Wojciech Bury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6322838/publications.pdf

Version: 2024-02-01

136950 138484 7,679 54 32 58 citations h-index g-index papers 60 60 60 8226 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 10294-10297.	13.7	821
2	Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 2015, 14, 512-516.	27.5	790
3	Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chemical Society Reviews, 2014, 43, 5896-5912.	38.1	721
4	Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals. Chemistry of Materials, 2014, 26, 6185-6192.	6.7	524
5	Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO ₂ Adsorption Studies. Journal of the American Chemical Society, 2013, 135, 16801-16804.	13.7	473
6	Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers. Journal of the American Chemical Society, 2012, 134, 18790-18796.	13.7	370
7	Solventâ€Assisted Linker Exchange: An Alternative to the Deâ€Novo Synthesis of Unattainable Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2014, 53, 4530-4540.	13.8	339
8	Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. Journal of the American Chemical Society, 2015, 137, 3585-3591.	13.7	329
9	Transmetalation: routes to metal exchange within metal–organic frameworks. Journal of Materials Chemistry A, 2013, 1, 5453.	10.3	267
10	Directed Growth of Electroactive Metalâ€Organic Framework Thin Films Using Electrophoretic Deposition. Advanced Materials, 2014, 26, 6295-6300.	21.0	265
11	Metal–Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism. Chemistry of Materials, 2013, 25, 5012-5017.	6.7	242
12	A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution. Nature Communications, 2015, 6, 8304.	12.8	239
13	Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. Chemical Communications, 2014, 50, 1965.	4.1	208
14	MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates vs Carboxylates. Inorganic Chemistry, 2015, 54, 2185-2192.	4.0	177
15	Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange. Chemical Science, 2012, 3, 3256.	7.4	166
16	Waterâ€Stable Zirconiumâ€Based Metal–Organic Framework Material with Highâ€Surface Area and Gasâ€Storage Capacities. Chemistry - A European Journal, 2014, 20, 12389-12393.	3.3	150
17	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	13.7	149
18	Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28223-28230.	8.0	145

#	Article	IF	CITATIONS
19	Control over Catenation in Pillared Paddlewheel Metal–Organic Framework Materials via Solvent-Assisted Linker Exchange. Chemistry of Materials, 2013, 25, 739-744.	6.7	135
20	Bias-Switchable Permselectivity and Redox Catalytic Activity of a Ferrocene-Functionalized, Thin-Film Metal–Organic Framework Compound. Journal of Physical Chemistry Letters, 2015, 6, 586-591.	4.6	120
21	Opening Metal–Organic Frameworks Vol. 2: Inserting Longer Pillars into Pillared-Paddlewheel Structures through Solvent-Assisted Linker Exchange. Chemistry of Materials, 2013, 25, 3499-3503.	6.7	109
22	Porous Silsesquioxane–Imine Frameworks as Highly Efficient Adsorbents for Cooperative Iodine Capture. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19964-19973.	8.0	78
23	Alkylzinc Carboxylates as Efficient Precursors for Zinc Oxocarboxylates and Sulfidocarboxylates. Angewandte Chemie - International Edition, 2008, 47, 573-576.	13.8	69
24	From Discrete Linear ZntBu2Molecules to 1D Coordination Polymers and 2D Fabrics. Journal of the American Chemical Society, 2007, 129, 3096-3098.	13.7	55
25	Quest for an Efficient 2-in-1 MOF-Based Catalytic System for Cycloaddition of CO ₂ to Epoxides under Mild Conditions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8344-8352.	8.0	55
26	Development of zinc alkyl/air systems as radical initiators for organic reactions. Chemical Science, 2015, 6, 3102-3108.	7.4	48
27	Permanent Porosity Derived From the Selfâ€Assembly of Highly Luminescent Molecular Zinc Carbonate Nanoclusters. Angewandte Chemie - International Edition, 2013, 52, 13414-13418.	13.8	46
28	Unravelling the Behavior of Dion–Jacobson Layered Hybrid Perovskites in Humid Environments. ACS Energy Letters, 2021, 6, 337-344.	17.4	44
29	Oxozinc Carboxylate Complexes: A New Synthetic Approach and the Carboxylate Ligand Effect on the Noncovalent-Interactions-Driven Self-Assembly. Inorganic Chemistry, 2012, 51, 7410-7414.	4.0	38
30	tert-Butylzinc hydroxide as an efficient predesigned precursor of ZnO nanoparticles. Chemical Communications, 2011, 47, 5467-5469.	4.1	36
31	Efficient Route to Tetramethylalumoxane and Carboxylate Alumoxanes through the Alkylation of Phthalic Acid. Angewandte Chemie - International Edition, 2006, 45, 2872-2875.	13.8	34
32	Rational Design of Noncovalent Diamondoid Microporous Materials for Low-Energy Separation of C ₆ -Hydrocarbons. Journal of the American Chemical Society, 2018, 140, 15031-15037.	13.7	34
33	Investigations on the Interaction of Dichloroaluminum Carboxylates with Lewis Bases and Water: an Efficient Road toward Oxo- and Hydroxoaluminum Carboxylate Complexes. Inorganic Chemistry, 2012, 51, 737-745.	4.0	33
34	Probing mesoporous Zr-MOF as drug delivery system for carboxylate functionalized molecules. Polyhedron, 2018, 156, 131-137.	2.2	29
35	Oxozinc carboxylates: a predesigned platform for modelling prototypical Zn-MOFs' reactivity toward water and donor solvents. Chemical Communications, 2012, 48, 7362.	4.1	28
36	Enhanced Gas Sorption Properties and Unique Behavior toward Liquid Water in a Pillared-Paddlewheel Metal–Organic Framework Transmetalated with Ni(II). Inorganic Chemistry, 2014, 53, 10432-10436.	4.0	24

#	Article	IF	CITATIONS
37	<i>tert</i> â€Butyl(<i>tert</i> â€butoxy)zinc Hydroxides: Hybrid Models for Singleâ€Source Precursors of ZnO Nanocrystals. Chemistry - A European Journal, 2015, 21, 5488-5495.	3.3	22
38	Hybrid Triazine-Boron Two-Dimensional Covalent Organic Frameworks: Synthesis, Characterization, and DFT Approach to Layer Interaction Energies. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31129-31141.	8.0	20
39	Activation of CO2 by tBuZnOH species: efficient routes to novel nanomaterials based on zinc carbonates. Chemical Communications, 2013, 49, 5271.	4.1	17
40	A Second Polymorphic Form of Trimethylindium:  Topology of Supramolecular Architectures of Group 13 Trimethyls. Organometallics, 2005, 24, 4832-4837.	2.3	16
41	Feeding a Molecular Squid: A Pliable Nanocarbon Receptor for Electron-Poor Aromatics. Journal of the American Chemical Society, 2020, 142, 15604-15613.	13.7	16
42	Structure Investigations of Dichloroaluminum Benzoates: An Unprecedented Example of a Monomeric Aluminum Complex with a Chelating Carboxylate Ligand. Inorganic Chemistry, 2009, 48, 10892-10894.	4.0	14
43	Turning Flexibility into Rigidity: Stepwise Locking of Interpenetrating Networks in a MOF Crystal through Click Reaction. Chemistry of Materials, 2021, 33, 7509-7517.	6.7	13
44	Significance of Intermolecular S···C(π) Interaction Involving M-S and -C=O Centers in Crystal Structures of Metal Thiolate Complexes. European Journal of Inorganic Chemistry, 2005, 2005, 4490-4492.	2.0	12
45	Zirconium-Based Metal–Organic Frameworks as Acriflavine Cargos in the Battle against Coronaviruses─A Theoretical and Experimental Approach. ACS Applied Materials & Interfaces, 2022, 14, 28615-28627.	8.0	12
46	Experimental and Computational Insights into Carbon Dioxide Fixation by RZnOH Species. Chemistry - A European Journal, 2015, 21, 5496-5503.	3.3	10
47	Multiâ€Length Scale Structure of 2D/3D Dion–Jacobson Hybrid Perovskites Based on an Aromatic Diammonium Spacer. Small, 2022, 18, e2104287.	10.0	10
48	Structure investigations of group 13 organometallic carboxylates. Dalton Transactions, 2017, 46, 669-677.	3.3	8
49	On the Nature of Luminescence Thermochromism of Multinuclear Copper(I) Benzoate Complexes in the Crystalline State. Crystals, 2019, 9, 36.	2.2	8
50	Unprecedented Coordination Mode Variation of Group 13 Metal-Alkyl Compounds Derived from Methyl Thiosalicylate. European Journal of Inorganic Chemistry, 2005, 2005, 3414-3417.	2.0	7
51	Immobilization of Rh(<scp>i</scp>) precursor in a porphyrin metal–organic framework – turning on the catalytic activity. Dalton Transactions, 2021, 50, 9051-9058.	3.3	7
52	Toward Coordination Polymers Based on Fine-Tunable Group 13 Organometallic Phthalates. Inorganic Chemistry, 2014, 53, 7270-7275.	4.0	4
53	Synthesis and Characterization of Functionalized Metal-organic Frameworks. Journal of Visualized Experiments, 2014, , e52094.	0.3	3
54	Synthesis, Structure, and Magnetic Properties of a Mononuclear Chiral (Acetato)bis(aminoalkoxido)manganese(III) Complex. European Journal of Inorganic Chemistry, 2017, 2017, 1392-1395.	2.0	3