 198.	2.0	76
26	Cellular Mechanisms of Temporal Sensitivity in Visual Cortex Neurons. Journal of Neuroscience, 2010, 30, 3652-3662.	3.6	55
27	Neocortical Interneurons: From Diversity, Strength. Cell, 2010, 142, 184-188.	28.9	95
28	Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 2009, 459, 663-667.	27.8	2,250
29	Cellular Mechanisms Underlying Stimulus-Dependent Gain Modulation in Primary Visual Cortex Neurons In Vivo. Neuron, 2008, 59, 150-160.	8.1	71
30	Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex. Journal of Neuroscience, 2007, 27, 10333-10344.	3.6	165
31	Sensorimotor Nucleus NIf Is Necessary for Auditory Processing But Not Vocal Motor Output in the Avian Song System. Journal of Neurophysiology, 2005, 93, 2157-2166.	1.8	62
32	Stimulus-Dependent (30-50 Hz) Oscillations in Simple and Complex Fast Rhythmic Bursting Cells in Primary Visual Cortex. Journal of Neuroscience, 2005, 25, 5339-5350.	3.6	78
33	Auditory Responses in Multiple Sensorimotor Song System Nuclei Are Co-Modulated by Behavioral State. Journal of Neurophysiology, 2004, 91, 2148-2163.	1.8	90
34	Noradrenergic Inputs Mediate State Dependence of Auditory Responses in the Avian Song System. Journal of Neuroscience, 2004, 24, 7745-7753.	3.6	96
35	Song System Auditory Responses Are Stable and Highly Tuned During Sedation, Rapidly Modulated and Unselective During Wakefulness, and Suppressed By Arousal. Journal of Neurophysiology, 2003, 90, 2884-2899.	1.8	108