
## Shervin Bagheri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6323860/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nanoscale sheared droplet: volume-of-fluid, phase-field and no-slip molecular dynamics. Journal of<br>Fluid Mechanics, 2022, 940, .                        | 3.4  | 10        |
| 2  | Predicting drag on rough surfaces by transfer learning of empirical correlations. Journal of Fluid Mechanics, 2022, 933, .                                 | 3.4  | 13        |
| 3  | Experimental Characterization and Mathematical Modeling of the Adsorption of Proteins and Cells on Biomimetic Hydroxyapatite. ACS Omega, 2022, 7, 908-920. | 3.5  | 3         |
| 4  | Heat transfer increase by convection in liquid-infused surfaces for laminar and turbulent flows.<br>Journal of Fluid Mechanics, 2022, 941, .               | 3.4  | 3         |
| 5  | Near-wall turbulence alteration with the transpiration-resistance model. Journal of Fluid Mechanics, 2022, 942, .                                          | 3.4  | 3         |
| 6  | Droplet Impact on Asymmetric Hydrophobic Microstructures. Langmuir, 2022, 38, 7956-7964.                                                                   | 3.5  | 12        |
| 7  | A Soft Material Flow Sensor for Micro Air Vehicles. Soft Robotics, 2021, 8, 119-127.                                                                       | 8.0  | 7         |
| 8  | Higher-Order Homogenized Boundary Conditions for Flows Over Rough and Porous Surfaces.<br>Transport in Porous Media, 2021, 136, 1-42.                      | 2.6  | 16        |
| 9  | Fluid interfacial energy drives the emergence of three-dimensional periodic structures in micropillar scaffolds. Nature Physics, 2021, 17, 794-800.        | 16.7 | 17        |
| 10 | Roughness on liquid-infused surfaces induced by capillary waves. Journal of Fluid Mechanics, 2021, 915, .                                                  | 3.4  | 11        |
| 11 | Droplet Impact on Surfaces with Asymmetric Microscopic Features. Langmuir, 2021, 37, 10849-10858.                                                          | 3.5  | 9         |
| 12 | Modal Analysis of Fluid Flows: Applications and Outlook. AIAA Journal, 2020, 58, 998-1022.                                                                 | 2.6  | 301       |
| 13 | Transfer of mass and momentum at rough and porous surfaces. Journal of Fluid Mechanics, 2020, 884,                                                         | 3.4  | 39        |
| 14 | Steady moving contact line of water over a no-slip substrate. European Physical Journal: Special<br>Topics, 2020, 229, 1897-1921.                          | 2.6  | 19        |
| 15 | Lift induced by slip inhomogeneities in lubricated contacts. Physical Review Fluids, 2020, 5, .                                                            | 2.5  | 6         |
| 16 | Droplet leaping governs microstructured surface wetting. Soft Matter, 2019, 15, 9528-9536.                                                                 | 2.7  | 5         |
| 17 | Interaction between hairy surfaces and turbulence for different surface time scales. Journal of Fluid<br>Mechanics, 2019, 861, 556-584.                    | 3.4  | 12        |
| 18 | Modeling waves in fluids flowing over and through poroelastic media. International Journal of<br>Multiphase Flow, 2019, 110, 148-164.                      | 3.4  | 12        |

SHERVIN BAGHERI

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Edge state modulation by mean viscosity gradients. Journal of Fluid Mechanics, 2018, 838, 379-403.                                                                            | 3.4  | 4         |
| 20 | Energy efficiency and performance limitations of linear adaptive control for transition delay. Journal of Fluid Mechanics, 2017, 810, 60-81.                                  | 3.4  | 17        |
| 21 | A framework for computing effective boundaryÂconditions at the interface betweenÂfree fluid and a<br>porous medium. Journal of Fluid Mechanics, 2017, 812, 866-889.           | 3.4  | 57        |
| 22 | A computational continuum model of poroelastic beds. Proceedings of the Royal Society A:<br>Mathematical, Physical and Engineering Sciences, 2017, 473, 20160932.             | 2.1  | 13        |
| 23 | Passive control of a falling sphere by elliptic-shaped appendages. Physical Review Fluids, 2017, 2, .                                                                         | 2.5  | 3         |
| 24 | In-flight active wave cancelation with delayed-x-LMS control algorithm in a laminar boundary layer.<br>Experiments in Fluids, 2016, 57, 1.                                    | 2.4  | 12        |
| 25 | Stabilizing effect of porosity on a flapping filament. Journal of Fluids and Structures, 2016, 61, 362-375.                                                                   | 3.4  | 6         |
| 26 | A stable fluid–structure-interaction solver for low-density rigid bodies using the immersed boundary projection method. Journal of Computational Physics, 2016, 305, 300-318. | 3.8  | 34        |
| 27 | On the role of adaptivity for robust laminar flow control. Journal of Fluid Mechanics, 2015, 767, .                                                                           | 3.4  | 34        |
| 28 | Experimental study of a three-dimensional cylinder–filament system. Experiments in Fluids, 2015, 56, 1.                                                                       | 2.4  | 2         |
| 29 | Adaptive and Model-Based Control Theory Applied to Convectively Unstable Flows. Applied Mechanics<br>Reviews, 2014, 66, .                                                     | 10.1 | 61        |
| 30 | Passive appendages generate drift through symmetry breaking. Nature Communications, 2014, 5, 5310.                                                                            | 12.8 | 44        |
| 31 | Centralised Versus Decentralised Active Control of Boundary Layer Instabilities. Flow, Turbulence and Combustion, 2014, 93, 537-553.                                          | 2.6  | 5         |
| 32 | Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum. Physics of Fluids, 2014, 26, .                                       | 4.0  | 54        |
| 33 | Koopman-mode decomposition of the cylinder wake. Journal of Fluid Mechanics, 2013, 726, 596-623.                                                                              | 3.4  | 219       |
| 34 | Transition delay in a boundary layer flow using active control. Journal of Fluid Mechanics, 2013, 731, 288-311.                                                               | 3.4  | 39        |
| 35 | Spontaneous Symmetry Breaking of a Hinged Flapping Filament Generates Lift. Physical Review Letters, 2012, 109, 154502.                                                       | 7.8  | 65        |
| 36 | Bifurcation and stability analysis of a jet in cross-flow: onset of global instability at a low velocity<br>ratio. Journal of Fluid Mechanics, 2012, 696, 94-121.             | 3.4  | 48        |

SHERVIN BAGHERI

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Computational Hydrodynamic Stability and Flow Control Based on Spectral Analysis of Linear<br>Operators. Archives of Computational Methods in Engineering, 2012, 19, 341-379. | 10.2 | 11        |
| 38 | Transition delay using control theory. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1365-1381.                           | 3.4  | 35        |
| 39 | Self-sustained global oscillations in a jet in crossflow. Theoretical and Computational Fluid Dynamics, 2011, 25, 129-146.                                                    | 2.2  | 38        |
| 40 | Secondary threshold amplitudes for sinuous streak breakdown. Physics of Fluids, 2011, 23, .                                                                                   | 4.0  | 33        |
| 41 | Feedback control of three-dimensional optimal disturbances using reduced-order models. Journal of Fluid Mechanics, 2011, 677, 63-102.                                         | 3.4  | 56        |
| 42 | Model Reduction of the Nonlinear Complex Ginzburg–Landau Equation. SIAM Journal on Applied<br>Dynamical Systems, 2010, 9, 1284-1302.                                          | 1.6  | 43        |
| 43 | Reduced-order models for flow control: balanced models and Koopman modes. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2010, , 43-50.                         | 0.2  | 17        |
| 44 | Linear control of 3D disturbances on a flat-plate. IUTAM Symposium on Cellular, Molecular and Tissue<br>Mechanics, 2010, , 373-378.                                           | 0.2  | 2         |
| 45 | Global stability of a jet in crossflow. Journal of Fluid Mechanics, 2009, 624, 33-44.                                                                                         | 3.4  | 194       |
| 46 | Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows.<br>Applied Mechanics Reviews, 2009, 62, .                                   | 10.1 | 131       |
| 47 | Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 2009, 641, 115-127.                                                                                         | 3.4  | 1,592     |
| 48 | Matrix-Free Methods for the Stability and Control of Boundary Layers. AIAA Journal, 2009, 47, 1057-1068.                                                                      | 2.6  | 84        |
| 49 | Input–output analysis, model reduction and control of the flat-plate boundary layer. Journal of Fluid<br>Mechanics, 2009, 620, 263-298.                                       | 3.4  | 131       |
| 50 | The stabilizing effect of streaks on Tollmien-Schlichting and oblique waves: A parametric study.<br>Physics of Fluids, 2007, 19, .                                            | 4.0  | 50        |