A N Lasenby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6323601/publications.pdf

482

docs citations

Version: 2024-02-01

469 62,788 papers citations

482

all docs

100 tations h-index

h-index g-index

482 22743
times ranked citing authors

241

#	Article	IF	Citations
1	Note on the absence of the second clock effect in Weyl gauge theories of gravity. Physical Review D, 2022, 105, .	4.7	4
2	Improved cosmological fits with quantized primordial power spectra. Physical Review D, 2022, 105, .	4.7	2
3	Perturbations and the future conformal boundary. Physical Review D, 2022, 105, .	4.7	2
4	Nested sampling for physical scientists. Nature Reviews Methods Primers, 2022, 2, .	21.2	40
5	Conformally-rescaled Schwarzschild metrics do not predict flat galaxy rotation curves. European Physical Journal C, 2022, 82, .	3.9	4
6	Detection of spectral variations of Anomalous Microwave Emission with QUIJOTE and C-BASS. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2927-2943.	4.4	17
7	Exploring Novel Surface Representations via an Experimental Ray-Tracer in CGA. Advances in Applied Clifford Algebras, 2021, 31, 1.	1.0	2
8	28–40ÂGHz variability and polarimetry of bright compact sources in the QUIJOTE cosmological fields. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4779-4793.	4.4	1
9	Fresh perspective on gauging the conformal group. Physical Review D, 2021, 103, . Bayesian evidence for the tensor-to-scalar ratio <mml:math< td=""><td>4.7</td><td>2</td></mml:math<>	4.7	2
10	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi></mml:mi> and neutrino masses <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	4.7 l:mi>ν 1</td <td>21 nml:mi></td>	21 nml:mi>
11	Ghost- and tachyon-free Weyl gauge theories: A systematic approach. Physical Review D, 2021, 104, .	4.7	7
12	Conformal gravity does not predict flat galaxy rotation curves. Physical Review D, 2021, 104, .	4.7	12
13	Nonlinear Hamiltonian analysis of new quadratic torsion theories: Cases with curvature-free constraints. Physical Review D, 2021, 104, .	4.7	6
14	Mapping Poincar \tilde{A} gauge cosmology to Horndeski theory for emergent dark energy. Physical Review D, 2020, 102, .	4.7	7
15	Weyl gauge theories of gravity do not predict a second clock effect. Physical Review D, 2020, 102, .	4.7	10
16	Systematic study of background cosmology in unitary Poincaré gauge theories with application to emergent dark radiation and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math> tension. Physical Review D, 2020, 102, .	4.7	29
17	Optical validation and characterisation of <i>Planck</i> PSZ1 sources at the Canary Islands observatories. Astronomy and Astrophysics, 2020, 638, A146.	5.1	4
18	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6.	5.1	6,722

#	Article	IF	CITATIONS
19	Power-counting renormalizable, ghost-and-tachyon-free Poincar \tilde{A} \otimes gauge theories. Physical Review D, 2020, 101, .	4.7	17
20	Astrometric effects of gravitational wave backgrounds with nonluminal propagation speeds. Physical Review D, 2020, 101, .	4.7	9
21	A 1d Up Approach to Conformal Geometric Algebra: Applications in Line Fitting and Quantum Mechanics. Advances in Applied Clifford Algebras, 2020, 30, 1.	1.0	7
22	Quantum initial conditions for inflation and canonical invariance. Physical Review D, 2020, 102, .	4.7	5
23	Blueshifted absorption lines from X-ray reflection in IRASÂ13224â^'3809. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2518-2522.	4.4	14
24	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A11.	5.1	118
25	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A3.	5.1	158
26	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A2.	5.1	72
27	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A1.	5.1	804
28	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A4.	5.1	218
29	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A12.	5.1	105
30	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A8.	5.1	400
31	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A10.	5.1	1,261
32	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A7.	5.1	172
33	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A9.	5.1	319
34	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A5.	5.1	558
35	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 644, A99.	5.1	4
36	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 643, A42.	5.1	123

#	Article	IF	Citations
37	Efficient method for solving highly oscillatory ordinary differential equations with applications to physical systems. Physical Review Research, 2020, 2, .	3.6	20
38	Case for kinetically dominated initial conditions for inflation. Physical Review D, 2019, 100, .	4.7	17
39	Geometric Algebra, Gravity and Gravitational Waves. Advances in Applied Clifford Algebras, 2019, 29, 1.	1.0	5
40	Constraining the kinetically dominated universe. Physical Review D, 2019, 100, .	4.7	24
41	Calculating the Rotor Between Conformal Objects. Advances in Applied Clifford Algebras, 2019, 29, 1.	1.0	13
42	Logolinear series expansions with applications to primordial cosmology. Physical Review D, 2019, 99, .	4.7	7
43	An alternative approach to modelling a cosmic void and its effect on the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4081-4092.	4.4	9
44	Ray-Tracing Objects and Novel Surface Representations in CGA. Lecture Notes in Computer Science, 2019, , 578-584.	1.3	1
45	Sunyaev–Zel'dovich profile fitting with joint AMI-Planck analysis. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2116-2128.	4.4	4
46	Static energetics in gravity. Journal of Mathematical Physics, 2019, 60, 052504.	1.1	2
47	Ghost and tachyon free Poincaré gauge theories: A systematic approach. Physical Review D, 2019, 99, .	4.7	28
48	<scp>nestcheck</scp> : diagnostic tests for nested sampling calculations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2044-2056.	4.4	29
49	Bayesian inflationary reconstructions from <i>Planck</i> 2018 data. Physical Review D, 2019, 100, .	4.7	20
50	Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation. Statistics and Computing, 2019, 29, 891-913.	1.5	159
51	QUIJOTE scientific results – III. Microwave spectrum of intensity and polarization in the Taurus Molecular Cloud complex and L1527. Monthly Notices of the Royal Astronomical Society, 2019, 486, 462-485.	4.4	8
52	Exploring cosmic origins with CORE: Survey requirements and mission design. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 014-014.	5.4	98
53	Exploring cosmic origins with CORE: The instrument. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 015-015.	5.4	25
54	Exploring cosmic origins with CORE: Inflation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 016-016.	5.4	75

#	Article	IF	CITATIONS
55	Exploring cosmic origins with CORE: Cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 017-017.	5.4	73
56	Exploring cosmic origins with CORE: Gravitational lensing of the CMB. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 018-018.	5 . 4	29
57	Exploring cosmic origins with CORE: Cluster science. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 019-019.	5.4	17
58	Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 020-020.	5 . 4	20
59	Exploring cosmic origins with CORE: Effects of observer peculiar motion. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 021-021.	5 . 4	18
60	Exploring cosmic origins with CORE: Mitigation of systematic effects. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 022-022.	5 . 4	14
61	Exploring cosmic origins with CORE: <i>B</i> -mode component separation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 023-023.	5.4	44
62	Spherically-symmetric solutions in general relativity using a tetrad-based approach. General Relativity and Gravitation, 2018, 50, 1.	2.0	9
63	Towards a framework for testing general relativity with extreme-mass-ratio-inspiral observations. Monthly Notices of the Royal Astronomical Society, 2018, 478, 28-40.	4.4	16
64	Free-form modelling of galaxy clusters: a Bayesian and data-driven approach. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3853-3864.	4.4	5
65	Bayesian sparse reconstruction: a brute-force approach to astronomical imaging and machine learning. Monthly Notices of the Royal Astronomical Society, 2018, , .	4.4	7
66	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 619, A94.	5.1	18
67	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 617, A48.	5.1	22
68	Sampling Errors in Nested Sampling Parameter Estimation. Bayesian Analysis, 2018, 13, .	3.0	25
69	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 610, C1.	5.1	5
70	Optical validation and characterization of <i>Planck</i> PSZ1 sources at the Canary Islands observatories. Astronomy and Astrophysics, 2018, 616, A42.	5.1	20
71	Astrometric effects of gravitational wave backgrounds with non-Einsteinian polarizations. Physical Review D, 2018, 97, .	4.7	21
72	Constraining the dark energy equation of state using Bayes theorem and the Kullback–Leibler divergence. Monthly Notices of the Royal Astronomical Society, 2017, 466, 369-377.	4.4	32

#	Article	IF	CITATIONS
73	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 599, A51.	5.1	46
74	QUIJOTE scientific results – II. Polarisation measurements of the microwave emission in the Galactic molecular complexes W43 and W47 and supernova remnant W44. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4107-4132.	4.4	51
75	Geometric Algebra as a Unifying Language for Physics and Engineering and Its Use in the Study of Gravity. Advances in Applied Clifford Algebras, 2017, 27, 733-759.	1.0	7
76	Astrometric Search Method for Individually Resolvable Gravitational Wave Sources with Gaia. Physical Review Letters, 2017, 119, 261102.	7.8	53
77	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 607, A95.	5.1	131
78	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2017, 607, A122.	5.1	24
79	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2016, 586, A140.	5.1	89
80	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A134.	5.1	48
81	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A28.	5.1	134
82	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A7.	5.1	94
83	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A10.	5.1	384
84	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A23.	5.1	89
85	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A12.	5.1	117
86	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A24.	5.1	525
87	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A132.	5.1	109
88	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A6.	5.1	62
89	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A2.	5.1	79
90	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A8.	5.1	209

#	Article	IF	CITATIONS
91	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A9.	5.1	182
92	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A141.	5.1	55
93	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A100.	5.1	44
94	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A5.	5.1	55
95	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A4.	5.1	56
96	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A18.	5.1	69
97	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A21.	5.1	114
98	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A3.	5.1	53
99	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A19.	5.1	273
100	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A16.	5.1	338
101	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A20.	5.1	1,233
102	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A101.	5.1	24
103	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A105.	5.1	47
104	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A27.	5.1	535
105	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A138.	5.1	270
106	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A1.	5.1	738
107	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A108.	5.1	375
108	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A14.	5.1	568

#	Article	IF	CITATIONS
109	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A15.	5.1	360
110	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A25.	5.1	153
111	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A103.	5.1	89
112	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 586, A133.	5.1	173
113	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A137.	5.1	27
114	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A109.	5.1	185
115	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A13.	5.1	8,344
116	Scale-invariant gauge theories of gravity: Theoretical foundations. Journal of Mathematical Physics, 2016, 57, .	1.1	22
117	Novel quantum initial conditions for inflation. Physical Review D, 2016, 94, .	4.7	22
118	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A22.	5.1	274
119	Planckintermediate results. Astronomy and Astrophysics, 2016, 596, A106.	5.1	23
120	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A102.	5.1	25
121	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A104.	5.1	36
122	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A110.	5.1	64
123	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A135.	5.1	109
124	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A136.	5.1	72
125	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A26.	5.1	182
126	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2016, 596, A107.	5.1	359

#	Article	IF	CITATIONS
127	<i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2016, 586, A139.	5.1	32
128	Friedmann–Robertson–Walker models do not require zero active mass. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 460, L119-L122.	3.3	11
129	Bayesian model selection without evidences: application to the dark energy equation-of-state. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2461-2473.	4.4	43
130	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A17.	5.1	440
131	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A11.	5.1	613
132	QUIJOTE Experiment: status of telescopes and instrumentation. Proceedings of SPIE, 2016, , .	0.8	3
133	QUIJOTE scientific results $\hat{a} \in \mathbb{C}$ I. Measurements of the intensity and polarisation of the anomalous microwave emission in the Perseus molecular complex. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4169-4182.	4.4	58
134	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2015, 580, A22.	5.1	80
135	<i>Planck</i> intermediate results. XXVI. Optical identification and redshifts of <i>Planck</i> clusters with the RTT150 telescope. Astronomy and Astrophysics, 2015, 582, A29.	5.1	46
136	<i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2015, 582, A30.	5.1	72
137	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2015, 582, A31.	5.1	59
138	<i>Planck</i> 2013 results. XXXII. The updated <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2015, 581, A14.	5.1	80
139	polychord: next-generation nested sampling. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4385-4399.	4.4	285
140	Comparison of Sunyaev-Zel'dovich measurements from <i>Planck</i> and from the Arcminute Microkelvin Imager for 99 galaxy clusters. Astronomy and Astrophysics, 2015, 580, A95.	5.1	19
141	<i>Planck</i> ii>intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust. Astronomy and Astrophysics, 2015, 576, A104.	5.1	296
142	<i>Planck</i> ii>intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence. Astronomy and Astrophysics, 2015, 576, A105.	5.1	119
143	<i>Planck</i> i>intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible. Astronomy and Astrophysics, 2015, 576, A106.	5.1	68
144	<i>Planck</i> intermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae. Astronomy and Astrophysics, 2015, 573, A6.	5.1	13

#	Article	IF	CITATIONS
145	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2015, 580, A13.	5.1	37
146	<i>Planck</i> intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization. Astronomy and As A107.	tro p hysics	s, 2 01 5, 576,
147	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2015, 582, A28.	5.1	33
148	Joint Analysis of BICEP2/ <i>Keck Array</i> and <i>Planck</i> Data. Physical Review Letters, 2015, 114, 101301.	7.8	819
149	Astrophysical black holes. , 2015, , 7-66.		1
150	<scp>polychord</scp> : nested sampling for cosmology. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 450, L61-L65.	3.3	265
151	<i>Planck</i> 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 2014, 571, A14.	5.1	90
152	<i>Planck</i> 2013 results. VI. High Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A6.	5.1	103
153	<i>Planck</i> 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation. Astronomy and Astrophysics, 2014, 571, A10.	5.1	68
154	<i>Planck</i> 2013 results. XXXI. Consistency of the <i>Planck</i> data. Astronomy and Astrophysics, 2014, 571, A31.	5.1	69
155	<i>Planck</i> 2013 results. V. LFI calibration. Astronomy and Astrophysics, 2014, 571, A5.	5.1	67
156	<i>Planck</i> 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astronomy and Astrophysics, 2014, 571, A27.	5.1	170
157	<i>Planck</i> intermediate results. XV. A study of anomalous microwave emission in Galactic clouds. Astronomy and Astrophysics, 2014, 565, A103.	5.1	67
158	<i>Planck</i> 2013 results. III. LFI systematic uncertainties. Astronomy and Astrophysics, 2014, 571, A3.	5.1	54
159	<i>Planck</i> 2013 results. XII. Diffuse component separation. Astronomy and Astrophysics, 2014, 571, A12.	5.1	216
160	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2014, 566, A54.	5.1	80
161	<i>Planck</i> 2013 results. XIII. Galactic CO emission. Astronomy and Astrophysics, 2014, 571, A13.	5.1	144
162	<i>Planck</i> 2013 results. XI. All-sky model of thermal dust emission. Astronomy and Astrophysics, 2014, 571, A11.	5.1	566

#	Article	IF	CITATIONS
163	QUIJOTE-CMB experiment: a technical overview. Proceedings of SPIE, 2014, , .	0.8	1
164	SkyNet: an efficient and robust neural network training tool for machine learning in astronomy. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1741-1759.	4.4	76
165	Kinetic initial conditions for inflation. Physical Review D, 2014, 89, .	4.7	46
166	<i>Planck</i> 2013 results. I. Overview of products and scientific results. Astronomy and Astrophysics, 2014, 571, A1.	5.1	948
167	Interplay between cosmological expansion and massive objects. Journal of Physics: Conference Series, 2014, 484, 012044.	0.4	0
168	<i>Planck</i> 2013 results. XXX. Cosmic infrared background measurements and implications for star formation. Astronomy and Astrophysics, 2014, 571, A30.	5.1	210
169	<i>Planck</i> 2013 results. XXV. Searches for cosmic strings and other topological defects. Astronomy and Astrophysics, 2014, 571, A25.	5.1	223
170	<i>Planck</i> intermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane. Astronomy and Astrophysics, 2014, 564, A45.	5.1	55
171	Planck intermediate results. Astronomy and Astrophysics, 2014, 566, A55.	5.1	134
172	<i>Planck</i> 2013 results. XV. CMB power spectra and likelihood. Astronomy and Astrophysics, 2014, 571, A15.	5.1	364
173	<i>Planck</i> >2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20.	5.1	465
174	<i>Planck</i> 2013 results. XXI. Power spectrum and high-order statistics of the <i>Planck</i> all-sky Compton parameter map. Astronomy and Astrophysics, 2014, 571, A21.	5.1	133
175	<i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29.	5.1	380
176	<i>Planck</i> 2013 results. XXVIII. The <i>Planck</i> Catalogue of Compact Sources. Astronomy and Astrophysics, 2014, 571, A28.	5.1	162
177	<i>Planck</i> 2013 results. XIX. The integrated Sachs-Wolfe effect. Astronomy and Astrophysics, 2014, 571, A19.	5.1	126
178	<i>Planck</i> 2013 results. IX. HFI spectral response. Astronomy and Astrophysics, 2014, 571, A9.	5.1	129
179	<i>Planck</i> 2013 results. XXIII. Isotropy and statistics of the CMB. Astronomy and Astrophysics, 2014, 571, A23.	5.1	367
180	<i>Planck</i> 2013 results. VII. HFI time response and beams. Astronomy and Astrophysics, 2014, 571, A7.	5.1	99

#	Article	IF	Citations
181	<i>Planck</i> 2013 results. VIII. HFI photometric calibration and mapmaking. Astronomy and Astrophysics, 2014, 571, A8.	5.1	107
182	<i>Planck</i> 2013 results. XVIII. The gravitational lensing-infrared background correlation. Astronomy and Astrophysics, 2014, 571, A18.	5.1	116
183	<i>Planck</i> 2013 results. IV. Low Frequency Instrument beams and window functions. Astronomy and Astrophysics, 2014, 571, A4.	5.1	41
184	<i>Planck</i> 2013 results. XXVI. Background geometry and topology of the Universe. Astronomy and Astrophysics, 2014, 571, A26.	5.1	91
185	<i>Planck</i> 2013 results. II. Low Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A2.	5.1	74
186	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2014, 561, A97.	5.1	80
187	Machine-learning in astronomy. Proceedings of the International Astronomical Union, 2014, 10, 279-287.	0.0	5
188	<i>Planck</i> 2013 results. XVII. Gravitational lensing by large-scale structure. Astronomy and Astrophysics, 2014, 571, A17.	5.1	272
189	<i>Planck</i> 2013 results. XXIV. Constraints on primordial non-Gaussianity. Astronomy and Astrophysics, 2014, 571, A24.	5.1	350
190	<i>Planck</i> 2013 results. XXII. Constraints on inflation. Astronomy and Astrophysics, 2014, 571, A22.	5.1	806
191	<i>Planck</i> 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 2014, 571, A16.	5.1	4,703
192	Bayesian analysis of anisotropic cosmologies: Bianchi VIIh and WMAP. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3680-3694.	4.4	19
193	AMI SZ observations and Bayesian analysis of a sample of six redshift-one clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 431, 900-911.	4.4	7
194	A joint analysis of AMI and CARMA observations of the recently discovered SZ galaxy cluster system AMI-CL J0300+2613. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2036-2046.	4.4	8
195	Sunyaev-Zel'dovich observations with AMI of the hottest galaxy clusters detected in the XMM-Newton Cluster Survey. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2920-2937.	4.4	7
196	AMI Galactic Plane Survey at 16 GHz - I. Observing, mapping and source extraction. Monthly Notices of the Royal Astronomical Society, 2013, 429, 3330-3340.	4.4	39
197	The radio source count at 93.2 GHz from observations of 9C sources using AMI and CARMA. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1961-1969.	4.4	1
198	Dynamics of a spherical object of uniform density in an expanding universe. Physical Review D, 2013, 88,	4.7	3

#	Article	lF	Citations
199	Neural Networks for Astronomical Data Analysis and Bayesian Inference. , 2013, , .		4
200	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 557, A52.	5.1	141
201	<i>Planck</i> Âintermediate results. XII: Diffuse Galactic components in the Gould Belt system. Astronomy and Astrophysics, 2013, 557, A53.	5.1	19
202	<i>Planck</i> iiintermediate results <i>(Corrigendum)</i> . Astronomy and Astrophysics, 2013, 558, C2.	5.1	4
203	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 554, A140.	5.1	101
204	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2013, 550, A128.	5.1	20
205	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A130.	5.1	36
206	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A131.	5.1	276
207	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 554, A139.	5.1	106
208	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2013, 550, A129.	5.1	63
209	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A132.	5.1	15
210	<i>Planck</i> iiiitermediate results. Astronomy and Astrophysics, 2013, 550, A133.	5.1	52
211	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 550, A134.	5.1	94
212	Localized energetics of linear gravity: Theoretical development. Physical Review D, 2012, 86, .	4.7	11
213	PowellSnakes II: a fast Bayesian approach to discrete object detection in multi-frequency astronomical data sets. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1384-1400.	4.4	30
214	The status of the QUIJOTE multi-frequency instrument. Proceedings of SPIE, 2012, , .	0.8	15
215	The QUIJOTE-CMB experiment: studying the polarisation of the galactic and cosmological microwave emissions. Proceedings of SPIE, 2012, , .	0.8	44
216	A comparison of algorithms for the construction of SZ cluster catalogues. Astronomy and Astrophysics, 2012, 548, A51.	5.1	23

#	Article	IF	Citations
217	Simultaneous <i>Planck </i> , <i>Swift </i> , and <i>Fermi </i> observations of X-ray and <i<math>\hat{1}^3 -ray selected blazars. Astronomy and Astrophysics, 2012, 541, A160.</i<math>	5.1	166
218	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2012, 543, A102.	5.1	50
219	Localizing the angular momentum of linear gravity. Physical Review D, 2012, 86, .	4.7	10
220	Bayesian analysis of weak gravitational lensing and Sunyaev-Zel'dovich data for six galaxy clustersâ~ Monthly Notices of the Royal Astronomical Society, 2012, 419, 2921-2942.	4.4	17
221	AMI-LA radio continuum observations of Spitzer c2d small clouds and cores: Serpens regionâ~ Monthly Notices of the Royal Astronomical Society, 2012, 420, 1019-1033.	4.4	7
222	Radio continuum observations of Class I protostellar discs in Taurus: constraining the greybody tail at centimetre wavelengthsã Monthly Notices of the Royal Astronomical Society, 2012, 420, 3334-3343.	4.4	15
223	Arcminute Microkelvin Imager observations of unmatched Planck ERCSC LFI sources at 15.75 GHz*. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 421, L6-L10.	3.3	2
224	BAMBI: blind accelerated multimodal Bayesian inference. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	4.4	36
225	Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observationsã~ Monthly Notices of the Royal Astronomical Society, 2012, 421, 1136-1154.	4.4	8
226	A Bayesian study of the primordial power spectrum from a novel closed universe model. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1948-1956.	4.4	18
227	The effect of an expanding universe on massive objects. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2945-2959.	4.4	53
228	The effect of a massive object on an expanding universe. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2931-2944.	4.4	62
229	AMI radio continuum observations of young stellar objects with known outflowsa~ Monthly Notices of the Royal Astronomical Society, 2012, 423, 1089-1108.	4.4	19
230	A blind detection of a large, complex, Sunyaev-Zel'dovich structureã~ Monthly Notices of the Royal Astronomical Society, 2012, 423, 1463-1473.	4.4	7
231	Detailed Sunyaev-Zel'dovich study with AMI of 19 LoCuSS galaxy clusters: masses and temperatures out to the virial radius. Monthly Notices of the Royal Astronomical Society, 2012, 425, 162-203.	4.4	22
232	<i>Planck</i> early results. XXI. Properties of the interstellar medium in the Galactic plane. Astronomy and Astrophysics, 2011, 536, A21.	5.1	119
233	<i>Planck</i> early results. XVIII. The power spectrum of cosmic infrared background anisotropies. Astronomy and Astrophysics, 2011, 536, A18.	5.1	180
234	<i>Planck</i> early results. XIII. Statistical properties of extragalactic radio sources in the <i>Planck</i> Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A13.	5.1	103

#	Article	IF	Citations
235	<i>Planck</i> early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds. Astronomy and Astrophysics, 2011, 536, A17.	5.1	123
236	<i>Planck</i> early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations. Astronomy and Astrophysics, 2011, 536, A12.	5.1	100
237	<i>Planck</i> early results. II. The thermal performance of <i>Planck</i> . Astronomy and Astrophysics, 2011, 536, A2.	5.1	91
238	<i>Planck</i> early results. XX. New light on anomalous microwave emission from spinning dust grains. Astronomy and Astrophysics, 2011, 536, A20.	5.1	155
239	<i>Planck</i> early results. XXV. Thermal dust in nearby molecular clouds. Astronomy and Astrophysics, 2011, 536, A25.	5.1	184
240	<i>Planck</i> early results. XXII. The submillimetre properties of a sample of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A22.	5.1	88
241	<i>Planck</i> early results. VI. The High Frequency Instrument data processing. Astronomy and Astrophysics, 2011, 536, A6.	5.1	116
242	<i>Planck</i> early results. XXIII. The first all-sky survey of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A23.	5.1	152
243	<i>Planck</i> early results. XVI. The <i>Planck</i> view of nearby galaxies. Astronomy and Astrophysics, 2011, 536, A16.	5.1	74
244	<i>Planck</i> early results. VII. The Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A7.	5.1	224
245	<i>Planck</i> early results. XIX. All-sky temperature and dust optical depth from <i>Planck</i> and IRAS. Constraints on the "dark gasâ€in our Galaxy. Astronomy and Astrophysics, 2011, 536, A19.	5.1	314
246	<i>Planck</i> early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo. Astronomy and Astrophysics, 2011, 536, A24.	5.1	179
247	<i>Planck</i> early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. Astronomy and Astrophysics, 2011, 536, A10.	5.1	124
248	<i>Planck</i> early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations. Astronomy and Astrophysics, 2011, 536, A11.	5.1	174
249	Planckearly results. XIV. ERCSC validation and extreme radio sources. Astronomy and Astrophysics, 2011, 536, A14.	5.1	61
250	<i>Planck</i> early results. IV. First assessment of the High Frequency Instrument in-flight performance. Astronomy and Astrophysics, 2011, 536, A4.	5.1	136
251	<i>Planck</i> early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. Astronomy and Astrophysics, 2011, 536, A8.	5.1	335
252	<i>Planck</i> early results. XXVI. Detection with <i>Planck</i> and confirmation by <i>XMM-Newton</i> of PLCKÂG266.6â€"27.3, an exceptionally X-ray luminous and massive galaxy cluster at <i>z</i> Â- 1. Astronomy and Astrophysics, 2011, 536, A26.	5.1	72

#	Article	IF	Citations
253	<i>Planck</i> early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources. Astronomy and Astrophysics, 2011, 536, A15.	5.1	93
254	<i>Planck</i> early results. I. The <i>Planck</i> mission. Astronomy and Astrophysics, 2011, 536, A1.	5.1	394
255	AMI Large Array radio continuum observations of Spitzer c2d small clouds and coresã~ Monthly Notices of the Royal Astronomical Society, 2011, 410, 2662-2678.	4.4	13
256	AMI-LA radio continuum observations of Spitzer c2d small clouds and cores: Perseus regionâ~ Monthly Notices of the Royal Astronomical Society, 2011, 415, 893-910.	4.4	18
257	10C survey of radio sources at 15.7 GHz - I. Observing, mapping and source extraction☠Monthly Notices of the Royal Astronomical Society, 2011, 415, 2699-2707.	4.4	45
258	10C survey of radio sources at 15.7 GHz - II. First resultsã~ Monthly Notices of the Royal Astronomical Society, 2011, 415, 2708-2722.	4.4	25
259	Sunyaev-Zel'dovich observations of galaxy clusters out to the virial radius with the Arcminute Microkelvin Imagerâ~ Monthly Notices of the Royal Astronomical Society, 2011, 418, 2754-2772.	4.4	16
260	An investigation into the Multiple Optimised Parameter Estimation and Data compression algorithm. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 413, L66-L70.	3.3	12
261	Further Sunyaev-Zel'dovich observations of two <i>Planck</i> ERCSC clusters with the Arcminute Microkelvin Imager. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 414, L75-L79.	3.3	10
262	Sunyaev-Zel'dovich observation of the Bullet-like cluster Abell 2146 with the Arcminute Microkelvin Imagerã~ Monthly Notices of the Royal Astronomical Society, 2011, 414, 3751-3763.	4.4	23
263	Rigid Body Dynamics and Conformal Geometric Algebra. , 2011, , 3-24.		4
264	Rigid Body Dynamics in a Constant Curvature Space and the â€~1D-up' Approach to Conformal Geometric Algebra. , 2011, , 371-389.		5
265	<i>Planck</i> early results. IX. <i>XMM-Newton</i> follow-up for validation of <i>Planck</i> candidates. Astronomy and Astrophysics, 2011, 536, A9.	5.1	126
266	Grassmann, geometric algebra and cosmology. Annalen Der Physik, 2010, 19, 161-176.	2.4	2
267	High-resolution AMI Large Array imaging of spinning dust sources: spatially correlated 8 µm emission and evidence of a stellar wind in L675. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 403, L46-L50.	3.3	18
268	Microwave observations of spinning dust emission in NGC6946. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 406, L45-L49.	3.3	31
269	Cosmological fluid dynamics in the SchrĶdinger formalism. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2491-2502.	4.4	8
270	Periodicities in Nuclear Decay Data: Systematic Effects or New Physics?., 2010,,.		1

#	Article	IF	Citations
271	Cracking the Taub-NUT. Classical and Quantum Gravity, 2010, 27, 185010.	4.0	1
272	Classifying LISA gravitational wave burst signals using Bayesian evidence. Classical and Quantum Gravity, 2010, 27, 075010.	4.0	11
273	The Mock LISA Data Challenges: from challenge 3 to challenge 4. Classical and Quantum Gravity, 2010, 27, 084009.	4.0	83
274	Localizing the energy and momentum of linear gravity. Physical Review D, 2010, 82, .	4.7	15
275	The QUIJOTE CMB Experiment. Thirty Years of Astronomical Discovery With UKIRT, 2010, , 127-135.	0.3	28
276	The Cosmic Microwave Background and Fundamental Physics. Space Science Reviews, 2009, 148, 329-346.	8.1	1
277	AMI observations of northern supernova remnants at $14-18\hat{a} \in f$ GHz. Monthly Notices of the Royal Astronomical Society, 2009, 396, 365-376.	4.4	29
278	G64.5+0.9: a new shell supernova remnant with unusual central emission. Monthly Notices of the Royal Astronomical Society, 2009, 398, 249-254.	4.4	6
279	Follow-up observations at 16 and 33�z�z�GHz of extragalactic sources from <i>WMAP</i> 3-yr data: l �z�zi¸½zi¸½zi¸½zi¸½zi¸½zi¸½zi¸½zi¸½zi¸½zi¸	² ; ¹ / ₂ 4.4	25
280	Bayesian optimal reconstruction of the primordial power spectrum. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1075-1084.	4.4	45
281	AMI observations of Lynds dark nebulae: further evidence for anomalous cm-wave emission. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1394-1412.	4.4	32
282	Follow-up observations at 16 and 33����GHz of extragalactic sources from <i>WMAP</i> 3-yr data: II �ï¿⅓density variability. Monthly Notices of the Royal Astronomical Society, 2009, 400, 995-1005.	⁄2 <u>;;</u> 1⁄2 Flux	13
283	An excess of emission in the dark cloud LDN1111 with the Arcminute Microkelvin Imager. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 394, L46-L50.	3.3	24
284	Bootstrapping gravity: A consistent approach to energy-momentum self-coupling. Physical Review D, 2009, 80, .	4.7	33
285	Anisotropic, nonsingular early universe model leading to a realistic cosmology. Physical Review D, 2009, 79, .	4.7	14
286	The Cosmic Microwave Background and Fundamental Physics. Space Sciences Series of ISSI, 2009, , 381-398.	0.0	0
287	Wave-Functions for Spin-3/2 and Integer Spin Fields. Advances in Applied Clifford Algebras, 2008, 18, 353-372.	1.0	1
288	Twistors in Geometric Algebra. Advances in Applied Clifford Algebras, 2008, 18, 373-394.	1.0	8

#	Article	IF	CITATIONS
289	AMI limits on 15-GHz excess emission in northern HÂii regions. Monthly Notices of the Royal Astronomical Society, 2008, 385, 809-822.	4.4	33
290	Probing dark energy with steerable wavelets through correlation of WMAP and NVSS local morphological measures. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1289-1300.	4.4	40
291	A low cosmic microwave background variance in the Wilkinson Microwave Anisotropy Probe data. Monthly Notices of the Royal Astronomical Society, 2008, 387, 209-219.	4.4	50
292	A high-significance detection of non-Gaussianity in the WMAP5-yr data using directional spherical wavelets. Monthly Notices of the Royal Astronomical Society, 2008, 388, 659-662.	4.4	53
293	Radio source calibration for the Very Small Array and other cosmic microwave background instruments at around 30 GHz. Monthly Notices of the Royal Astronomical Society, 2008, 388, 1775-1786.	4.4	52
294	Bianchi VIIhmodels and the cold spot texture. Monthly Notices of the Royal Astronomical Society, 2008, , .	4.4	5
295	The Arcminute Microkelvin Imager ^{ã~} . Monthly Notices of the Royal Astronomical Society, 2008, 391, 1545-1558.	4.4	189
296	Observations of the Corona Borealis supercluster with the superextended Very Small Array: further constraints on the nature of the non-Gaussian cosmic microwave background cold spot. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1127-1136.	4.4	11
297	Optimal Filters on the Sphere. IEEE Transactions on Signal Processing, 2008, 56, 3813-3823.	5.3	24
298	Physical significance of the Babak-Grishchuk gravitational energy-momentum tensor. Physical Review D, 2008, 78, .	4.7	12
299	Classical big-bounce cosmology: dynamical analysis of a homogeneous and irrotational Weyssenhoff fluid. Classical and Quantum Gravity, 2008, 25, 245016.	4.0	35
300	The Câ,,"OVER experiment. Proceedings of SPIE, 2008, , .	0.8	4
301	Weyssenhoff fluid dynamics in general relativity using a 1 + 3 covariant approach. Classical and Quantum Gravity, 2007, 24, 6329-6348.	4.0	23
302	Fast Directional Continuous Spherical Wavelet Transform Algorithms. IEEE Transactions on Signal Processing, 2007, 55, 520-529.	5.3	55
303	Detection of the integrated Sachs-Wolfe effect and corresponding dark energy constraints made with directional spherical wavelets. Monthly Notices of the Royal Astronomical Society, 2007, 376, 1211-1226.	4.4	96
304	Markov chain Monte Carlo analysis of Bianchi VIIh models. Monthly Notices of the Royal Astronomical Society, 2007, 377, 1473-1480.	4.4	44
305	WMAP 3-yr primordial power spectrum. Monthly Notices of the Royal Astronomical Society, 2007, 381, 68-74.	4.4	30
306	Constraints on spinning dust towards Galactic targets with the Very Small Array: a tentative detection of excess microwave emission towards 3C396. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 377, L69-L73.	3.3	33

#	Article	IF	Citations
307	Cosmological Applications of a Wavelet Analysis on the Sphere. Journal of Fourier Analysis and Applications, 2007, 13, 495-510.	1.0	52
308	TES imaging array technology for C â,," OVER. , 2006, 6275, 688.		7
309	High-significance Sunyaev-Zel'dovich measurement: Abell 1914 seen with the Arcminute Microkelvin Imager. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 369, L1-L4.	3.3	13
310	A high-significance detection of non-Gaussianity in the WMAP 3-yr data using directional spherical wavelets. Monthly Notices of the Royal Astronomical Society: Letters, 2006, 371, L50-L54.	3.3	56
311	Non-Gaussianity in the Very Small Array cosmic microwave background maps with smooth goodness-of-fit tests. Monthly Notices of the Royal Astronomical Society, 2006, 369, 909-920.	4.4	13
312	A Bayesian analysis of the primordial power spectrum. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1123-1130.	4.4	57
313	Non-Gaussianity detections in the Bianchi VIIh corrected WMAP one-year data made with directional spherical wavelets. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1858-1868.	4.4	28
314	Fermion scattering by a Schwarzschild black hole. Physical Review D, 2006, 74, .	4.7	74
315	CLOVER Experiment: the receiver block. EAS Publications Series, 2005, 14, 245-250.	0.3	О
316	A high-significance detection of non-Gaussianity in the Wilkinson Microwave Anisotropy Probe1-yr data using directional spherical wavelets. Monthly Notices of the Royal Astronomical Society, 2005, 359, 1583-1596.	4.4	97
317	Cosmic microwave background observations from the Cosmic Background Imager and Very Small Array: a comparison of coincident maps and parameter estimation methods. Monthly Notices of the Royal Astronomical Society, 2005, 363, 1125-1135.	4.4	7
318	Foreground Separation Methods for Satellite and Balloon Experiments. Symposium - International Astronomical Union, 2005, 201, 71-74.	0.1	0
319	Bound states and decay times of fermions in a Schwarzschild black hole background. Physical Review D, 2005, 72, .	4.7	63
320	Recent Applications of Conformal Geometric Algebra. Lecture Notes in Computer Science, 2005, , 298-328.	1.3	20
321	Closed universes, de Sitter space, and inflation. Physical Review D, 2005, 71, .	4.7	68
322	Fermion absorption cross section of a Schwarzschild black hole. Physical Review D, 2005, 71, .	4.7	72
323	CLOVER: The CMB Polarization Observer. EAS Publications Series, 2005, 14, 251-256.	0.3	4
324	COSMOLOGICAL PARAMETER ESTIMATION WITH LARGE SCALE STRUCTURE AND SUPERNOVAE DATA. International Journal of Modern Physics D, 2004, 13, 1661-1668.	2.1	5

#	Article	IF	CITATIONS
325	Conformal Models of de Sitter Space, Initial Conditions for Inflation and the CMB. AIP Conference Proceedings, 2004, , .	0.4	9
326	Maximum-entropy image reconstruction using wavelets. Monthly Notices of the Royal Astronomical Society, 2004, 347, 339-354.	4.4	37
327	Searching for non-Gaussianity in the Very Small Array data. Monthly Notices of the Royal Astronomical Society, 2004, 349, 973-982.	4.4	13
328	Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data. Monthly Notices of the Royal Astronomical Society, 2004, 351, 515-540.	4.4	21
329	Estimating the bispectrum of the Very Small Array data. Monthly Notices of the Royal Astronomical Society, 2004, 352, 887-902.	4.4	16
330	Cosmological parameter estimation using Very Small Array data out to â, "= 1500. Monthly Notices of the Royal Astronomical Society, 2004, 353, 747-759.	4.4	82
331	High-sensitivity measurements of the cosmic microwave background power spectrum with the extended Very Small Array. Monthly Notices of the Royal Astronomical Society, 2004, 353, 732-746.	4.4	183
332	Inferring the coronal flaring patterns in active galactic nuclei from reverberation maps. Monthly Notices of the Royal Astronomical Society, 2004, 353, 338-352.	4.4	4
333	The Quest for Microwave Foreground X. Astrophysical Journal, 2004, 606, L89-L92.	4.5	83
334	Applications of Geometric Algebra in Electromagnetism, Quantum Theory and Gravity., 2004, , 467-489.		3
335	First results from the Very Small Array – I. Observational methods. Monthly Notices of the Royal Astronomical Society, 2003, 341, 1057-1165.	4.4	68
336	First results from the Very Small Array III. The cosmic microwave background power spectrum. Monthly Notices of the Royal Astronomical Society, 2003, 341, 1076-1083.	4.4	83
337	A measurement of H0 from Ryle Telescope, ASCA and ROSAT observations of Abell 773. Monthly Notices of the Royal Astronomical Society, 2003, 341, 937-940.	4.4	26
338	First results from the Very Small Array – II. Observations of the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2003, 341, 1066-1075.	4.4	42
339	First results from the Very Small Array – IV. Cosmological parameter estimation. Monthly Notices of the Royal Astronomical Society, 2003, 341, 1084-1092.	4.4	48
340	The cosmic microwave background power spectrum out to \hat{A} = 1400 measured by the Very Small Array. Monthly Notices of the Royal Astronomical Society, 2003, 341, L23-L28.	4.4	98
341	Cosmological parameter estimation and Bayesian model comparison using Very Small Array data. Monthly Notices of the Royal Astronomical Society, 2003, 341, L29-L34.	4.4	43
342	The lack of variability of the iron line in MCG-6-30-15: general relativistic effects. Monthly Notices of the Royal Astronomical Society, 2003, 344, L22-L26.	4.4	163

#	Article	IF	Citations
343	Constraining the shape of the CMB: A peak-by-peak analysis. Physical Review D, 2003, 67, .	4.7	40
344	New techniques for analysing axisymmetric gravitational systems: 1. Vacuum fields. Classical and Quantum Gravity, 2003, 20, 1077-1101.	4.0	0
345	COSMIC MICROWAVE BACKGROUND ANISOTROPIES: RECENT MEASUREMENTS AND THEIR INTERPRETATION. , 2003, , .		0
346	1+3covariant dynamics of scalar perturbations in braneworlds. Physical Review D, 2002, 65, .	4.7	32
347	Perturbation theory calculation of the black hole elastic scattering cross section. Physical Review D, 2002, 66, .	4.7	28
348	Braneworld tensor anisotropies in the CMB. Physical Review D, 2002, 66, .	4.7	27
349	CMB anisotropies: recent measurements and interpretation. Classical and Quantum Gravity, 2002, 19, 3469-3485.	4.0	2
350	Conformal Geometry, Euclidean Space and Geometric Algebra. , 2002, , 41-58.		17
351	Harmonic analysis of cosmic microwave background data – I. Ring reductions and point-source catalogue. Monthly Notices of the Royal Astronomical Society, 2002, 331, 975-993.	4.4	22
352	Harmonic analysis of cosmic microwave background data – II. From ring-sets to the sky. Monthly Notices of the Royal Astronomical Society, 2002, 331, 994-1010.	4.4	21
353	All-sky component separation for the Planck mission. Monthly Notices of the Royal Astronomical Society, 2002, 336, 97-111.	4.4	68
354	Filtering techniques for the detection of Sunyaev-Zel'dovich clusters in multifrequency maps. Monthly Notices of the Royal Astronomical Society, 2002, 336, 1057-1068.	4.4	112
355	Analytic marginalization over CMB calibration and beam uncertainty. Monthly Notices of the Royal Astronomical Society, 2002, 335, 1193-1200.	4.4	70
356	Geometric Algebra, Dirac Wavefunctions and Black Holes. , 2002, , 251-283.		2
357	A New Spin on Galactic Dust. Astrophysical Journal, 2002, 567, 363-369.	4.5	64
358	Observations of the cosmic microwave background and CMB interferometers. AIP Conference Proceedings, $2001, \ldots$	0.4	0
359	On dust-correlated Galactic emission in the Tenerife data. Monthly Notices of the Royal Astronomical Society, 2001, 320, 224-234.	4.4	21
360	Reflected iron line from a source above a Kerr black hole accretion disc. Monthly Notices of the Royal Astronomical Society, 2001, 321, 605-614.	4.4	36

#	Article	IF	CITATIONS
361	Cosmological parameters from velocities, cosmic microwave background and supernovae. Monthly Notices of the Royal Astronomical Society, 2001, 321, 333-340.	4.4	41
362	Spectral index determination between 408 MHz and 5 GHz in the northern sky. Monthly Notices of the Royal Astronomical Society, 2001, 327, 545-551.	4.4	6
363	Surveying the sky with the Arcminute MicroKelvin Imager: expected constraints on galaxy cluster evolution and cosmology. Monthly Notices of the Royal Astronomical Society, 2001, 328, 783-794.	4.4	67
364	Electron Scattering without Spin Sums. International Journal of Theoretical Physics, 2001, 40, 363-376.	1.2	3
365	Bayesian joint estimation of non-Gaussianity and the power spectrum. Physical Review D, 2001, 64, .	4.7	18
366	Applications of Geometric Algebra in Physics and Links With Engineering., 2001,, 430-457.		4
367	Observations and Theory of The Cosmic Microwave Background. , 2001, , 151-176.		0
368	Thermal and kinematic corrections to the microwave background polarization induced by galaxy clusters along the line of sight. Monthly Notices of the Royal Astronomical Society, 2000, 312, 159-165.	4.4	41
369	Bayesian 'hyper-parameters' approach to joint estimation: the Hubble constant from CMB measurements. Monthly Notices of the Royal Astronomical Society, 2000, 315, L45-L49.	4.4	44
370	Microwave background anisotropies arising from non-linear structures in open and \hat{i} universes. Monthly Notices of the Royal Astronomical Society, 2000, 318, 393-401.	4.4	2
371	Testing the Gaussianity of the COBE DMR data with spherical wavelets. Monthly Notices of the Royal Astronomical Society, 2000, 318, 475-481.	4.4	64
372	Do wavelets really detect non-Gaussianity in the 4-year COBE data?. Monthly Notices of the Royal Astronomical Society, 2000, 318, 1157-1163.	4.4	42
373	Quadratic Lagrangians and Topology in Gauge Theory Gravity. General Relativity and Gravitation, 2000, 32, 161-174.	2.0	4
374	Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmannâ€Robertsonâ€Walker Models. Astrophysical Journal, 2000, 538, 473-476.	4.5	3,745
375	A unified mathematical language for physics and engineering in the 21st century. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 21-39.	3.4	49
376	Surface Evolution and Representation using Geometric Algebra. , 2000, , 144-168.		5
377	The Tenerife Cosmic Microwave Background Maps: Observations and First Analysis. Astrophysical Journal, 2000, 529, 47-55.	4. 5	31
378	A Deep Submillimeter Survey of the Galactic Center. Astrophysical Journal, 2000, 545, L121-L125.	4.5	157

#	Article	IF	Citations
379	Electron Scattering in the Spacetime Algebra. , 2000, , 49-71.		O
380	Cosmic Microwave Background Anisotropies in the Cold Dark Matter Model: A Covariant and Gaugeâ€invariant Approach. Astrophysical Journal, 1999, 513, 1-22.	4.5	102
381	Geometric algebra and the causal approach to multiparticle quantum mechanics. Journal of Mathematical Physics, 1999, 40, 3327-3340.	1.1	24
382	Microwave background anisotropies and non-linear structures $\hat{a} \in $ " I. Improved theoretical models. Monthly Notices of the Royal Astronomical Society, 1999, 302, 748-756.	4.4	10
383	Microwave background anisotropies and non-linear structures — II. Numerical computations. Monthly Notices of the Royal Astronomical Society, 1999, 302, 757-770.	4.4	9
384	Constraints on $\hat{A}\hat{A}$ and \hat{A} m from distant Type Ia supernovae and cosmic microwave background anisotropies. Monthly Notices of the Royal Astronomical Society, 1999, 303, L47-L52.	4.4	86
385	Separation of foregrounds from cosmic microwave background observations with the MAP satellite. Monthly Notices of the Royal Astronomical Society, 1999, 305, 898-904.	4.4	7
386	The effect of point sources on satellite observations of the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 1999, 306, 232-246.	4.4	44
387	Wavelet analysis and the detection of non-Gaussianity in the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 1999, 309, 125-140.	4.4	62
388	Detection of cosmic microwave background structure in a second field with the Cosmic Anisotropy Telescope. Monthly Notices of the Royal Astronomical Society, 1999, 308, 1173-1178.	4.4	37
389	A multifrequency maximum-entropy joint analysis of COBE and Tenerife data. Monthly Notices of the Royal Astronomical Society, 1999, 310, 105-109.	4.4	7
390	Cosmological parameters from cluster abundances, cosmic microwave background and IRAS. Monthly Notices of the Royal Astronomical Society, 1999, 310, 565-570.	4.4	34
391	Comptonization of an Isotropic Distribution in Moving Media: Higher Order Effects. Astrophysical Journal, 1999, 510, 930-933.	4.5	34
392	Observations of the cosmic microwave background and implications for cosmology and large–scale structure. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1999, 357, 35-56.	3.4	1
393	Cross-Correlation of Tenerife Data with Galactic Templates—Evidence for Spinning Dust?. Astrophysical Journal, 1999, 527, L9-L12.	4.5	90
394	Constraints on cosmological parameters from recent measurements of cosmic microwave background anisotropy. Monthly Notices of the Royal Astronomical Society, 1998, 294, L1-L6.	4.4	80
395	The observability of topological defects with ground-based interferometers. Monthly Notices of the Royal Astronomical Society, 1998, 297, 531-535.	4.4	2
396	The entropic prior for distributions with positive and negative values. Monthly Notices of the Royal Astronomical Society, 1998, 298, 905-908.	4.4	50

#	Article	IF	CITATIONS
397	Foreground separation methods for satellite observations of the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 1998, 300, 1-29.	4.4	142
398	A maximum-entropy method for reconstructing the projected mass distribution of gravitational lenses. Monthly Notices of the Royal Astronomical Society, 1998, 299, 895-903.	4.4	69
399	Gravity, gauge theories and geometric algebra. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1998, 356, 487-582.	3.4	149
400	Effects of spin-torsion in gauge theory gravity. Journal of Mathematical Physics, 1998, 39, 3303-3321.	1.1	14
401	Covariant and gauge-invariant analysis of cosmic microwave background anisotropies from scalar perturbations. Physical Review D, 1998, 58, .	4.7	44
402	Multilinear representations of rotation groups within geometric algebra. Journal of Mathematical Physics, 1998, 39, 1566-1588.	1.1	5
403	The Cosmic Microwave Background. Living Reviews in Relativity, 1998, 1, 11.	26.7	6
404	Relativistic Corrections to the Sunyaevâ€Zeldovich Effect. Astrophysical Journal, 1998, 499, 1-6.	4.5	183
405	Estimating tensors for matching over multiple views. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1998, 356, 1267-1282.	3.4	1
406	Constrained Optimization Using Geometric Algebra and its Application to Signal Analysis. Applied and Numerical Harmonic Analysis, 1998, , 79-88.	0.3	1
407	The Cosmic Microwave Background. , 1998, , 325-357.		1
408	Recent Developments in the Calculation of CMB Anisotropies., 1998,, 409-442.		1
409	Joint Estimation of Cosmological Parameters fromCosmic Microwave Background and [ITAL]IRAS[/ITAL] Data. Astrophysical Journal, 1998, 509, L65-L68.	4.5	33
410	Studies of cosmic microwave background structure at Dec. = $+40\text{\^A}$ - II. Analysis and cosmological interpretation. Monthly Notices of the Royal Astronomical Society, 1997, 289, 505-514.	4.4	28
411	The profile and equivalent width of the X-ray iron emission line from a disc around a Kerr black hole. Monthly Notices of the Royal Astronomical Society, 1997, 288, L11-L15.	4.4	132
412	A maximum entropy method for reconstructing interferometer maps of fluctuations in the cosmic microwave background radiation. Monthly Notices of the Royal Astronomical Society, 1997, 290, 313-326.	4.4	23
413	Massive, Non-ghost Solutions for the Dirac Field Coupled Self-consistently to Gravity. General Relativity and Gravitation, 1997, 29, 1527-1544.	2.0	6
414	Tunnelling times of electrons. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 227, 143-152.	2.1	19

#	Article	IF	CITATIONS
415	Detection of a Cosmic Microwave Background Decrement toward the [CLC][ITAL]z[/ITAL][/CLC] = 3.8 Quasar Pair PC 1643+4631A, B. Astrophysical Journal, 1997, 479, L1-L3.	4.5	33
416	New Cosmological Structures on Medium Angular Scales Detected with the Tenerife Experiments. Astrophysical Journal, 1997, 480, L83-L86.	4.5	18
417	[ITAL]ASCA[/ITAL] Observations of the Distant Cluster A1204. Astrophysical Journal, 1996, 466, L75-L78.	4.5	3
418	A relativistic, causal account of a spin measurement. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 218, 128-138.	2.1	9
419	Studies of cosmic microwave background structure at Dec. = $+40\text{\^A}$ -1. The performance of the Tenerife experiments. Monthly Notices of the Royal Astronomical Society, 1996, 278, 883-896.	4.4	28
420	Physics of rotating cylindrical strings. Physical Review D, 1996, 54, 6021-6031.	4.7	7
421	Recent results of the Tenerife CMB experiments. Astronomical and Astrophysical Transactions, 1996, 10, 43-52.	0.2	1
422	Spacetime Algebra and Electron Physics. Advances in Imaging and Electron Physics, 1996, 95, 271-386.	0.2	47
423	Measurements of Structure in the Cosmic Background Radiation with the Cambridge Cosmic Anisotropy Telescope. Astrophysical Journal, 1996, 461, .	4.5	71
424	HCN observations of the circumnuclear disc in the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 1995, 277, 594-608.	4.4	27
425	Testing the angular-size versus redshift relation with compact radio sources. Monthly Notices of the Royal Astronomical Society, 1995, 277, 753-757.	4.4	22
426	A search for primordial anisotropies in the cosmic microwave background radiation: first observations at 13.5 GHz with the Cosmic Anisotropy Telescope. Monthly Notices of the Royal Astronomical Society, 1995, 274, 861-868.	4.4	19
427	A magnetic field upper limit for the circumnuclear ring in the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 1995, 274, 519-522.	4.4	10
428	A bayesian method for analysing interferometer observations of cosmic microwave background fluctuations. Monthly Notices of the Royal Astronomical Society, 1995, 275, 863-873.	4.4	35
429	Detections of Primary and Secondary Anisotropies in the CMB. , 1995, , 327-358.		5
430	Dual-frequency mapping with the Tenerife cosmic microwave background experiments. Astrophysical Journal, 1995, 442, 10.	4.5	12
431	Comparison of the COBE DMR and Tenerife Data. Astrophysical Journal, 1995, 448, 482.	4.5	21
432	CO observations of high negative velocity gas towards the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 1994, 269, 619-625.	4.4	4

#	Article	IF	Citations
433	Direct observation of structure in the cosmic microwave background. Nature, 1994, 367, 333-338.	27.8	98
434	CO and HI Observations of High Negative Velocity Gas Towards the Galactic Centre., 1994,, 179-184.		0
435	The current status of the tenerife experiments and prospects for the future Lecture Notes in Physics, 1994, , 91-97.	0.7	1
436	An image of the Sunyaev–Zel'dovich effect. Nature, 1993, 365, 320-323.	27.8	113
437	lmaginary numbers are not realâ€"The geometric algebra of spacetime. Foundations of Physics, 1993, 23, 1175-1201.	1.3	95
438	States and operators in the spacetime algebra. Foundations of Physics, 1993, 23, 1239-1264.	1.3	56
439	A multivector derivative approach to Lagrangian field theory. Foundations of Physics, 1993, 23, 1295-1327.	1.3	36
440	Electron paths, tunnelling, and diffraction in the spacetime algebra. Foundations of Physics, 1993, 23, 1329-1356.	1.3	34
441	Grassmann calculus, pseudoclassical mechanics, and geometric algebra. Journal of Mathematical Physics, 1993, 34, 3683-3712.	1.1	27
442	An upper limit on the fine-scale anisotropy of the cosmic background radiation at 800 Âm. Monthly Notices of the Royal Astronomical Society, 1993, 261, 705-717.	4.4	4
443	Grassmann Mechanics, Multivector Derivatives and Geometric Algebra. , 1993, , 215-226.		5
444	2-Spinors, Twistors and Supersymmetry in the Spacetime Algebras. , 1993, , 233-245.		13
445	Gravity as a Gauge Theory in the Spacetime Algebra. , 1993, , 375-385.		4
446	Highly blueshifted H I gas toward the Galactic center. Astrophysical Journal, 1993, 410, L27.	4.5	14
447	The spatial correlation between far-infrared and radio emission in galaxies – I. NGC 6946, M51, NGC 2997 and M83. Monthly Notices of the Royal Astronomical Society, 1992, 255, 146-164.	4.4	9
448	Observations of the microwave background on a scale of $8\hat{A}$ - I. The observing system. Monthly Notices of the Royal Astronomical Society, 1992, 258, 605-615.	4.4	16
449	Deep 10 and 15 GHZ Searches for CMB Anisotropies. Highlights of Astronomy, 1992, 9, 323-325.	0.0	0
450	Anisotropy measurements of the cosmic microwave background radiation at intermediate angular scales. Nature, 1992, 357, 660-665.	27.8	41

#	Article	IF	CITATIONS
451	The Sunyaev—Zeldovich Effect. , 1992, , 219-239.		4
452	New Limits on the Cosmic Microwave Background Fluctuations on a $5\hat{A}^o$ Angular Scale. Annals of the New York Academy of Sciences, 1991, 647, 679-686.	3.8	0
453	Observations of Microwave Background Anisotropy at Tenerife and Cambridge., 1991,, 413-418.		0
454	Cosmic Microwave Background Fluctuation Searches On $5\hat{A}^\circ$ to $10\hat{A}^\circ$ Scales. Symposium - International Astronomical Union, 1990, 139, 398-399.	0.1	0
455	Cosmic Microwave Background Fluctuation Searches on 5° to 10° Scales. , 1990, , 398-399.		0
456	HI Absorption Measurements over the Galactic Centre Radio Arc and Arches Regions. Symposium - International Astronomical Union, 1989, 136, 293-300.	0.1	2
457	Sensitive CMB Fluctuation Searches at 10.4 GHz. Annals of the New York Academy of Sciences, 1989, 571, 214-218.	3.8	0
458	H I absorption measurements over the Galactic center Radio Arc region. Astrophysical Journal, 1989, 343, 177.	4.5	20
459	HI Absorption Measurements over the Galactic Centre Radio Arc and Arches Regions. , 1989, , 293-300.		0
460	Large Scale Structure: Its possible imprint on the CMB?. Astrophysics and Space Science Library, 1989, , 133-137.	2.7	6
461	The Jodrell Bank wide-band interferometers and their application to surface profile measurements of the telescopes. Monthly Notices of the Royal Astronomical Society, 1987, 224, 685-699.	4.4	2
462	Sensitive measurement of fluctuations in the cosmic microwave background. Nature, 1987, 326, 462-465.	27.8	99
463	A new symmetrical polarization structure near the galactic centre. Nature, 1985, 317, 697-699.	27.8	68
464	Microwave Decrement Measurements in Galaxy Clusters. Astrophysics and Space Science Library, 1984, , 267-272.	2.7	0
465	\hat{l} » 6-cm observations of fluctuations in the 3 K cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 1983, 203, 1137-1169.	4.4	47
466	10 to 60 Arcmin Fluctuations in the Cosmic Microwave Background. Symposium - International Astronomical Union, 1983, 104, 127-129.	0.1	0
467	Regularization and Inverse Problems. , 0, , 15-32.		3
468	Reconstructing the Microwave Sky Using a Combined Maximum-Entropy and Mexican Hat Wavelet Analysis., 0,, 465-472.		1

#	Article	IF	CITATIONS
469	All-sky component separation in the presence of anisotropic noise and dust temperature variations. Monthly Notices of the Royal Astronomical Society, 0, 357, 145-155.	4.4	38