Shervin Bagheri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6323860/publications.pdf

Version: 2024-02-01

		279487	182168	
50	3,635	23	51	
papers	citations	h-index	g-index	
51	51	51	2058	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 2009, 641, 115-127.	1.4	1,592
2	Modal Analysis of Fluid Flows: Applications and Outlook. AIAA Journal, 2020, 58, 998-1022.	1.5	301
3	Koopman-mode decomposition of the cylinder wake. Journal of Fluid Mechanics, 2013, 726, 596-623.	1.4	219
4	Global stability of a jet in crossflow. Journal of Fluid Mechanics, 2009, 624, 33-44.	1.4	194
5	Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows. Applied Mechanics Reviews, 2009, 62, .	4.5	131
6	Input–output analysis, model reduction and control of the flat-plate boundary layer. Journal of Fluid Mechanics, 2009, 620, 263-298.	1.4	131
7	Matrix-Free Methods for the Stability and Control of Boundary Layers. AIAA Journal, 2009, 47, 1057-1068.	1.5	84
8	Spontaneous Symmetry Breaking of a Hinged Flapping Filament Generates Lift. Physical Review Letters, 2012, 109, 154502.	2.9	65
9	Adaptive and Model-Based Control Theory Applied to Convectively Unstable Flows. Applied Mechanics Reviews, 2014, 66, .	4.5	61
10	A framework for computing effective boundaryÂconditions at the interface betweenÂfree fluid and a porous medium. Journal of Fluid Mechanics, 2017, 812, 866-889.	1.4	57
11	Feedback control of three-dimensional optimal disturbances using reduced-order models. Journal of Fluid Mechanics, 2011, 677, 63-102.	1.4	56
12	Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum. Physics of Fluids, 2014, 26, .	1.6	54
13	The stabilizing effect of streaks on Tollmien-Schlichting and oblique waves: A parametric study. Physics of Fluids, 2007, 19, .	1.6	50
14	Bifurcation and stability analysis of a jet in cross-flow: onset of global instability at a low velocity ratio. Journal of Fluid Mechanics, 2012, 696, 94-121.	1.4	48
15	Passive appendages generate drift through symmetry breaking. Nature Communications, 2014, 5, 5310.	5.8	44
16	Model Reduction of the Nonlinear Complex Ginzburg–Landau Equation. SIAM Journal on Applied Dynamical Systems, 2010, 9, 1284-1302.	0.7	43
17	Transition delay in a boundary layer flow using active control. Journal of Fluid Mechanics, 2013, 731, 288-311.	1.4	39
18	Transfer of mass and momentum at rough and porous surfaces. Journal of Fluid Mechanics, 2020, 884,	1.4	39

#	Article	IF	Citations
19	Self-sustained global oscillations in a jet in crossflow. Theoretical and Computational Fluid Dynamics, 2011, 25, 129-146.	0.9	38
20	Transition delay using control theory. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1365-1381.	1.6	35
21	On the role of adaptivity for robust laminar flow control. Journal of Fluid Mechanics, 2015, 767, .	1.4	34
22	A stable fluid–structure-interaction solver for low-density rigid bodies using the immersed boundary projection method. Journal of Computational Physics, 2016, 305, 300-318.	1.9	34
23	Secondary threshold amplitudes for sinuous streak breakdown. Physics of Fluids, 2011, 23, .	1.6	33
24	Steady moving contact line of water over a no-slip substrate. European Physical Journal: Special Topics, 2020, 229, 1897-1921.	1.2	19
25	Energy efficiency and performance limitations of linear adaptive control for transition delay. Journal of Fluid Mechanics, 2017, 810, 60-81.	1.4	17
26	Fluid interfacial energy drives the emergence of three-dimensional periodic structures in micropillar scaffolds. Nature Physics, 2021, 17, 794-800.	6.5	17
27	Reduced-order models for flow control: balanced models and Koopman modes. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2010, , 43-50.	0.1	17
28	Higher-Order Homogenized Boundary Conditions for Flows Over Rough and Porous Surfaces. Transport in Porous Media, 2021, 136, 1-42.	1.2	16
29	A computational continuum model of poroelastic beds. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160932.	1.0	13
30	Predicting drag on rough surfaces by transfer learning of empirical correlations. Journal of Fluid Mechanics, 2022, 933, .	1.4	13
31	In-flight active wave cancelation with delayed-x-LMS control algorithm in a laminar boundary layer. Experiments in Fluids, 2016, 57, 1.	1.1	12
32	Interaction between hairy surfaces and turbulence for different surface time scales. Journal of Fluid Mechanics, 2019, 861, 556-584.	1.4	12
33	Modeling waves in fluids flowing over and through poroelastic media. International Journal of Multiphase Flow, 2019, 110, 148-164.	1.6	12
34	Droplet Impact on Asymmetric Hydrophobic Microstructures. Langmuir, 2022, 38, 7956-7964.	1.6	12
35	Computational Hydrodynamic Stability and Flow Control Based on Spectral Analysis of Linear Operators. Archives of Computational Methods in Engineering, 2012, 19, 341-379.	6.0	11
36	Roughness on liquid-infused surfaces induced by capillary waves. Journal of Fluid Mechanics, 2021, 915, .	1.4	11

3

#	Article	IF	CITATIONS
37	Nanoscale sheared droplet: volume-of-fluid, phase-field and no-slip molecular dynamics. Journal of Fluid Mechanics, 2022, 940, .	1.4	10
38	Droplet Impact on Surfaces with Asymmetric Microscopic Features. Langmuir, 2021, 37, 10849-10858.	1.6	9
39	A Soft Material Flow Sensor for Micro Air Vehicles. Soft Robotics, 2021, 8, 119-127.	4.6	7
40	Stabilizing effect of porosity on a flapping filament. Journal of Fluids and Structures, 2016, 61, 362-375.	1.5	6
41	Lift induced by slip inhomogeneities in lubricated contacts. Physical Review Fluids, 2020, 5, .	1.0	6
42	Centralised Versus Decentralised Active Control of Boundary Layer Instabilities. Flow, Turbulence and Combustion, 2014, 93, 537-553.	1.4	5
43	Droplet leaping governs microstructured surface wetting. Soft Matter, 2019, 15, 9528-9536.	1.2	5
44	Edge state modulation by mean viscosity gradients. Journal of Fluid Mechanics, 2018, 838, 379-403.	1.4	4
45	Passive control of a falling sphere by elliptic-shaped appendages. Physical Review Fluids, 2017, 2, .	1.0	3
46	Experimental Characterization and Mathematical Modeling of the Adsorption of Proteins and Cells on Biomimetic Hydroxyapatite. ACS Omega, 2022, 7, 908-920.	1.6	3
47	Heat transfer increase by convection in liquid-infused surfaces for laminar and turbulent flows. Journal of Fluid Mechanics, 2022, 941, .	1.4	3
48	Near-wall turbulence alteration with the transpiration-resistance model. Journal of Fluid Mechanics, 2022, 942, .	1.4	3
49	Experimental study of a three-dimensional cylinder–filament system. Experiments in Fluids, 2015, 56, 1.	1.1	2
50	Linear control of 3D disturbances on a flat-plate. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2010, , 373-378.	0.1	2