
Masatake Fujimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6322631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methylmercury induces neuropathological changes with tau hyperphosphorylation mainly through the activation of the c-jun-N-terminal kinase pathway in the cerebral cortex, but not in the hippocampus of the mouse brain. NeuroToxicology, 2009, 30, 1000-1007.	3.0	96
2	Post-transcriptional Defects of Antioxidant Selenoenzymes Cause Oxidative Stress under Methylmercury Exposure. Journal of Biological Chemistry, 2011, 286, 6641-6649.	3.4	73
3	Inhibition of the Rho/ROCK pathway prevents neuronal degeneration in vitro and in vivo following methylmercury exposure. Toxicology and Applied Pharmacology, 2011, 250, 1-9.	2.8	60
4	Methylmercury exposure downregulates the expression of Racl and leads to neuritic degeneration and ultimately apoptosis in cerebrocortical neurons. NeuroToxicology, 2009, 30, 16-22.	3.0	59
5	Effects of dietary methylmercury on the zebrafish brain: histological, mitochondrial, and gene transcription analyses. BioMetals, 2012, 25, 165-180.	4.1	56
6	Differing Effects of Toxicants (Methylmercury, Inorganic Mercury, Lead, Amyloid Â, and Rotenone) on Cultured Rat Cerebrocortical Neurons: Differential Expression of Rho Proteins Associated With Neurotoxicity. Toxicological Sciences, 2012, 126, 506-514.	3.1	43
7	Site-specific neural hyperactivity via the activation of MAPK and PKA/CREB pathways triggers neuronal degeneration in methylmercury-intoxicated mice. Toxicology Letters, 2017, 271, 66-73.	0.8	39
8	Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression. PLoS ONE, 2017, 12, e0170623.	2.5	39
9	Perinatal exposure to low-dose methylmercury induces dysfunction of motor coordination with decreases in synaptophysin expression in the cerebellar granule cells of rats. Brain Research, 2012, 1464, 1-7.	2.2	35
10	Methylmercury causes neuronal cell death through the suppression of the TrkA pathway: In vitro and in vivo effects of TrkA pathway activators. Toxicology and Applied Pharmacology, 2015, 282, 259-266.	2.8	35
11	The Chemokine CCL2 Protects Against Methylmercury Neurotoxicity. Toxicological Sciences, 2012, 125, 209-218.	3.1	34
12	Methylmercury induces the expression of TNF-α selectively in the brain of mice. Scientific Reports, 2016, 6, 38294.	3.3	33
13	Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 31² and subsequent degradation of cyclin E in rats. Toxicology and Applied Pharmacology, 2015, 288, 19-25.	2.8	32
14	Deleterious effects in mice of fish-associated methylmercury contained in a diet mimicking the Western populations' average fish consumption. Environment International, 2011, 37, 303-313.	10.0	30
15	Methylmercury induces oxidative stress and subsequent neural hyperactivity leading to cell death through the p38 MAPK-CREB pathway in differentiated SH-SY5Y cells. NeuroToxicology, 2018, 67, 226-233.	3.0	29
16	Effects of antipsychotic drugs on neurotoxicity, expression of fos-like protein and c-fos mRNA in the retrosplenial cortex after administration of dizocilpine. European Journal of Pharmacology, 2000, 398, 1-10.	3.5	28
17	Endoplasmic reticulum stress preconditioning attenuates methylmercury-induced cellular damage by inducing favorable stress responses. Scientific Reports, 2013, 3, 2346.	3.3	27
18	Neurobehavioral effects, c-Fos/Jun expression and tissue distribution in rat offspring prenatally co-exposed to MeHg and PFOA: PFOA impairs Hg retention. Chemosphere, 2013, 91, 758-764.	8.2	26

Masatake Fujimura

#	Article	IF	CITATIONS
19	Mercury Contamination in Humans in Upper Maroni, French Guiana Between 2004 and 2009. Bulletin of Environmental Contamination and Toxicology, 2012, 88, 135-139.	2.7	23
20	Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum. Toxicology and Applied Pharmacology, 2016, 298, 1-8.	2.8	23
21	In situ different antioxidative systems contribute to the site-specific methylmercury neurotoxicity in mice. Toxicology, 2017, 392, 55-63.	4.2	23
22	Endoplasmic reticulum stress preconditioning modifies intracellular mercury content by upregulating membrane transporters. Scientific Reports, 2017, 7, 12390.	3.3	21
23	Fasudil, a Rho-Associated Coiled Coil-Forming Protein Kinase Inhibitor, Recovers Methylmercury-Induced Axonal Degeneration by Changing Microglial Phenotype in Rats. Toxicological Sciences, 2019, 168, 126-136.	3.1	20
24	Decreased plasma thiol antioxidant barrier and selenoproteins as potential biomarkers for ongoing methylmercury intoxication and an individual protective capacity. Archives of Toxicology, 2016, 90, 917-926.	4.2	19
25	Methylmercury-Mediated Oxidative Stress and Activation of the Cellular Protective System. Antioxidants, 2020, 9, 1004.	5.1	19
26	Cellular Conditions Responsible for Methylmercury-Mediated Neurotoxicity. International Journal of Molecular Sciences, 2022, 23, 7218.	4.1	16
27	Environmental stresses suppress nonsense-mediated mRNA decay (NMD) and affect cells by stabilizing NMD-targeted gene expression. Scientific Reports, 2019, 9, 1279.	3.3	14
28	DNA methyltransferase- and histone deacetylase-mediated epigenetic alterations induced by low-level methylmercury exposure disrupt neuronal development. Archives of Toxicology, 2021, 95, 1227-1239.	4.2	14
29	Modulation of Unfolded Protein Response by Methylmercury. Biological and Pharmaceutical Bulletin, 2017, 40, 1595-1598.	1.4	12
30	Assessing pre/post-weaning neurobehavioral development for perinatal exposure to low doses of methylmercury. Journal of Environmental Sciences, 2015, 38, 36-41.	6.1	11
31	A likely placental barrier against methylmercury in pregnant rats exposed to fish-containing diets. Food and Chemical Toxicology, 2018, 122, 11-20.	3.6	11
32	Chemokine CCL4 Induced in Mouse Brain Has a Protective Role against Methylmercury Toxicity. Toxics, 2018, 6, 36.	3.7	10
33	Pregnant rats exposed to low-level methylmercury exhibit cerebellar synaptic and neuritic remodeling during the perinatal period. Archives of Toxicology, 2020, 94, 1335-1347.	4.2	10
34	Spatiotemporal analysis of the UPR transition induced by methylmercury in the mouse brain. Archives of Toxicology, 2021, 95, 1241-1250.	4.2	10
35	Assessment of neurotoxic effects and brain region distribution in rat offspring prenatally co-exposed to low doses of BDE-99 and methylmercury. Chemosphere, 2014, 112, 170-176.	8.2	9
36	Local Vibration Stimuli Induce Mechanical Stress-Induced Factors and Facilitate Recovery From Immobilization-Induced Oxidative Myofiber Atrophy in Rats. Frontiers in Physiology, 2019, 10, 759.	2.8	9

Masatake Fujimura

#	Article	IF	CITATIONS
37	Decreased plasma thiol antioxidant capacity precedes neurological signs in a rat methylmercury intoxication model. Food and Chemical Toxicology, 2020, 146, 111810.	3.6	6
38	Methylmercury induces hyperalgesia/allodynia through spinal cord dorsal horn neuronal activation and subsequent somatosensory cortical circuit formation in rats. Archives of Toxicology, 2021, 95, 2151-2162.	4.2	5
39	Induction of chemokine CCL3 by NF-κB reduces methylmercury toxicity in C17.2 mouse neural stem cells. Environmental Toxicology and Pharmacology, 2019, 71, 103216.	4.0	4
40	Dietary Fructooligosaccharides Reduce Mercury Levels in the Brain of Mice Exposed to Methylmercury. Biological and Pharmaceutical Bulletin, 2021, 44, 522-527.	1.4	4
41	Spatio-temporal distribution of reactive sulfur species during methylmercury exposure in the rat brain. Journal of Toxicological Sciences, 2022, 47, 31-37.	1.5	3
42	Preliminary evaluation of the mechanism underlying vulnerability/resistance to methylmercury toxicity by comparative gene expression profiling of rat primary cultured cerebrocortical and hippocampal neurons. Journal of Toxicological Sciences, 2022, 47, 211-219.	1.5	3
43	Influence of Dietary Protein Levels on the Fate of Inorganic Mercury in Mice. Journal of Health Science, 2008, 54, 207-211.	0.9	2
44	Ecological Burden of e-Waste in Bangladesh—an Assessment to Measure the Exposure to e-Waste and Associated Health Outcomes: Protocol for a Cross-sectional Study. JMIR Research Protocols, 2022, 11, e38201.	1.0	2
45	Effects of Methylmercury on Cellular Signal Transduction Systems. , 2012, , 229-240.		1
46	Intake of wheat bran after administration of methylmercury reduces mercury accumulation in mice. Fundamental Toxicological Sciences, 2021, 8, 243-248.	0.6	1